• Ассоциативная память. Развитие ассоциативной памяти. Память с ассоциативным доступом Ассоциативная память эвм

    многоуровневой таблице страниц требует нескольких обращений к основной памяти, поэтому занимает много времени. В некоторых случаях такая задержка недопустима. Проблема ускорения поиска решается на уровне архитектуры компьютера.

    В соответствии со свойством локальности большинство программ в течение некоторого промежутка времени обращаются к небольшому количеству страниц, поэтому активно используется только небольшая часть таблицы страниц .

    Естественное решение проблемы ускорения – снабдить компьютер аппаратным устройством для отображения виртуальных страниц в физические без обращения к таблице страниц , то есть иметь небольшую, быструю кэш-память, хранящую необходимую на данный момент часть таблицы страниц . Это устройство называется ассоциативной памятью , иногда также употребляют термин буфер поиска трансляции (translation lookaside buffer – TLB).

    Одна запись таблицы в ассоциативной памяти (один вход) содержит информацию об одной виртуальной странице: ее атрибуты и кадр, в котором она находится. Эти поля в точности соответствуют полям в таблице страниц .

    Так как ассоциативная память содержит только некоторые из записей таблицы страниц , каждая запись в TLB должна включать поле с номером виртуальной страницы . Память называется ассоциативной , потому что в ней происходит одновременное сравнение номера отображаемой виртуальной страницы с соответствующим полем во всех строках этой небольшой таблицы . Поэтому данный вид памяти достаточно дорого стоит. В строке, поле виртуальной страницы которой совпало с искомым значением, находится номер страничного кадра. Обычное число записей в TLB от 8 до 4096. Рост количества записей в ассоциативной памяти должен осуществляться с учетом таких факторов, как размер кэша основной памяти и количества обращений к памяти при выполнении одной команды.

    Рассмотрим функционирование менеджера памяти при наличии ассоциативной памяти .

    В начале информация об отображении виртуальной страницы в физическую отыскивается в ассоциативной памяти . Если нужная запись найдена – все нормально, за исключением случаев нарушения привилегий, когда запрос на обращение к памяти отклоняется.

    Если нужная запись в ассоциативной памяти отсутствует, отображение осуществляется через таблицу страниц . Происходит замена одной из записей в ассоциативной памяти найденной записью из таблицы страниц . Здесь мы сталкиваемся с традиционной для любого кэша проблемой замещения (а именно какую из записей в кэше необходимо изменить). Конструкция ассоциативной памяти должна организовывать записи таким образом, чтобы можно было принять решение о том, какая из старых записей должна быть удалена при внесении новых.

    Число удачных поисков номера страницы в ассоциативной памяти по отношению к общему числу поисков называется hit (совпадение) ratio (пропорция, отношение). Иногда также используется термин "процент попаданий в кэш". Таким образом, hit ratio – часть ссылок, которая может быть сделана с использованием ассоциативной памяти . Обращение к одним и тем же страницам повышает hit ratio. Чем больше hit ratio, тем меньше среднее время доступа к данным, находящимся в оперативной памяти.

    Предположим, например, что для определения адреса в случае кэш-промаха через таблицу страниц необходимо 100 нс, а для определения адреса в случае кэш-попадания через ассоциативную память – 20 нс . С 90% hit ratio среднее время определения адреса – 0,9x20+0,1x100 = 28 нс .

    Вполне приемлемая производительность современных ОС доказывает эффективность использования ассоциативной памяти . Высокое значение вероятности нахождения данных в ассоциативной памяти связано с наличием у данных объективных свойств: пространственной и временной локальности.

    Необходимо обратить внимание на следующий факт. При переключении контекста процессов нужно добиться того, чтобы новый процесс "не видел" в ассоциативной памяти информацию, относящуюся к предыдущему процессу, например очищать ее. Таким образом, использование ассоциативной памяти увеличивает время переключения контекста.

    Рассмотренная двухуровневая (ассоциативная память + таблица страниц ) схема преобразования адреса является ярким примером иерархии памяти, основанной на использовании принципа локальности, о чем говорилось во введении к предыдущей лекции.

    Инвертированная таблица страниц

    Несмотря на многоуровневую организацию, хранение нескольких таблиц страниц большого размера по-прежнему представляют собой проблему. Ее значение особенно актуально для 64-разрядных архитектур, где число виртуальных страниц очень велико. Вариантом решения является применение инвертированной таблицы страниц (inverted page table). Этот подход применяется на машинах PowerPC, некоторых рабочих станциях Hewlett-Packard, IBM RT, IBM AS/400 и ряде других.

    В этой таблице содержится по одной записи на каждый страничный кадр физической памяти. Существенно, что достаточно одной таблицы для всех процессов. Таким образом, для хранения функции отображения требуется фиксированная часть основной памяти, независимо от разрядности архитектуры, размера и количества процессов.

    Несмотря на экономию оперативной памяти, применение инвертированной таблицы имеет существенный минус – записи в ней (как и в ассоциативной памяти ) не отсортированы по возрастанию номеров виртуальных страниц, что усложняет трансляцию адреса. Один из способов решения данной проблемы – использование хеш-таблицы виртуальных адресов . При этом часть виртуального адреса , представляющая собой номер страницы, отображается в хеш-таблицу с использованием функции хеширования. Каждой странице физической памяти здесь соответствует одна запись в хеш-таблице и инвертированной таблице страниц . Виртуальные адреса , имеющие одно значение хеш-функции, сцепляются друг с другом. Обычно длина цепочки не превышает двух записей.

    Размер страницы

    Разработчики ОС для существующих машин редко имеют возможность влиять на размер страницы. Однако для вновь создаваемых компьютеров решение относительно оптимального размера страницы является актуальным. Как и следовало ожидать, нет одного наилучшего размера. Скорее есть набор факторов, влияющих на размер. Обычно размер страницы – это степень двойки от 2 9 до 2 14 байт.

    Памятьс ассоциативным доступом или ассоциативная память отличается от остальных типов памяти тем, что обращение к ее ячейкам осуществляется не по определенному адресу, а по содержимому ячеек памяти. Фактически ассоциативная память работает как поисковая система, способная найти информацию по заданному образцу. Основу ассоциативной памяти составляют ассоциативные запоминающие устройства (АЗУ) , которые, как и большинство оперативных ЗУ, являются энергозависимыми и реализуются в виде полупроводниковых микросхем (наборов микросхем).

    Принцип работы АЗУ поясняет схема, представленная на рис. 3.8.Запоминающий массив, как и в адресных ЗУ, разделен на m -разрядные ячейки, число которых n . Как правило, в состав АЗУ входят:

    · запоминающий массив (ЗМ);

    · регистр ассоциативных признаков (РгАП);

    · регистр маски (РгМ);

    · регистр индикаторов адреса со схемами сравнения на входе.

    В АЗУ могут быть и другие элементы, наличие и функции которых определяются способом использования АЗУ.

    Рис. 3.8. Ассоциативное запоминающее устройство

    Выборка информации из АЗУ происходит следующим образом. В регистр ассоциативных признаков из устройства управления передается образец для поиска - код признака искомой информации (иногда его называют компарандом ). Код может иметь произвольное число разрядов – от 1 до m . Если код признаков используется полностью, то он без изменения поступает на схему сравнения, если же необходимо использовать только часть кода, тогда ненужные разряды маскируются с помощью регистра маски. Перед началом поиска информации в АЗУ все разряды регистра индикаторов адреса устанавливаются в состояние 1 .После этого производится опрос первого разряда всех ячеек запоминающего массива, и содержимое сравнивается с первым разрядом регистра ассоциативных признаков. Если содержимое первого разряда i -й ячейки не совпадает с содержимым первого разряда РгАП, то соответствующий этой ячейке разряд регистра индикаторов адреса Т i сбрасывается в состояние 0 , если совпадает – разряд Т i остается 1 . Затем эта операция повторяется со вторым, третьим и последующими разрядами до тех пор, пока не будет произведено сравнение со всеми разрядами РгАП. После поразрядного опроса и сравнения в состоянии 1 останутся те разряды регистра индикаторов адреса, которые соответствуют ячейкам, содержащим информацию, совпадающую с записанной в регистре ассоциативных признаков. Эта информация может быть считана в той последовательности, которая определяется устройством управления.



    Заметим, что время поиска информации в ЗМ по ассоциативному признаку зависит только от числа разрядов признака и от скорости опроса разрядов, но совершенно не зависит от числа ячеек ЗМ. Этим и определяется главное преимущество АЗУ перед адресными ЗУ: в адресных ЗУ при операции поиска необходим перебор всех ячеек запоминающего массива. Кроме того, существуют реализации АЗУ, выполняющих поиск одновременно над всеми разрядами всех слов, записанных в память, т.е. время поиска в подобных устройствах не превышает времени цикла памяти.

    Запись новой информации в ЗМ производится без указания номера ячейки. Обычно один из разрядов каждой ячейки используется для указания ее занятости, т.е. если ячейка свободна для записи, то в этом разряде записан 0 , а если занята, – 1 . Тогда при записи в АЗУ новой информации устанавливается признак 0 в соответствующем разряде регистра ассоциативных признаков, и определяются все ячейки ЗМ, которые свободны для записи. В одну из них устройство управления помещает новую информацию.

    Нередко АЗУ строятся таким образом, что кроме ассоциативной допускается и прямая адресация данных, что представляет определенные удобства при работе.

    Необходимо отметить, что запоминающие элементы АЗУ, в отличие от элементов адресуемых ЗУ, должны не только хранить информацию, но и выполнять определенные логические функции, поэтому позволяют осуществить поиск не только по равенству содержимого ячейки заданному признаку, но и по другим условиям: содержимое ячейки больше (меньше) компаранда, а также больше или равно (меньше или равно).

    Отмеченные выше свойства АЗУ характеризуют преимущества АЗУ для обработки информации. Формирование нескольких потоков идентичной информации с помощью АЗУ осуществляется быстро и просто, а с большим числом операционных элементов можно создавать высокопроизводительные системы. Надо учитывать еще и то, что на основе ассоциативной памяти легко реализуется изменение места и порядка расположения информации. Благодаря этому АЗУ является эффективным средством формирования наборов данных.

    Исследования показывают, что целый ряд задач, таких, как обработка радиолокационной информации, распознавание образов, обработка различных снимков и других задач с матричной структурой данных, эффективно решается ассоциативными системами. К тому же программирование таких задач для ассоциативных систем гораздо проще, чем для традиционных.

    К сожалению, устройства памяти с ассоциативным доступом имеют высокие сложность изготовления и стоимость, превышающие аналогичные показатели как динамических, так и статических ОЗУ. Ассоциативная память является основой для построения параллельных ассоциативных систем, а также для ВС, управляемых потоком данных. Наиболее же широко ассоциативный доступ применяется в подсистемах кэш-памяти.

    Кэш-память

    Впервые двухуровневое построение памяти было предложено М.Уилксом в 1965 году при построении ЭВМ Atlas. Суть подхода заключалась в размещении между ЦП и ОП быстродействующей буферной памяти небольшого размера. В процессе работы ЭВМ те участки ОП, к которым ведется обращение, копируются в буферную память. За счет соблюдения принципа локальности по обращению получается существенный выигрыш в производительности.

    Новый вид памяти получил название кэш-память (от англ. cache – «тайник, убежище»), поскольку такая память скрыта, «невидима» для ЦП, который не может непосредственно обратиться к ней. В свою очередь, программист может вообще не знать о существовании кэш-памяти. В серийных ЭВМ кэш-память впервые была применена в системах модели 85 семейства IBMS/360. Сегодня кэш-память наличествует в любом классе ЭВМ, причем зачастую имеет многоуровневую структуру.

    Все термины, которые были определены раньше, могут быть использованы и для кэш-памяти, хотя слово «строка » (line ) часто употребляется вместо слова «блок » (block ).

    Как правило, кэш-память строится на основе сверхбыстродействующих и дорогостоящих ОЗУ статического типа, при этом ее быстродействие в 5-10 раз превышает быстродействие ОП, а объем – в 500-1000 раз меньше. Заметим, что увеличению объема кэш-памяти по отношению к емкости ОП препятствует не только и не столько высокая стоимость статических ОЗУ. Дело в том, что при увеличении емкости кэш-памяти возрастает сложность схем управления, что, в свою очередь, ведет к падению быстродействия. Многочисленные исследования показали, что указанное соотношение объемов кэш-памяти и ОП является оптимальным и будет сохраняться в процессе развития ЭВМ при увеличении быстродействия обоих видов памяти.

    Как уже было сказано, ЦП не имеет непосредственного доступа к кэш-памяти. За организацию взаимодействия ЦП, ОП и кэш-памяти отвечает специальный контроллер. Вся ОП разбивается на блоки фиксированного объема, при этом старшая часть адреса ОП определяет адрес блока , а младшая часть – адрес слова внутри блока . Обмен информации между ОП и кэш-памятью осуществляется блоками. Кэш-память также имеет свою внутреннюю адресацию, и каждый считанный из ОП блок размещается в кэш-памяти по определенному адресу блока в кэш-памяти . Часто блоки кэш-памяти называются строками или кэш-строками .

    Если блок, к которому осуществляется запрос со стороны ЦП, уже находится в кэш-памяти, то его считывание завершается уже при обращении к кэш-памяти. Таким образом, обеспечивая доступ к некоторому адресу, контроллер должен сначала определить, имеется ли в кэш-памяти копия блока, содержащего этот адрес, и, если имеется, то определить, с какого адреса кэш-памяти начинается этот блок. Эту информацию контроллер получает с помощью механизма преобразования адресов . Сложность этого механизма зависит от стратегии размещения , определяющей, в какое место кэш-памяти следует поместить каждый блок ОП.

    Не менее важным является вопрос о том, в какой момент нужно помещать в кэш-память копию блока из ОП. Данный вопрос решается с помощью стратегии выборки .

    При записи в кэш-память существует несколько методов замещения старой информации, которые определяются стратегией обновления основной памяти .

    Часто возникает ситуация, когда несмотря на выборку из ОП необходимого блока, в кэш-памяти нет места для его размещения. В этом случае необходимо выбрать одну из кэш-строк и заменить ее новым блоком. Способ определения удаляемой кэш-строки называется стратегией замещения .

    Стратегии размещения

    Существуетследующие способы размещения данных в кэш-памяти:

    · прямое распределение;

    · полностью ассоциативное распределение;

    · частично (множественно) ассоциативное распределение.

    Допустим, разрядность шины адреса n , тогда емкость ОП V ОП = 2 n слов. Без ограничения общности определим размер кэш-строки в 256 слов, таким образом, вся ОП будет поделена на 2 n-8 блоков. В адресе ОП старшие n-8 битов будут определять адрес блока, а младший байт – адрес слова в блоке. Пусть емкость кэш-памяти V кэш в 1024 раза меньше емкости ОП, т.е. V кэш = 2 n-10 слов или 2 n-18 блоков (кэш-строк).

    Прямое распределение

    Если каждый блок основной памяти имеет только одно фиксированное место, на котором он может появиться в кэш-памяти, то такая кэш-память называется кэшем с прямым распределением (direct mapped cache). Это наиболее простая организация кэш-памяти, при которой для отображения адресов блоков ОП на адреса кэш-памяти просто используются младшие разряды адреса блока. Таким образом, все блоки ОП, имеющие одинаковые младшие разряды в своем адресе, попадают в одну кэш-строку, т.е.

    (адрес кэш-строки) = (адрес блока ОП) mod (число блоков в кэш-памяти)

    В нашем примере адрес кэш-строки c будут составлять младшие n-18 бит адреса блока ОП (см. рис. 3.9). Преобразование адреса блока ОП в адрес кэш-строки осуществляется путем выборки этих младших n-18 бит. По этому адресу кэш-строки может быть помещен любой из 1024 блоков ОП, имеющих одинаковые n-18 младших бит. Между собой эти блоки будут различаться старшими 10-ю битами t , называемыми тегом . Для того, чтобы определить, какой именно блок ОП хранится в данное время в кэш-памяти, используется еще одна память – так называемая память тегов(теговая память) . Теговая память адресуется пословно, причем каждое слово имеет размер, равный размеру тега. Емкость памяти тегов – это произведение размера тега на общее число кэш-строк, для нашего примера составляет 10·2 n-18 бит. Адресом памяти тегов является адрес кэш-строки с . В отличие от памяти тегов, память, в которой хранятся блоки, помещенные в кэш, называется памятью данных . Память данных адресуется пословно, ее адрес образуется из адреса кэш-строки и адреса слова внутри блока (кэш-строки).

    Рис. 3.9. Структура адреса памяти при прямом распределении

    Рис. 3.10. Организация кэш-памяти с прямым распределением

    При доступе к A -му адресу ОП (рис. 3.10) младшие n-18 бит адреса блока (поле c ), где содержится этот адрес, используются в качестве адреса кэш-строки. По адресу кэш-строки из теговой памяти считывается тег (поле t ). Параллельно этому осуществляется доступ к памяти данных с помощью n-10 младших бит адреса A (поля c и w ). Если считанный тег и старшие 10 бит адреса A совпадают, то это означает, что блок, содержащий адрес A , существует в памяти данных, и в слове, к которому осуществляется доступ, хранится копия A -го адреса ОП.

    Если тег отличается от старших 10 бит адреса A , то из основной памяти считывается блок, содержащий адрес A , а из кэш-памяти удаляется кэш-строка, чей адрес определяется полем c (младшими n-18 битами) адреса считываемого блока. На место удаленной кэш-строки помещается считанный из ОП блок, при этом обновляется соответствующий тег в памяти тегов.

    Достоинством прямого распределения является простота реализации, однако из-за того, что адрес кэш-строки однозначно определяется адресом блока ОП, высока вероятность сосредоточения областей блоков в некоторой части кэш-памяти. Замена блоков в этой части будет происходить довольно часто, в то же время другие области кэш-памяти могут простаивать. В такой ситуации эффективность кэш-памяти заметно снижается.

    Общие сведения и классификация устройств памяти

    Лекция 2. Организация памяти ЭВМ.

    МинисуперЭВМ и суперминиЭВМ.

    Малые и микроЭВМ.

    Имеется большое число, условно говоря, «малых» применений вычислительных машин, таких, как автоматизация производственного контроля изделий, обработка данных при экспериментах, прием и обработка данных с линии связи, управление технологическими процессами, управление станками и разнообразными цифровыми терминалами, малые расчетные инженерные задачи.

    В настоящее время малые и микроЭВМ встраивают в различные «умные» приборы (электросчетчики, микроволновки, стиральные машины, модемы, датчики и т.д.).

    В классификации отсутствуют четкие границы между рассмотренными типами ЭВМ. В последнее время стали выделять два промежуточных типа.

    К суперминиЭВМ относят высокопроизводительные ЭВМ содержащих один или несколько слабосвязанных процессоров, объединенных с общей магистралью (общей шиной). Для суперминиЭВМ характерно, что скорость выполнения его арифметических операций над числами с плавающей точкой существенно ниже скорости работы, определяемой по смеси команд, соответствующей информационно-логическим запросам. К этому типу можно отнести IBM-овский шахматный компьютер Deep Blue.

    МинисуперЭВМ – это упрощенные (в частности за счет более короткого слова) многопроцессорные ЭВМ, чаще всего со средствами векторной и конвейерной обработки, с высокой скоростью выполнения операций над числами с плавающей точкой. К этому типу можно отнести ЭВМ с SMP(Symmetric multiprocessor) архитектурой.

    Запоминающие устройства можно классифицировать по следующим критериям: · по типу запоминающих элементов · по функциональному назначению · по типу способу организации обращения · по характеру считывания · по способу хранения · по способу организации По типу запоминающих элементов Полупроводниковые Магнитные Конденсаторные Оптоэлектронные Голографические Криогенные По функциональному назначению ОЗУ СОЗУ ВЗУ ПЗУ ППЗУ По способу организации обращения С последовательным поиском С прямым доступом С непосредственным доступом или Адресные Ассоциативные Стековые Магазинные По характеру считывания С разрушением информации Без разрушения информации По способу хранения Статические Динамические По способу организации Однокоординатные Двухкоординатные Трехкоординатные Двух- трехкоординатные

    Памятью ЭВМ называется совокупность устройств, служащих для запоминания, хранения и выдачи информации. Отдельные устройства, входящие в эту совокупность, называют запоминающими устройствами или памятями того или иного типа.



    Производительность и вычислительные возможности ЭВМ в значительной степени определяются составом и характеристиками ее ЗУ. В составе ЭВМ используется одновременно несколько типов ЗУ, отличающихся принципом действия, характеристиками и назначением.

    Основными операциями в памяти являются занесение информации в память - запись и выборка информации из памяти - считывание . Обе эти операции называются обращением к памяти .

    При обращении к памяти производится считывание или запись некоторой единицы данных - различной для устройств разного типа. Такой единицей может быть, например, байт, машинное слово или блок данных.

    Важнейшими характеристиками отдельных устройств памяти (запоминающих устройств) являются емкость памяти, удельная емкость, быстродействие.

    Емкость памяти определяется максимальным количеством данных, которые могут в ней храниться.

    Удельная емкость есть отношение емкости ЗУ к его физическому объему.

    Плотность записи есть отношение емкости ЗУ к площади носителя. Например, у HDD емкостью до 10 Гб плотность записи составляет 2 Гбит на кв. дюйм.

    Быстродействие памяти определяется продолжительностью операции обращения, т. е. временем, затрачиваемым на поиск нужной единицы информации в памяти и на ее считывание (время обращения при считывании ), или временем на поиск места в памяти, предназначаемого для хранения данной единицы информации, и на ее запись в память (время обращения при записи ).

    Продолжительность обращения к памяти (время цикла памяти) при считывании

    где - время доступа, определяющееся промежутком времени между моментом начала операции обращения при считывании до момента, когда становится возможным доступ к данной единице информации; - продолжительность самого физического процесса считывания, т. е. процесса обнаружения и фиксации состояний соответствующих запоминающих элементов или участков поверхности носителя информации.

    В некоторых устройствах памяти считывание информации сопровождается ее разрушением (стиранием). В таком случае цикл обращения должен содержать операцию восстановления (регенерации) считанной информации на прежнем месте в памяти.

    Продолжительность обращения (время цикла) при записи

    где - время доступа при записи, т. е. время от момента начала обращения при записи до момента, когда становится возможным доступ к запоминающим элементам (или участкам поверхности носителя), в которые производится запись; - время подготовки, расходуемое на приведение в исходное состояние запоминающих элементов или участков поверхности носителя информации для записи определенной единицы информации (например, байта или слова); - время занесения информации, т. е. изменения состояния запоминающих элементов (участков поверхности носителя). Большей частью

    В качестве продолжительности цикла обращения к памяти принимается величина

    В зависимости от реализуемых в памяти операций обращения различают: а) память с произвольным обращением (возможны считывание и запись данных в память); б) память только для считывания информации («постоянная» или «односторонняя»). Запись информации в постоянную память производится в процессе ее изготовления или настройки.

    Эти типы памяти соответствуют терминам RAM (random access memory - память с произвольным обращением) и ROM (read only memory - память только для считывания).

    По способу организации доступа различают устройства памяти с непосредственным (произвольным), с прямым (циклическим) и последовательным доступами.

    В памяти с непосредственным (произвольным) доступом время доступа, а поэтому и цикл обращения не зависят от места расположения участка памяти, с которого производится считывание или в который записывается информация. В большинстве случаев непосредственный доступ реализуется при помощи электронных (полупроводниковых) ЗУ. В подобных памятях цикл обращения обычно составляет 70 и менее наносекунд. Количество разрядов, считываемых или записываемых в памяти с непосредственным доступом параллельно во времени за одну операцию обращения, называется шириной выборки .

    В двух других типах памяти используются более медленные электромеханические процессы. В устройствах памяти с прямым доступом , к которым относятся дисковые устройства, благодаря непрерывному вращению носителя информации возможность обращения к некоторому участку носителя для считывания или записи циклически повторяется. В такой памяти время доступа составляет обычно от нескольких долей секунды до нескольких десятков миллисекунд.

    В памяти с последовательным доступом производится последовательный просмотр участков носителя информации, пока нужный участок носителя не займет некоторое исходное положение. Характерным примером является ЗУ на магнитных лентах, т.н. стримеры (streamer ). Время доступа может в неблагоприятных случаях расположения информации достигнуть нескольких минут.

    Хорошим примером ленточного накопителя является применение адаптера АРВИД с VHS видеомагнитофоном. Емкость этого накопителя составляет 4ГБ/180мин.

    Запоминающие устройства различаются также по выполняемым в ЭВМ функциям, зависящим в частности, от места расположения ЗУ в структуре ЭВМ.

    Требования к емкости и быстродействию памяти являются противоречивыми. Чем больше быстродействие, тем технически труднее достигается и дороже обходится увеличение емкости памяти. Стоимость памяти составляет значительную часть общей стоимости ЭВМ. Поэтому память ЭВМ организуется в виде иерархической структуры запоминающих устройств, обладающих различными быстродействием и емкостью. В общем случае ЭВМ содержит следующие типы памяти, в порядке убывания быстродействия и возрастания емкости.

    Иерархическая структура памяти позволяет экономически эффективно сочетать хранение больших объемов информации с быстрым доступом к информации в процессе обработки.

    Таблица 2.1.

    Оперативной или основной памятью (ОП) называют устройство, которое служит для хранения информации (данных программ, промежуточных и конечных результатов обработки), непосредственно используемой в процессе выполнения операций в арифметико-логическом устройстве (АЛУ) и устройстве управления (УУ) процессора.

    В процессе обработки информации осуществляется тесное взаимодействие процессора и ОП. Из ОП в процессор поступают команды программы и операнды, над которыми производятся предусмотренные командой операции, а из процессора в ОП направляются для хранения промежуточные и конечные результаты обработки.

    Характеристики ОП непосредственно влияют на основные показатели ЭВМ и в первую очередь на скорость ее работы. На текущий момент оперативная память имеет емкость от нескольких МБ до нескольких ГБ и цикл обращения около 60 нс и менее. Запоминающие устройства ОП изготовляются на интегральных микросхемах с большой степенью интеграции (полупроводниковые ЗУ).

    В последнее время ряд фирм заявили о начале серийного выпуска чипов динамической памяти емкостью 1Гб. Признанным лидером является Samsung. Самым массовым изделием на сегодняшний день можно считать 64 Мб чипы. В ближайший год предполагается широкое применение 128Мб и 256Мб чипов.

    В ряде случаев быстродействие ОП оказывается недостаточным, и в состав машины приходится включать СОП (буферную или кэш-память на несколько сотен или тысяч килобайт с циклом обращения, составляющим несколько наносекунд. Такие СОП выполняются на чипах статической памяти. Быстродействие КЭШа должно соответствовать скорости работы арифметико-логических и управляющих устройств процессора. Сверхоперативная (буферная) память используется для промежуточного хранения считываемых процессором из ОП участков программы и групп данных, в качестве рабочих ячеек программы, индексных регистров, для хранения служебной информации, используемой при управлении вычислительным процессом. Она выполняет роль согласующего звена между быстродействующими логическими устройствами процессора и более медленной ОП.

    В качестве ОП и СОП используются быстродействующие ЗУ с произвольным обращением и непосредственным доступом.

    Обычно емкость ОП оказывается недостаточной для хранения всех необходимых данных в ЭВМ. Поэтому ЭВМ содержит в своем составе несколько ЗУ с прямым доступом на дисках (емкость одного ЗУ на HDD дисках 1 - 30 Гбайт) и несколько ЗУ с последовательным доступом на магнитных лентах (емкость одного ЗУ 4 – 35 Гбайт).

    Оперативная память вместе с СОП и некоторыми другими специализированными памятями процессора образуют внутреннюю память ЭВМ (рис. 4.1). Электромеханические ЗУ образуют внешнюю память ЭВМ, а сами они поэтому называются внешними запоминающими устройствами (ВЗУ).

    Запоминающее устройство любого типа состоит из запоминающего массива, хранящего информацию, и блоков, служащих для поиска в массиве, записи и считывания (а в ряде случаев и для регенерации) информации.

    Запоминающее устройство с произвольным обращением, как правило, содержит множество одинаковых запоминающих элементов, образующих запоминающий массив (ЗМ). Массив разделен на отдельные ячейки; каждая из них предназначена для хранения двоичного кода, число разрядов в котором определяется шириной выборки памяти (в частности, это может быть одно, половина или несколько машинных слов). Способ организации памяти зависит от методов размещения и поиска информации в запоминающем массиве. По этому признаку различают адресную, ассоциативную и стековую (магазинную) памяти.

    Адресная память. В памяти с адресной организацией размещение и поиск информации в ЗМ основаны на использовании адреса хранения слова (числа, команды и т. п.). Адресом служит номер ячейки ЗМ, в которой это слово размещается.

    При записи (или считывании) слова в ЗМ инициирующая эту операцию команда должна указывать адрес (номер ячейки), по которому производится запись (считывание).

    Типичная структура адресной памяти, содержит запоминающий массив из N-разрядных ячеек и его аппаратное обрамление, включающее в себя регистр адреса РгА , имеющий k (k » log N) разрядов, информационный регистр РгИ , блок адресной выборки БАВ , блок усилителей считывания БУС , блок разрядных усилителей-формирователей сигналов записи БУЗ и блок управления памятью БУП .

    По коду адреса в РгА БАВ формирует в соответствующей ячейке памяти сигналы, позволяющие произвести в ячейке считывание или запись слова.

    Цикл обращения к памяти инициируется поступлением в БУП извне сигнала Обращение . Общая часть цикла обращения включает в себя прием в РгА с шины адреса ША адреса обращения и прием в БУП и расшифровку управляющего сигнала Операция , указывающего вид запрашиваемой операции (считывание или запись).

    Далее при считывании БАВ дешифрирует адрес, посылает сигналы считывания в заданную адресом ячейку ЗМ, при этом код записанного в ячейке слова считывается усилителями считывания БУС и передается в РгИ . Операция считывания завершается выдачей слова из РгИ на выходную информационную шину ШИВых .

    При записи помимо выполнения указанной выше общей части цикла обращения производится прием записываемого слова с входной информационной шины ШИВх и РгИ . Затем в выбранную БАВ ячейку записывается слово из РгИ .

    Блок управления БУП генерирует необходимые последовательности управляющих сигналов, инициирующих работу отдельных узлов памяти.

    Ассоциативная память. В памяти этого типа поиск нужной информации производится не по адресу, а по ее содержанию (по ассоциативному признаку). При этом поиск по ассоциативному признаку (или последовательно по отдельным разрядам этого признака) происходит параллельно во времени для всех ячеек запоминающего массива. Во многих случаях ассоциативный поиск позволяет существенно упростить и ускорить обработку данных. Это достигается за счет того, что в памяти этого типа операция считывания информации совмещена с выполнением ряда логических операций.

    Типичная структура ассоциативной памяти представлена на рис. 4.3. Запоминающий массив содержит N (n+1)-разрядных ячеек. Для указания занятости ячейки используется служебный n-й разряд (0 - ячейка свободна, 1 - в ячейке записано слово).

    Рис. 2.2. Структура ассоциативной памяти

    По входной информационной шине ШИВх в регистр ассоциативного признака РгАП в разряды 0..n-1 поступает n-разрядный ассоциативный запрос, а в регистр маски РгМ - код маски поиска, при этом n-разряд РгМ устанавливается в 0. Ассоциативный поиск производится лишь для совокупности разрядов РгАП , которым соответствуют 1 в РгМ (незамаскированные разряды РгАП ). Для слов, в которых цифры в разрядах совпали с незамаскированными разрядами РгАП , комбинационная схема КС устанавливает в 1 соответствующие разряды регистра совпадения РгСв и 0 в остальные разряды. Таким образом, значение j -го разряда в РгСв определяется выражением

    РгСв(j) =

    где РгАП [i ], РгМ [i ] и ЗМ [j, i ] - значения i -го разряда соответственно РгАП, РгМ и j -и ячейки ЗМ .

    Комбинационная схема формирования результата ассоциативного обращения ФС формирует из слова, образовавшегося в РгСв , сигналы a 0 , a 1 , a 2 , соответствующие случаям отсутствия слов в ЗМ , удовлетворяющих ассоциативному признаку, и наличия одного (и более) такого слова.

    Формирование содержимого РгСв и сигналов a 0 , a 1 , a 2 по содержимому РгАП, РгМ и ЗМ называется операцией контроля ассоциации . Эта операция является составной частью операций считывания и записи, хотя она имеет и самостоятельное значение.

    При считывании сначала производится контроль ассоциации по ассоциативному признаку в РгАП . Затем при a 0 = 1 считывание отменяется из-за отсутствия искомой информации, при a 1 = 1 считывается в РгИ найденное слово, при a 2 = 1 в РгИ считывается слово из ячейки, имеющей наименьший номер среди ячеек, отмеченных 1 у РгСв . Из РгИ считанное слово выдается на ШИВых .

    При записи сначала отыскивается свободная ячейка. Для этого выполняется операция контроля ассоциации при РгАП = 111...10 и РгМ = 00...01, при этом свободные ячейки отмечаются 1 в РгСв . Для записи выбирается свободная ячейка с наименьшим номером. В нее записывается слово, поступившее с ШИВх в РгИ .

    С помощью операции контроля ассоциации можно, не считывая слов из памяти, определить по содержимому РгСв , сколько в памяти слов, удовлетворяющих ассоциативному признаку, например реализовать запросы типа сколько студентов в группе имеют отличную оценку по данной дисциплине. При использовании соответствующих комбинационных схем в ассоциативной памяти могут выполняться достаточно сложные логические операции, такие, как поиск большего (меньшего) числа, поиск слов, заключенных в определенных границах, поиск максимального (минимального) числа и др. Ассоциативная память применяется, например, в аппаратуре динамического распределения ОП.

    Отметим, что для ассоциативной памяти необходимы запоминающие элементы, допускающие считывание без разрушения записанной в них информации. Это связано с тем, что при ассоциативном поиске считывание производится по всему ЗМ для всех незамаскированных разрядов и негде сохранять временно разрушаемую считыванием информацию.

    Стековая память , так же как и ассоциативная, является безадресной. Стековую память можно рассматривать как совокупность ячеек, образующих одномерный массив, в котором соседние ячейки связаны друг с другом разрядными цепями передачи слов. Запись нового слова производится в верхнюю ячейку (ячейку 0), при этом все ранее записанные слова (включая слово, находившееся в ячейке 0), сдвигаются вниз, в соседние ячейки с большими на 1 номерами. Считывание возможно только из верхней (нулевой) ячейки памяти, при этом, если производится считывание с удалением, все остальные слова в памяти сдвигаются вверх, в соседние ячейки с большими номерами. В этой памяти порядок считывания слов соответствует правилу: последним поступил - первым обслуживается. В ряде устройств рассматриваемого типа предусматривается также операция простого считывания слова из нулевой ячейки (без его удаления и сдвига слова в памяти). Иногда стековая память снабжается счетчиком стека СчСт , показывающим количество занесенных в память слов. Сигнал СчСт = 0 соответствует пустому стеку, СчСт = N - 1 - заполненному стеку.

    Обычно стековую память организуют, используя адресную память. В этом случае счетчик стека, как правило, отсутствует, так как количество слов в памяти можно выявить по указателю стека. Широкое применение стековая память находит при обработке вложенных структур данных, при выполнении безадресных команд и прерываний.

    Архитектурная организация процессора ЭВМ

    Процессор занимает в архитектуре ЭВМ центральное место, осуществляя управление взаимодействием всех основных компонент, входящих в состав ЭВМ Он непосредственно осуществляет обработку информации, и программное управление данным процессом дешифрирует и выполняет команды программ, организует обращения к оперативной памяти (ОП), в нужных случаях инициирует операции ввода/вывода и работу периферийных устройств, воспринимает и обрабатывает запросы, поступающие как от устройств ЭВМ, так и из внешней среды (организация системы прерываний). Выполнение каждой команды со­стоит из выполнения более мелких операций - микрокоманд, выполняющих определенные элементарные действия. Набор микрокоманд определяется системой команд и логической структурой конкретной ЭВМ. Таким образом, каждая команда ЭВМ реализуется соответст­вующей микропрограммой, хранящейся в постоянном запоминающем устройстве (ПЗУ). В некоторых ЭВМ (в первую очередь, специализированных) все или часть команд реализуются аппаратно, что позволяет повышать их производительность за счет потери определенной части гибкости системы команд машины. Как один, так и второй способ реализации команд ЭВМ имеет свои плюсы и минусы.

    Язык микропрограммирования предназначен для описания цифровых устройств, функционирующих на уровне регистров. Он имеет простые и наглядные средства описания машинных слов, регистров, шин и других базовых элементов ЭВМ. С учетом сказанного, ие­рархию языков описания вычислительного процесса на ЭВМ можно представить, в общем случае, на четырех уровнях: (1) булева операция (функционирование комбинационных ЛС) => (2) микрокоманда (функционирование узлов ЭВМ) => (3) команда (функционирование ЭВМ) => (4) оператор ЯВУ (описание алгоритма решаемой задачи). Для определения вре­менных соотношений между микрокомандами устанавливается единица времени (такт), в течение которой выполняется самая продолжительная микрокоманда. Поэтому выполнение одной команды ЭВМ синхроимпульсами, генерируемыми специальным устройством процес­сора - тактовым генератором, тактовая частота (измеряемая в МГц) в значительной степени определяет быстродействие ЭВМ. Естественно, для других классов ЭВМ дан­ный показатель иным образом связывается с производительностью, определяемой такими дополнительными факторами, как.

    Ширина доступа в память,

    Время выборки,

    Разрядность,

    Архитектура процессора и его сопроцессоров,

    Укрупненная схема центрального процессора (ЦП) некоторой формальной ЭВМ представлена на рисунке, где изображены только основные его блоки управляющие регист­ры (УР), устройство управления (УУ), ПЗУ, арифметико-логическое устройство (АЛУ), ре­гистровая память (РП), кэш-память и интерфейсный блок (ИБ). Наряду с перечисленными ЦП содержит ряд других блоков (прерывания, защиты ОП, контроля и диагностики и др.), структура и назначение которых здесь не рассматриваются. Блок УУ вырабатывает последо­вательность управляющих сигналов, инициирующих выполнение соответствующей последо­вательности микрокоманд (находящихся в ПЗУ), реализующей текущую команду. Наряду с этим УУ координирует функционирование всех устройств ЭВМ посредством посылки управляющих сигналов обмен данными ЦП <-> ОП, хранение и обработка информации, ин­терфейс с пользователем, тестирование и диагностика и др. Поэтому УУ целесообразно рас­сматривать как отдельный блок ЦП; однако на практике большинство управляющих схем распределены по всей ЭВМ. Они связаны большим числом управляющих линий, передаю­щих сигналы для синхронизации операции во всех устройствах ЭВМ и принимающих сигна­лы об их состоянии. Блок УР предназначен для временного хранения управляющей информации и содержит регистры и счетчики, участвующие совместно с УУ в управлении вычислительным процессом регистр состояния ЦП, программы (ССП), счетчик команд (СК) представляет со­бой регистр, хранящий в ОП адрес выполняемой команды (в период выполнения текущей команды его содержимое обновляется на адрес следующей команды), регистр команд (РК) содержит выполняемую команду (его выходы связаны с управляющими схемами, генери­рующими распределенные во времени сигналы, необходимые для выполнения команд)

    Блок РП содержит регистры сверхоперативной памяти (более высокого быстродейст­вия, чем ОП) небольшого объема, позволяющие повысить быстродействие и логические воз­можности ЦП. Эти регистры используются в командах путем сокращенной регистровой ад­ресации (указываются только номера регистров) и служат для хранения операндов, результа­тов операций, в качестве базовых и индексных регистров, указателей стэка и др. В некото­рых ЦП базовые и индексные регистры входят в состав блока УТ, как правило, РП выполня­ется в виде быстродействующих полупроводниковых интегральных запоминающих уст­ройств

    Блок АЛУ служит для выполнения арифметических и логических операций над дан­ными, поступающими из ОП и хранящимися в РП, и работает под управлением УУ. АЛУ выполняет арифметические операции над бинарными числами с фиксированной и плаваю­щей точками, над десятичными числами, производит обработку символьной информации над словами фиксированной и переменной длины. Логические операции производятся над отдельными битами, группами битов, байтами и их последовательностями. Тип выпол­няемой АЛУ операции определяется текущей командой функционирующей в данный момент программы, точнее, АЛУ служит для выполнения любой операции, задаваемой ему УУ. В общем случае обрабатываемая ЭВМ информация состоит из слов, содержащих фиксирован­ное число n битов (например n =8. 16. 32, 64, 128 бит). В этом случае АЛУ должно иметь возможность производить операции над n-битными словами операнды поступают из ОП на регистры АЛУ, а УУ указывает операцию, которую необходимо над ними произвести, ре­зультат каждой арифметико-логической операции сохраняется в специальном регистре-сумматоре, являющимся основным регистром для арифметико-логических операций.

    Сумматор соединен с вентильными схемами для выполнения необходимых операций над его содержимым и содержимым других регистров. Некоторые ЭВМ имеют несколько сумматоров, при количестве, большем 4, они выделяются в специальную группу регистров общего назначения (РОН). Конструктивно АЛУ выполняется на одном или нескольких БИС/СБИС, при этом ЦП может иметь одно АЛУ универсального назначения или несколько специализированных для отдельных видов операции. В по­следнем случае увеличивается структурная сложность ЦП, но повышается его быстродейст­вие за счет специализации и упрощения схем вычисления отдельных операций. Такой под­ход широко используется в современных ЭВМ общего назначения и супер-ЭВМ для повы­шения их производительности Несмотря на различные классы ЭВМ, их АЛУ используют общие принципы выполнения арифметико-логических операции. Различия касаются схемо­технических решений организации АЛУ и принципов реализации операции, обеспечиваю­щих ускорение их выполнения.

    Интерфейсный блок (ИБ) обеспечивает обмен информацией ЦП с ОП и защиту участ­ков ОП от несанкционированного для текущей программы доступа, а также связь ЦП с пе­риферийными устройствами и другими внешними по отношению к нему устройствами (ВУ), в качестве которых могут выступать другие процессоры и ЭВМ. В частности, ИБ содержит два регистра, обеспечивающие связь с ОП - регистр адреса памяти (РАП) и регистр данных памяти (РДП). Первый регистр используется для хранения адреса ячейки ОП, с которой про­изводится обмен данными, а второй содержит собственно данные обмена. Блок контроля и диагностики (БКД) предназначен для обнаружения сбоев и отказов узлов ЦП, восстановле­ния работы текущей программы после сбоев и локализации неисправностей при отказах.

    С учетом сказанного представим общую схему выполнения программ процессором. Выполнение программы, находящейся в ОП, начинается с того, что в СК засылается адрес первой ее команды, содержимое СК пересылается в РАП и в ОП посылается сигнал управле­ния считыванием. Через некоторое время (соответствующее времени доступа к ОП) адре­суемое слово (в данном случае первая команда программы) извлекается из ОП и загружается в РДП, затем содержимое РДП пересылается в СК. На этой стадии команда готова для деко­дирования ее УУ и выполнения. Если команда содержит операцию, которая должна быть выполнена АЛУ, то необходимо получить требуемые операнды. Если операнд находится в ОП (а он может быть также в УР), его необходимо выбрать из памяти. Для этого в РАП пере­сылается адрес операнда и начинается цикл чтения Операнд, выбранный из памяти в РДП, может быть передан в АЛУ. Выбрав таким образом один или несколько операндов, АЛУ может выполнить требуемую операцию, сохранив ее результат в одном из РОН. Если резуль­тат операции необходимо запомнить в ОП, он должен быть послан в РДП Адрес ячейки, в которую необходимо поместить результат, пересылается в РАП и начинается цикл записи. Между тем содержимое СК увеличивается, указывая следующую команду, которая должна выполняться. Таким образом, как только завершится выполнение текущей команды, может сразу же начаться выборка на выполнение следующей команды программы.

    Помимо передачи данных между ОП и ЦП необходимо обеспечить обмен данными с ВУ, что делают машинные команды, управляющие вводом/выводом. Естественный порядок выполнения программ может нарушаться при поступлении сигнала прерывания. Прерывание является требованием на обслуживание, которое осуществляется ЦП, выполняющим соот­ветствующую программу обработки прерывания (ПОП). Так как прерывание и его обработка могут изменить внутреннее состояние ЦП, то оно сохраняется в ОП перед началом работы ПОП. Сохранение состояния достигается пересылкой содержимого РК, УР и некоторой управляющей информации в ОП. После завершения ПОП состояние ЦП восстанавливается, позволяя продолжить выполнение прерванной программы.

    В ассоциативных запоминающих устройствах поиск информации производится по ассоциативному признаку, записанному в каждую ячейку памяти.

    В памяти этого типа поиск нужной информации производится не по адресу, а по содержанию самой информации (т.е. по ассоциативному признаку). При этом поиск по ассоциативному признаку происходит параллельно во времени для всех ячеек памяти. Ассоциативный поиск позволяет существенно упростить и ускорить обработку данных. Это достигается за счет того, что в такой памяти операция чтения информации совмещена с выполнением ряда логических операций. Например, можно выполнять такие операции, как:

    1) поиск максимального или минимального числа в ЗУ;

    2) поиск слов, заключенных в определенные границы;

    3) поиск слов, ближайших к ассоциативному признаку, как с большей, так и с меньшей стороны и т.д.

    Простейшая ассоциативная память обычно выполняет единственную операцию по выборке слов, чей признак совпадает с ассоциативным признаком.

    Запоминающий массив (ЗМ) содержит N ячеек, каждая ячейка n+1 разрядная. Для указания занятости ячейки используется служебный n-ый разряд. Если в n-ом разряде 0 – то ячейка свободна, если 1 – то занята.

    По входной ШД в регистр ассоциативного признака RGП поступает n-разрядный признак, а в регистр маски RGМ – код маски поиска. При этом n-ый разряд регистра RGМ устанавливается в 0. Ассоциативный поиск производится лишь по тем разрядам признака, которым соответствует «1» в регистре маски, то есть по так называемым незамаскированным разрядам RGМ. Таким образом, задавая код маски М, можно произвольно выбирать те разряды признака, по которым ведется поиск.

    Для слов из ЗМ, в которых все цифры совпали с незамаскированными разрядами RGП, комбинированная схема КС 1 устанавливает «1» в соответствующие разряды регистра совпадения RGC. Таким образом, если произошло совпадение цифры j-го слова с незамаскируемыми разрядами признака, то в j-ом разряде регистра RGC будет записана «1», в противном случае «0». Запись «1» в j-ом разряде RGC означает, что j-ое слово соответствует признаку, т.е. является тем словом, которое собственно и ищется в ЗМ.

    В регистр маски записывается слово, разрешающее запрос по всем или только некоторым разрядам ассоциативного признака, применение маски позволяет сократить или расширить область поиска.

    Поиск информации производится параллельно по всем ячейкам путем сравнения запроса с ассоциативным признаком каждой ячейки.

    Результат поиска формирует специальная комбинационная схема, вырабатывающая сигналы, оповещающие об отсутствии слов, удовлетворяющих условиям поиска, о наличии только одного слова, о наличии нескольких слов, имеющих такой ассоциативный признак.

    После формирования и обработки оповещающих сигналов схемой управления производится считывание необходимой информации.

    При записи информации сначала находится свободная ячейка. Для этого выполняется операция ассоциативного поиска по признаку, имеющему во всех разрядах «0», а в регистре маски «0» записаны во всех разрядах, кроме младшего n-го разряда.

    Таким образом, определяются те ячейки ЗМ, у которых в n-ом разряде записан «0», что означает незанятость ячейки. В свободную ячейку с наименьшим номером записывается слово из регистра информации RGI.

    При использовании дополнительных комбинационных схем в ассоциативной памяти можно выполнять различные логические операции, определяя максимальное или минимальное число, количество слов, имеющих одинаковый ассоциативный признак и т.д. На рис.1 показана структура ассоциативной памяти. Ячейки памяти ассоциативного запоминающего устройства должны быть элементами статической памяти, в ассоциативной памяти обращение производится ко всем ячейкам одновременно и не должно прерываться циклами регенерации. Ассоциативная память наиболее быстродействующая, но очень дорогая, так как требует введения дополнительно схемы сравнения, позволяющей осуществить поиск, для каждой ячейки памяти. Поэтому такая память обычно не используется в чистом виде, а быстродействующие устройства памяти типа Кэш обычно выполняются как частично ассоциативные.

    В микропроцессорах ассоциативная память (память с выборкой по содержанию) используются в составе кэш-памяти для хранения адресной части команд и операндов исполняемой программы. При этом нет необходимости обращаться к ОЗУ за следующей командой или требуемым операндом, достаточно поместить в регистр ассоциативного признака необходимый адрес и, если искомая информация имеется в кэш памяти, то она сразу будет выдана. Обращение к оперативной памяти будет необходимо лишь при отсутствии требуемой информации в кэш. За счет такого использования кэш сокращается число обращений к ОЗУ, а это позволяет экономить время, так как обращение к кэш требует приблизительно в 10 раз меньше времени, чем обращение к ОЗУ.

    Стековая организация памяти

    Если запись и чтение производится через один и тот же регистр, то такое устройство называется стековой памятью, работающей по принципу "первым вошел - последним вышел" (FILO-First Input, Last Output).

    Стековая память также как и ассоциативная, является безадресной, она представляет собой совокупность ячеек, образующих одномерный массив, в котором соседние ячейки связаны друг с другом разрядными цепями передачи слов. Запись слов всегда производится в верхнюю нулевую ячейку. При этом все ранее записанные слова сдвигаются вниз на одну ячейку. Чтение производится в порядке обратном порядку записи.

    Стековая память получила широкое распространение. Для ее реализации в ОЗУ посредством программ операционной системы выделяется часть памяти под стек. На практике часто стековую память организуют, используя обычную адресную память.

    Рассмотрим организацию стековой памяти, как памяти, образованной из связанных между собой ячеек памяти, в которых информация при записи в стек нового слова смещается вниз (Рис.2). Обмен информацией осуществляется только через верхнюю ячейку памяти. При считывании слов из стека, слово может удаляться из стековой памяти или сдвигаться по кольцу, в зависимости от организации стека. Режим чтения – последним вошел, первым вышел - называют LIFO (Last In First Out).


    Рис.2.Организация стековой памяти.

    Аппаратная реализация такой памяти не всегда целесообразна и зачастую стековая память организуется в основной памяти компьютера программно, что позволяет изменять объем стека в зависимости от необходимости. При организации стека в основной памяти выделяется специальный адресный регистр – “указатель стека”. В указателе стека находится адрес последнего записанного в стек слова. При записи слова в стек адрес вершины стека автоматически уменьшается, при чтении - автоматически увеличивается. Стековая память используется обычно для сохранения состояния текущей программы при обработке прерывания. После выполнения прерывающей программы состояние всех регистров, существовавшие в момент прерывания программы восстанавливается в последовательности, обратной последовательности записи. Можно сохранять в стеке и данные программы, это удобно тем, что при обращении к стеку не требуется указывать в программе адреса ячейки памяти, извлечение информации из стека так же происходит без указания адреса.

    Обычно в запоминающих устройствах доступ к информации требует указания адреса ячейки. Однако значительно удобнее искать информацию не по адресу, а опираясь на какой-нибудь характерный признак, содержащийся в самой информации. Такой принцип лежит в основе ЗУ, известного как ассоциативное запоминающее устройство (АЗУ). В литературе встречаются и иные названия подобного ЗУ: память, адресуемая по содержанию (content addressable memory); память, адресуемая по данным (data addressable memory); память с параллельным поиском (parallel search memory); каталоговая память (catalog memory); информационное ЗУ (information storage); тегированная память (tag memory).

    Ассоциативное ЗУ – это устройство, способное хранить информацию, сравнивать ее с некоторым заданным образцом и указывать на их соответствие или несоответствие друг другу.

    В отличие от обычной машинной памяти (памяти произвольного доступа или RAM), в которой пользователь задает адрес памяти и ОЗУ возвращает слово данных, хранящееся по этому адресу, АП разработана таким образом, чтобы пользователь задавал слово данных, и АП ищет его во всей памяти, чтобы выяснить, хранится ли оно где-нибудь в нем. Если слово данных найдено, АП возвращает список одного или более адресов хранения, где слово было найдено (и в некоторых архитектурах, также возвращает само слово данных, или другие связанные части данных). Таким образом, АП - аппаратная реализация того, что в терминах программирования назвали бы ассоциативным массивом.

    Ассоциативный признакпризнак, по которому производится поиск информации.

    Признак поискакодовая комбинация, выступающая в роли образца для поиска.

    Ассоциативный признак может быть частью искомой информации или дополнительно придаваться ей. В последнем случае его принято называть тегом или ярлыком.

    Структура ассоциативного ЗУ

    АЗУ включает в себя:

    • запоминающий массив для хранения N m-разрядных слов, в каждом из которых несколько младших разрядов занимает служебная информация;
    • регистр ассоциативного признака, куда помещается код искомой информации (признак поиска). Разрядность регистра k обычно меньше длины слова т ;
    • схемы совпадения, используемые для параллельного сравнения каждого бита всех хранимых слов с соответствующим битом признака поиска и выработки сигналов совпадения;
    • регистр совпадений, где каждой ячейке запоминающего массива соответствует один разряд, в который заносится единица, если все разряды соответствующей ячейки совпали с одноименными разрядами признака поиска;
    • регистр маски, позволяющий запретить сравнение определенных битов;
    • комбинационную схему, которая на основании анализа содержимого регистра совпадений формирует сигналы, характеризующие результаты поиска информации.

    При обращении к АЗУ сначала в регистре маски обнуляются разряды, которые не должны учитываться при поиске информации. Все разряды регистра совпадений устанавливаются в единичное состояние. После этого в регистр ассоциативного признака заносится код искомой информации (признак поиска) и начинается ее поиск, в процессе которого схемы совпадения одновременно сравнивают первый бит всех ячеек запоминающего массива с первым битом признака поиска. Те схемы, которые зафиксировали несовпадение, формируют сигнал, переводящий соответствующий бит регистра совпадений в нулевое состояние. Так же происходит процесс поиска и для остальных незамаскированных битов признака поиска. В итоге единицы сохраняются лишь в тех разрядах регистра совпадений, которые соответствуют ячейкам, где находится искомая информация. Конфигурация единиц в регистре совпадений используется в качестве адресов, по которым производится считывание из запоминающего массива. Из-за того что результаты поиска могут оказаться неоднозначными, содержимое регистра совпадений подается на комбинационную схему, где формируются сигналы, извещающие о том, что искомая информация:

    • а0 – не найдена;
    • а1 – содержится в одной ячейке;
    • а2 – содержится более чем в одной ячейке.

    Формирование содержимого регистра совпадений и сигналов a0, a1, а2 носит название операции контроля ассоциации. Она является составной частью операций считывания и записи, хотя может иметь и самостоятельное значение.

    При считывании сначала производится контроль ассоциации по аргументу поиска. Затем, при а0=1 считывание отменяется из-за отсутствия искомой информации, приa1=1 считывается слово, на которое указывает единица в регистре совпадений, а при а2=1 сбрасывается самая старшая единица в регистре совпадений и извлекается соответствующее ей слово. Повторяя эту операцию, можно последовательно считать все слова.

    Запись в АП производится без указания конкретного адреса, в первую свободную ячейку. Для отыскания свободной ячейки выполняется операция считывания, в которой не замаскированы только служебные разряды, показывающие, как давно производилось обращение к данной ячейке, и свободной считается либо пустая ячейка, либо та, которая дольше всего не использовалась.

    Главное преимущество ассоциативных ЗУ определяется тем, что время поиска информации зависит только от числа разрядов в признаке поиска и скорости опроса разрядов и не зависит от числа ячеек в запоминающем массиве.

    Общность идеи ассоциативного поиска информации отнюдь не исключает разнообразия архитектур АЗУ. Конкретная архитектура определяется сочетанием четырех факторов:

    1. вида поиска информации;
    2. техники сравнения признаков;
    3. способа считывания информации при множественных совпадениях;
    4. способа записи информации.

    В каждом конкретном применении АЗУ задача поиска информации может формулироваться по-разному.

    Виды поиска информации :

    • Простой (требуется полное совпадение всех разрядов признака поиска с одноименными разрядами слов, хранящихся в запоминающем массиве).
    • Сложный:
      • Поиск всех слов, больших или меньших заданного. Поиск слов в заданных пределах.
      • Поиск максимума или минимума. Многократное выборка из АЗУ слова с максимальным или минимальным значением ассоциативного признака (с исключением его из дальнейшего поиска), по существу, представляет собой упорядоченную выборку информации. Упорядоченную выборку можно обеспечить и другим способом, если вести поиск слов, ассоциативный признак которых по отношению к признаку опроса является ближайшим большим или меньшим значением.

    Очевидно, что реализация сложных методов поиска связана с соответствующими изменениями в архитектуре АЗУ, в частности с усложнением схемы ЗУ и введением в нее дополнительной логики.

    Техника сравнения признаков:

    При построении АЗУ выбирают из четырех вариантов организации опроса содержимого памяти. Варианты эти могут комбинироваться параллельно по группе разрядов и последовательно по группам. В плане времени поиска наиболее эффективным можно считать параллельный опрос как по словам, так и по разрядам, но не все виды запоминающих элементов допускают такую возможность.

    Способ считывания информации при множественных совпадениях:

    • С цепью очередности (с помощью достаточно сложного устройства, где фиксируются слова, образующие многозначный ответ. Цепь очередности позволяет производить считывание слов в порядке возрастания номера ячейки АЗУ независимо от величины ассоциативных признаков).
    • Алгоритмически (в результате серии опросов).

    Способ записи информации:

    1. По адресу.
    2. C сортировкой информации на входе АЗУ по величине ассоциативного признака (местоположение ячейки, куда будет помещено новое слово, зависит от соотношения ассоциативных признаков вновь записываемого слова и уже хранящихся в АЗУ слов).
    3. По совпадению признаков.
    4. С цепью очередности.

    Из-за относительно высокой стоимости АЗУ редко используется как самостоятельный вид памяти.