• Есть ли у вирусов днк. Рнк-вирусы. Что такое вирусный гепатит С

    УО «МИНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ»

    ЛЕКЦИЯ №7

    ТЕМА: «Вирусы ДНК – и РНК –

    Специальность – Лечебное дело

    Подготовила преподаватель – Коледа В.Н.

    Широкова О.Ю.

    г. Минск

    Вирусы. Морфология и физиология вирусов

    Вирусные заболевания возникли в глубокой древности, однако вирусология как наука начала развиваться в конце XIX века.

    В 1892г. русский ученый-ботаник Д.И. Ивановский, изучая мозаичную болезнь листьев табака, установил, что заболевание это вызывается мельчайшими микроорганизмами, которые проходят через мелкопористые бактериальные фильтры. Эти микроорганизмы получили название фильтрующихся вирусов. В дальнейшем было показано, что имеются и другие микроорганизмы, проходящие через бактериальные фильтры, поэтому фильтрующиеся вирусы стали называть просто вирусами.

    Большой вклад в изучение вирусов внесли вирусологи: М.А. Морозов, Н.Ф. Гамалея, Л.А. Зильбер, М.П. Чумаков, А.А. Смородинцев, В.М. Жданов и др.

    Вирусы – это неклеточная форма существования живой материи. Они очень малы. По образному выражению В.М. Жданова «величину их по отношению к величине средних бактерий можно сравнить с величиной мыши по отношению к слону». Увидеть вирусы стало возможно только после изобретения электронного микроскопа.

    В настоящее время для изучения вирусов используют много методов: химические, физические, молекулярно-биологические, иммунобиологические и генетические.

    Все вирусы подразделяются на поражающие человека, животных, насекомых, бактерии и растения.

    У вирусов наблюдается большое разнообразие форм и биологических свойств, однако все они имеют общие черты строения. Зрелые частицы вирусов называют вирионами.

    В отличие от других микроорганизмов, содержащих одновременно ДНК и РНК, вирион содержит только одну из нуклеиновых кислот – либо ДНК, либо РНК.

    Нуклеиновая кислота вирусов может быть однонитчатой и двунитчатой. Почти все вирусы, содержащие РНК, имеют в своем геноме однонитчатую РНК, а содержащие ДНК – двунитчатую ДНК. В соответствии с двумя типами генетического вещества вирусы подразделяют на РНК- и ДНК-содержащие. К ДНК-содержащим относятся 6 семейств, РНК-содержащим – 11 семейств.

    Токсонамический признак

    Семейство

    Представители

    ДНК-содержащие

    2-ух нитчатая ДНК, отсутствие внешней оболочки

    Аденовирусы

    Аденовирусы

    Паповирусы

    Вирус помиломы, полиномы и бородавок человека

    1-нитчатая ДНК, отсутствие внешней оболочки

    Парвовирусы

    Аденоассоциированные вирусы

    2-ух нитчатая ДНК, наличие внешней оболочки

    Герпесвирусы

    Вирус простого герпеса, циталомеголии, ветряной оспы

    Гепадновирусы

    Вирус гепатита В

    Поксвирусы

    Вирус натуральной оспы, осповакцины

    РНК-содержащие

    Однонитевая РНК, отсутствие внешней оболочки

    Пикорновирусы

    Вирус полиомиелита, коксаки, ЕСНО, вирус гепатита А

    Колицивирусы

    Вирус гастроэнтерита детей

    2-ух нитевая РНК, отсутствие внешней оболочки

    Реовирусы

    Реовирусы, ротовирусы, орбивирусы

    наличие обратной транскриптазы

    Ретровирусы

    ВИЧ, вирусы Т-лейкоза, онковирусы

    Однонитевая РНК, наличие внешней оболочки

    Тогавирусы

    Вирус омской гемморагической лихорадки, краснухи

    Однонитевая РНК

    Флавивирусы

    Вирус клещевого энцефалита, лихорадки Денге, желтой лихорадки

    Однонитевая РНК

    Буньявирусы

    Вирус Буньямвера, крымской гемморагической лихорадки

    Аренавирусы

    Вирусы лимфоцитарного хормоменингита, болезни Лассо

    Рабдовирусы

    Вирус бешенства, везикулярного стоматита

    2-ух нитевая РНК, наличие внешней оболочки

    Парамиксовирусы

    Вирус парагриппа, паратита, кори, РСВ

    Ортомиксовирусы

    Вирус гриппа

    Структура вириона. В центре вириона находится нуклеиновая кислота, которая окружена капсидом. Капсид состоит из белковых субъединиц, называемых капсомерами. Зрелый вирус по химической структуре является нуклеокапсидом. Количество капсомер и способ их укладки строго постоянны для каждого вида вируса. Капсомеры могут быть уложены в виде многогранника с равномерными симметрическими гранями – кубоидальная форма (аденовирус). Укладка в виде спиралей характерно для вирусов гриппа. Может быть тип симметрии, при котором нуклеиновая кислота имеет вид пружины, вокруг которой уложены капсомеры, в этом случае вирус имеет палочковидную форму – вирус, вызывающий болезнь листьев табака.

    Сложный тип симметрии имеет фаг: головка – кубоидальной, а отросток – палочковидной формы.

    Таким образом, в зависимости от способа укадки вирусы подразделяют на кубоидальную, сферическую, палочковидную и сперматозоидную формы.

    Некоторые вирусы, обладающие более сложной структурой, имеют оболчку, которая называется пеплос. Она образуется при выходе вируса из клетки хозяина. Вирусный капсид при этом обволакивается внутренней поверхностью цитоплазматической мембраны клетки хозяина и образуется один или несколько слоев оболочки суперкапсид. Такую оболочку имеют только некоторые вирусы, например, вирусы бешенства, герпеса. Эта оболочка содержит фосфолипиды, разрушающиеся под воздействием эфира. Таким образом, воздействуя эфиром, можно отличить вирус, имеющий пеплос, от вируса с «голым капсидом».

    У некоторых вирусов из внешнего липидного слоя оболочки выступают капсомеры в виде шипов (эти шипы тупые). Такие вирусы называются пепломерами (вирус гриппа).

    Нуклеиновая кислота вируса является носителем наследственных свойств, а капсид и внешняя оболочка несут защитные функции, как бы способствуют проникновению вируса в клетку.

    Размер вирусов. Измеряются вирусы в наномерах. Величинв их колеблется в широком диапазоне от 15-20 до 350-400 нм.

    Методы измерения вирусов.

    1. Фильтрование через бактериальные фильтры с известной величиной спор
    2. Ультрацентрифугирование – крупные вирусы осаждаются быстрее
    3. Фотографирование вирусов в электронном микроскопе

    Химический состав вирусов. Количество и содержание ДНК и РНК вирусов неодинаковы. У ДНК молекулярная масса колеблется от 1 10 6 до 1,6 10 8 , а у РНК – от 2 10 6 до 9,0 10 6 .

    Белки у вирионов обнаружены в незначительном числе. Они состоят из 16-20 аминокислот. Кроме капсидных белков, имеются еще внутренние белки, связанные с нуклеиновой кислотой. Белки обуславливают антигенные свойства вирусов, а также в силу плотной укладки полипептидных цепей ограждают вирус от действия ферментов клетки хозяина.

    Липиды и углеводы обнаружены во внешней оболочке сложных вирионов. Источником липидов и углеводов является оболочка клетки хозяина. Полисахариды, входящие в состав некоторых вирусов, обусловливают способность их вызывать агглютинацию эритроцитов.

    Ферменты вирусов. Вирусы не имеют собственного метаболизма, поэтому они не нуждаются в ферментах обмена веществ. Однако у некоторых вирусов выявлено наличие ферментов, способствующих проникновению их в клетку хозяина.

    Выявление вирусных антигенов. Вирусные антигены в инфицированных клетках хозяина можно обнаружить с помощью метода иммунофлюоресценции. Препараты, содержащие клетки, инфицированные вирусами, обрабатывают специфическими иммунными люминесцирующими сыворотками. При просмотре частиц наблюдается характерное свечение. Вид вируса определяют по соответствию специфической люминесцирующей сыворотки, вызвавшей свечение.

    Внедрение вируса в клетку, взаимодействие его с клеткой хозяина и репродукция (размножение) слагаются из ряда последовательных стадий.

    Стадия 1. Начинается с процесса адсорбции за счет рецепторов вириона и клетки. У сложных вирионов рецепторы располагаются на поверхности оболочки в виде шиповидных выростов, у простых вирионов – на поверхности капсида.

    Стадия 2. Проникновение вируса в клетку хозяина протекает по-разному у разных вирусов. Например, некоторые фаги протыкают оболочку своим отростком и впрыскивают нуклеиновую кислоту в клетку хозяина. Другие вирусы попадают в клетку путем втягивания вирусной частицы с помощью вакуоли, т.е. на месте внедрения в оболочке клетки образуется углубление, затем края ее смыкаются и вирус оказывается в клетке. Такое втягивание называется виропексис.

    Стадия 3. «раздевание вируса» (дезинтеграция). Для своего воспроизведения вирусная нуклеиновая кислота освобождается от защищающих ее белковых покровов. Процесс раздевания может начаться во время адсорбции, а может произойти тогда, когда вирус находится уже внутри клетки.

    Стадия 4. На этой стадии происходит репликация (воспроизведение) нуклеиновых кислот и синтез вирусных белков. Эта стадия происходит при участии ДНК или РНК клетки хозяина.

    Стадия 5. Сборка вириона. Этот процесс обеспечивается самосборкой белковых частиц вокруг вирусной нуклеиновой кислоты. Синтез белка может начаться непосредственно после синтеза вирусной нуклеиновой кислоты либо после интервала в несколько минут или несколько часов. У одних вирусов самосборка происходит в цитоплазме. У других в ядре клетки хозяина. Образование внешней оболочки всегда происходит в цитоплазме.

    Стадия 6. Выход вириона из клетки хозяина происходит путем просачивания вируса через оболочку клетки либо через отверстие, образовавшееся в клетке хозяина.

    Типы взаимодействия вируса и клетки. Первый тип – продуктивная инфекция – характеризуется образованием новых вирионов в клетке хозяинаю

    Второй тип – абортивная инфекция заключается в том, что обрывается репликация нуклеиновой кислоты.

    Третий тип – характеризуется встраиванием вирусной нуклеиновой кислоты в ДНК клетки хозяина; возникает форма сосуществования вируса и клетки хозяина (вирогения). В этом случае обеспечивается синхронность репликации вирусной и клеточной ДНК. У фагов это называется лизогения.

    Микроскопическое исследование. При отдельных вирусных инфекциях в цитоплазме или ядрах клеток организма хозяина наблюдаются специфические внутриклеточные тельца – включения, имеющие диагностическое значение. Размеры вирусных частиц и телец-включений удается искусственно увеличить специальными методами обработки препаратов с протравой и импрегнацией и наблюдать при иммерсионной микроскопии. Более мелкие вирионы, лежащие за пределами видимости оптического микроскопа, обнаруживаются только при электронной микроскопии. Существуют разные точки зрения в отношении внутриклеточных включений. Они авторы считают, что они представляют собой скопление вирусов. Другие считают, что они возникают в результате реакции клетки на внедрение вирусов.

    Генетика вирусов. Модификация у вирусов обусловливается особенностями клетки хозяина, в которой происходит репродукция вируса. Модифицированные вирусы приобретают способность заражать клетки, аналогичные тем, в которых они модифицировались. У разных вирусов модификация по-разному проявляется.

    Мутация – у вирусов возникает под влиянием тех же мутагенов, которые вызывают мутация у бактерий. Возникает мутация во время репликации нуклеиновых кислот. Мутации затрагивают различные свойства вирусов, например чувствительность к температуре и др.

    Генетическая рекомбинация у вирусов может возникнуть в результате одновременного заражения клетки хозяина двумя вирусами, при этом может произойти обмен отдельными генами между двумя вирусами и образуются рекомбинанты, содержащие гены двух родителей.

    Генетическая реактивация генов иногда происходит при скрещивании инактивированного вируса с полноценным, что приводит к спасению инактивированного вируса.

    Спонтанная и направленная генетика вирусов имеет большое значение в развитии инфекционного процесса.

    Устойчивость к факторам окружающей среды. Большинство вирусов инактивируется при действии высоких температур. Однако имеются исключения, например вирус гепатита термоустойчив.

    К низким температурам вирусы не чувствительны. Ультрафиолетовые солнечные лучи оказывают инактивирующее действие на вирусы. Рассеянный солнечный свет действует на них менее активно. Вирусы устойчивы к глицерину, что дает возможность длительно сохранять их в глицерине. Они устойчивы к антибиотикам.

    Кислоты, щелочи, дезинфицирующие вещества инактивируют вирусы. Однако некоторые вирусы, инактивированные формалином, сохраняют иммуногенные свойства, что позволяет использовать формалин для получения вакцин.

    Восприимчивость животных. Круг восприимчивых животных для некоторых вирусов очень широк, например, к вирусам бешенства чувствительны сногие животные. Некоторые вирусы поражают только один вид животного, например, вирус чумы собак поражает только собак. Имеются вирусы, к которвм животные не чувствительны – вирус кори.

    Органотропность вирусов. Вирусы обладают способностью поражать определенные органы, ткани и системы. Например, вирус бешенства поражает нервную систему.

    Выделение вирусов в окружающую среду. Из больного организма вирусы могут выделиться с калом, например вирус полиомиелита, вирус бешенства выделяется со слюной.

    Основные пути передачи вирусов. Воздушно-капельный, пищевой, контактно-бытовой, трансмиссивный.

    Противовирусный иммунитет. Организм человека обладает врожденной устойчивостью к некоторым вирусам. Например, человек не чувствителен к вирусу чумы собак.

    Противовирусный иммунитет обусловливается как клеточными, так и гуморальными факторами защиты, неспецифическими и специфическими.

    Неспецифические факторы. Мощным ингибитором репродукции вирусов является белковое вещество – интерферон. В здоровом организме он содержится в незначительном количестве, а вирусы способствуют продукции интерферона и количество его значительно увеличивается. Он неспецифичен, так как блокирует репродукцию разных вирусов. Однако он обладает тканевой специфичностью, т.е. клетки разных тканей образуют неодинаковый интерферон. Считают, что механизм действия его заключается в том, что он препятствует синтезу белка в клетке хозяина и этим прекращает репродукция вируса.

    К специфическим факторам противирусного иммунитета относятся вируснейтрализующие антитела, гемагглютинирующие и преципитирующие.

    Основные методы исследования вирусов.

    1. Реакция гемагглютинации, реакция задержки гемагглютинации, реакция непрямой гемагглютинации. Реакция связывание комплемента
    2. Реакция нейтрализации вирусов в культуре тканей
    3. Метод иммунофлюоресценции
    4. Гистологический метод – выявление включений
    5. Биологический метод

    ДНК-содержащие вирусы

    1. Аденовирусы – вызывают лихорадочные заболевания с поражением дыхательных путей, глаз, кишечного тракта, инвагинацию кишечника у новорожденных с развитием непроходимости (поражаются аденоиды и миндалины), возникают катары ВДП, контагиозный насморк, конъюнктивиты, гастроэнтериты, может быть пленчатый конъюнктивит, лимфоиденопатия (отек ее и гиперплазия). Вирус проникает в кровь, развиваются острые геморрагические циститы у детей.
    2. Поксвирусы – вирус натуральной оспы.

    Это древнее заболевание (около 3000 лет до н.э.).

    1892 – Гварниери – шаровидыне и серповидные включения.

    1906 – Пашен обнаружил оспенные карпускулы (серебрение по Морозову) – тельца Пашена-Морозова

    Морфология. Крупной кубоидальной формы (300-350 нм). Снаружи липопротеидная оболочка, под ней вироплазма, в ней нуклеокапсид. ДНК-двухнитчатая. В нуклеокапсиде есть некоторые ферменты.

    1. Герпесвирусы – а) простого герпеса – зуд, жжение, гиперемия и отек, потом пузырьки. Чаще на границе кожи и слизистой (губы. Нос, пол языком, щеки, половые органы). Иногда температура, головная боль.

    Б) вирус ветряной оспы – заболевание протекает остро, с повышением температуры, озноб, сыпь и зуд по всему телу, в том числе зев и рот, экзантемы на коже. Сыпь появляется в несколько приемов, поэтому подсыхание пустул идет неравномерно. Везикулы однокамерные (натуральная оспа - многокамерные). Рубцы остаются очень редко.

    В) вирус опоясывающего лишая – появляются высыпания по ходу межреберных нервов в виде пузырьков, заполненных прозрачной жидкостью. Они могут сливаться в одну сплошную ленту. Это сопровождается зудом, жжением, невралгическими болями, иногда температурой. Болеют взрослые, редко дети.

    1. Паповавирусы – вызывают доброкачественные и злокачественные заболевания у животных. 30 видов опухолей и лейкозов, бородавки. Патовавирусы получии название по первым слогам двух болезней (папилома и полиома) и вакуолизирующего вируса SV -40
    2. Гепадновирусы (воспаление) – включает вирус гепатита В.

    Возбудители вирусных гепатитов

    Вирусные гепатиты относятся к категории наиболее распространенных инфекционных заболеваний, которые по своей медицинской значимости и размеру социально-экономического ущерба занимают одно из ведущих мест в инфекционной патологии России и других стран.

    Эти системные инфекционные заболевания характеризуются преимущественным поражением клеток печени и развивающимся острым воспалением, в результате чего нарушается функция этого жизненно важного органа. Независимо от типа вируса, вызвавшего гепатит, в печени обнаруживаются идентичные гистологические изменения.

    Вирусные гепатиты полиэтиологичны. Поражение печени могут вызвать различные вирусы. Для одних (вирус Эпстейна-Барра, цитомегаловирус, вирусы герпеса, краснухи и ветряной оспы) печень – необязательный орган-мишень, поражение которого идет наряду с другими органами, для других – обязательный и основной. Именно эти вирусы и называют вирусами гепатитов. В настоящее время известно 7 таких вирусов, которые принято обозначать как вирусы гепатитов А, В, С, D , E , F , G . В зависимости от основных путей заражения выделяют энтеральные (А и Е) и парантеральные (В, С, D ) вирусные гепатиты.

    Клинические формы вирусных гепатитов различны. По тяжести течения это легкие, среднетяжелые, тяжелые и злокачественные (гепатодистофия) формы, по длительности течения – острые (до 3 месяцев), затяжные (от 3 до 6 месяцев) и хронические (более 6 месяцев) формы. Помимо типичных важное эпидемиологическое значение имеют атипичные, безжелтушные, стертые и субклинические формы вирусных гепатитов, частота которых достаточно велика.

    Возбудители энтеральных гепатитов

    Гепатит А (прежнее название – эпидемический гепатит, болезнь Боткина). Его возбудитель – вирус гепатита А, обозначаемый как HAV (Hepatitis Avirus ), - по своим биологическим характеристикам относится к семейству Picornavipidae (пикорновирусов), роду Е nterovirus . Это РНК-содержащий вирус с РНК, представленной «плюс-нитью». Диаметр нуклеокапсида 27-28 нм, тип симметрии кубический. Вирус гепатита А обладает одним вирусоспецифическим антигеном белковой природы, связанным с 4 капсидными белками. Суперкапсидной оболочки не имеет. Отличается от других энтеровирусов высокой термостабильностью (до 60о С), гепатотропизмом, медленным и нецитолитическим циклом репродукции.

    HAV не размножается в куриных эмбрионах и организме лабораторных животных. В отличие от других энтеровирусов плохо адаптируется к культурам тканей.

    Источником инфекции являются больные, в основном, с бессимптомной формой инфекции. Вирус выделяется с фекалиями больных в течение последней недели инкубационного периода и в преджелтушный период. В это время больные наиболее опасны для окружающих.

    Вирус обладает высокой инфекционностью и распространен повсеместно, но особенно велик риск заражения в странах с жарким климатом, с дефицитом воды, плохой системой канализации и водоснабжения, неудовлетворительным состоянием окружающей среды и низким уровнем гигиены населения. Отмечается сезонность заболевания с пиком, приходящимся на август – сентябрь. Наиболее крупная из когда-либо зарегистрированных вспышек гепатита А – около 300 тысяч заболевших – имела место в 1988 году в Шанхае и была связана с употреблением сырых моллюсков.

    В организм человека вирусы гепатита А попадают через рот с водой и пищей, не подвергающейся термической обработке (молоко, соки, салаты и др.). первичная репродукция происходит в эпителиальных клетках слизистой оболочки носоглотки, тонкого кишечника и регионарных лимфатических узлов. Далее вирус проникает в кровь, где обнаруживается в конце инкубационного периода и в первые дни заболевания. Через портальную вену вирус попадает в печень, где в цитоплазме гепатоцитов произсходит его вторичная репродукция. Поражение гепатоцитов связано не с прямым цитопатическим действием вируса, а с иммунопатологическими механизмами. Оно приводит к развитию желтухи и сопровождается повышением уровня трансаминаз в сыворотке крови. Через билиарный тракт возбудитель с желчью вновь поступает в кишечник и выделяется с фекалиями во внешнюю среду. Высокая концентрация вируса в фекалиях отмечается в конце инкубационного периода и в первые дни заболевания (до развития желтухи).

    Инкубационный период гепатита А длится от 2 до 6 недель. Продромальный период (4-5 дней) с катаральными явлениями, слабостью, адинамией, болями в мышцах напоминает гриппоподобные заболевания. Болезнь начинается остро с подъема температуры. Через 3-5 дней температура снижается и развиваются симптомы, характерные для желудочно-кишечных заболеваний, к ним присоединяются признаки поражения печени (моча становиться темной, а кал обесцвечивается, появляется желтушное окрашивание склер, слизистых оболочек и кожных покровов). Возможно развитие и безжелтушных форм, обычно у детей до 5 лет. Такие больные наиболее опасны в эпидемиологическом плане. У взрослых ее частота составляет 20-50%. Прогноз при гепатите А, как правило, благоприятный, переходов в хронические формы не бывает, но иногда встречаются фульминантные (скоротечные) формы заболевания с летальным исходом.

    После перенесенного гепатита А формируется пожизненный иммунитет, связанный с иммуноглобулинами класса G . В период болезни с момента появления клинических симптомов в сыворотке больных первыми появляются IgM и сохраняются в течение 4-6 месяцев, после чего их сменяют IgG . Таким образом, обнаружение IgM – надежный диагностический признак острой или свежеперенесенной инфекции.

    Помимо гуморального, возникает и местный иммунитет в кишечнике.

    Поскольку вирус гепатита А в искусственных условиях практически не культивируется, то для микробиологической диагностики используют иммунологические методы.

    Иммуноиндикация – ранний, экспресс-метод диагностики.

    Материалом для исследования являются фекалии больных, в которых можно обнаружить вирусные частицы с помощью иммуноэлектронной микроскопии (ИЭМ) и вирусный антиген с помощью ИФА и РИА. При ИЭМ в качестве иммунной применяют сыворотку реконвалесцентов, меченную коллоидным золотом. Вирус и его антиген можно обнаружить в конце инкубационного, в продромальный и в начале желтушного периода.

    Серологическая диагностика гепатита А основана на определении нарастания титра антител классов IgG и IgM в парных сыворотках больного. Для целей серодиагностики используют ИФА и РИА.

    Основным диагностическим признаком текущей или свежеперенесенной инфекции являются антитела IgM . Их максимальное количество регистрируется на 3-6 неделе заболевания. Антитела класса IgG обнаруживаются и после выздоровления больного, сохраняются в течение длительного времени и свидетельствуют о перенесенном заболевании, т.е. могут служить показателем иммунитета к гепатиту А.

    Активная специфическая профилактика гепатита А проводится с помощью убитой вакцины Havrix (инактивированной формальдегидом). Вакцинация проводится по эпидпоказаниям в группах риска (людям, которые много путешествуют, работникам медико-санитарных служб, сотрудникам детских садов и яслей, работникам учреждений общественного питания, военнослужащим, а также персоналу, обслуживающему канализационные системы).

    Возможна и пассивная иммунопрофилактика контактным лицам с помощью донорского иммуноглобулина, полученного из сывороток крови переболевших людей.

    Гепатит Е. Возбудитель гепатита Е, обозначаемый как HEV (Hepatitis Evirus ), относится к семейству Caliciviridae , роду Hepevirus . Он также представляет собой РНК-содержащий вирус, не имеющий суперкапсидной оболочки. Диаметр его нуклеокапсида 32-34 нм. По последним данным, вирус, возможно, является прототипом для нового семейства вместе с вирусом краснухи.

    Заражение вирусом гепатита Е происходит через рот, в основном через воду. По сравнению с гепатитом А инфицирующая доза должна быть выше.

    Инкубационный период гепатита Е составляет примерно 40 дней. Клинически он похож на гепатит А, но обычно протекает легче. Перехода в хронические формы не дает. Особенностью гепатита Е является частое развитие холестаза и высокая (до 20%) смертность среди беременных женщин во второй половине беременности.

    Гепатиту Е свойственны эпидемическая вспышки, охватывающие десятки тысяч человек. Специфика эпидемий гепатита Е характеризуется взрывоопасным развитием, низкой семейной заболеваемостью, увеличением заболеваемости в июле с пиком в октябре, преимущественной заболеваемостью лиц 15-40 лет (обычно это лица, вовлеченные в работу на хлопковых плантациях), неравномерным территориальным распределением. Гиперэндемичные районы расположены в Индии, Неаполе, Пакистане, Бангладеш, Бирме, а эндемичные районы в бывшем СССР сосредоточены в районах с развитым хлопководством, с выраженным дефицитом питьевой воды, отсутствием централизованной канализации и водоснабжения.

    Диагноз подтверждают методы микробиологической диагностики. Основным методом микробиологической диагностики является серологическое исследование. С этой целью проводится ИФА по определению антител к атигену вируса гепатита Е в разведенных парных сывороток больного. На ранних этапах болезни путем иммуноэлектронной микроскопии (ИЭМ) образцов фекалий, можно реализовать метод иммуноиндикации.

    Для специфической профилактики среди беременных используется специфический иммуглобулин. Выпускаются цельновирионные и разрабатываются рекомбинантные и живые вакцины.

    Возбудители парентеральных гепатитов

    Гепатит В (прежнее название – сывороточный гепатит). Его возбудитель – вирус гепатита В, обозначаемый как HBV (Hepatitis Bvirus ), - относится к семейству Hepadnaviridae (гепаднавирусов), роду Orthohepadnavirus . Нуклеиновая кислота этого ДНК-содержащего вируса представлена кольцевой двунитевой молекулой ДНК, причем одна нить разомкнута, дефектна. Длина ее непостоянна и может составлять от 15 до 60% длинной цепи. Кольцевая молекула может принимать линейную форму. Геном связан с ферментами: протеинкиназой, ДНК-зависимой ДНК-полимеразой, которая достраивает короткую цепь ДНК до полной длины при попадании вируса в клетку, и обратной транскриптазой, которая обнаруживается в инфицированных HBV клетках печени при раковом перерождении.

    Вирон HBV имеет диаметр 42-52 нм, а его нуклеокапсид – 27 нм. Тип симметрии нуклеокапсида – кубический.

    Вирус гепатита В имеет суперкапсидную оболочку, представленную липидами и полипептидами. Белки суперкапсидной оболочки могут отличаться по антигенной специфичности, а полипептид, содержащийсыя в этой оболочке, обладает группоспецифичностью.

    Из всех вирусов гепатита человека этот имеет наиболее сложное антигенное строение:

    • Поверхностный НВ s -АГ супекапсидной оболочки – основной антигенный маркер НВ V , ранее называемый австралийским антигеном. Он состоит из двух полипептидных субъединиц. Первая ответственна за адсорбцию вируса на клетке и способн6а связываться с полиальбуминами сыворотки больного, что приводит к появлению в оболочкевмруса таких же белков, как у человека. Это обусловливает возникновение аутоимунных конфликтов и переход в хронические формы инфекции. Вторая фракция НВ s -АГ является сильным иммуногеном и используется для создания генно-инженерных вакцин. НВ s -АГ обнаруживается в крови больных и носителей;
    • Глубокий НВс-АГ связан с белками капсидной оболочки вируса и обычно в кровь не поступает;
    • Нве-АГ – особый антиген вируса, который отщепляется при прохождении через мембрану гепатоцитов. Егго обнаружение в крови больного свидетельствует об активном размножении вируса. Ассоциирован с ДНК-полимеразой вируса;
    • НВх-АГ мало изучен, но есть основание пологать, что он связан с онкогенным действием вируса гепатита В и развитием первичной гепатоклеточной карциномы.

    Вирус гепатита В не размножается в культурных тканей, в куриных эмбрионах, в организме лабораторных животных. Он патогенен для человекообразных обезьян.

    Источник инфекции – больной и вирусоноситель.

    Эпидемиология гепатита В характеризуется отсутствием сензонности заболевания, высокой частотой вирусоносительства как основного резервуара вируса в природе, наличием групп лиц с высоким риском заболеваемости (персонал медицинских учреждений, лица, отбывающие на длительный срок в страны Африки, Южной Америки, среднего и Дальнего Востока, наркоманы, лица с заболеваниями крови, пациенты, подвергавшиеся гемотрансфузии, оперативным вмешательствам).

    Для вирусного гепатита В характерны следующие пути передачи: парентеральный, половой, вертикальный (внутриутробно от матери к ребенку), но необходимо отметить, что вирус гепатита В может также выделяться с биологическими жидкостями – слюной (при поцелуе, укусе), потом, слезами и грудным молоком.

    Инкубационный период гепатита В колеблется от 3 до 6 месяцев. Заболевание характеризуется постепенным началом. Клинические проявления вызваны иммунообусловленным повреждением печеночных клеток связаны не с цитопатическим действием вируса, а сцитоттоксическим действием Т-киллеров, узнающих и атакующих мембраны инфицированных клеток, на которых содержатся антигены вируса.

    В пораженных клетках возможны два пути репродукции вируса: репликация и интеграция. При репликации ДНК-полимераза вируса достраивает дефектную нить ДНК, обеспечивая процесс ее удвоения. На матрице ДНК образуются и-РНК, которые идут на рибосомы и обеспечивают синтез всех вирусных компонентов. Геномы вируса и клетки автономны, и возможна полная элиминация вируса из организма. При интеграции происходит встраивание генома вируса в клеточный геном, после чего генетическая информация может реаизоваться полностью или частично. В частности, активно синтезируется НВ s -АГ. Элиминация вируса невозможна.

    Гепатит В протекает белее тяжело, чем гепатит а. У 10% больных он переходит в хронические формы. Эти люди длительно, иногда годами, являются носителями НВ s -АГ и основными источниками инфекции. На фоне хронических форм возможно последующее развитие цирроза и первичного рака печени.

    Микробиологическая диагностика гепатита В основана на выявлении специфических антигенов и антител в крови обследуемого с использованием иммуноферментного анализа.

    Определяющим является обнаружение НВ s -АГ, который выявляется в сыворотке больных через 3-5 недель с момента инфицирования и сохраняется в течение всей болезни. Его наличие после 6 месяцев – показатель хронического заболевания, а в более поздние сроки на фоне клинического здоровья – носительства. При полном выздоровлении НВ s -АГ исчезает.

    При острой инфекции в сыворотке одновременно обнаруживаются НВ s - и НВе-антигены, что обусловлено активной репродукцией вируса.

    По наличию антител к тем или иным антигенам вируса можно судить о периоде заболевания. В разные сроки болезни обнаруживают антитела к НВс-, Нве-, НВ s -антигенам классов иммуноглобулинов М и G .

    Специфическая профилактика проводится генноинженерной вакциной Энджерикс В, иммунитет после вакцинации сохраняется в течение 3-5 лет. Вакцинации подлежат дети, а также лица группы риска – медицинские работники (хирурги, акушеры, врачи-лаборанты).

    Гепатит D . Возбудителем гепатита D является дельта-вирус ( Hepatitis delta virus ), который в настоящее время не классифицирован. Этот вирус рассматривают как сателлит вируса гепатита В. Он представляет собой дефектный РНК-вирус размером 35-37 нм. Вирион имеет однонитевую РНК, покрытую внешней оболочкой. Антигены вируса – это внутренние белки оболочки ( D -антиген) и НВ s -АГ вируса гепатита В, который также содержится в оболочке вируса. Этот вирус не способен к самостоятельной репликацмм в организме хозяина, так как синтез белков его внешней оболочки обеспечивает вирус гепатита В. Таким образом, гепатит D развивается только при одновременном инфицировании вирусом гепатита В и дельта-вирусом и может протекать в виде суперинфекции или коинфекции.

    Вирус гепатита как высокопатогенный гепатотропный агент обладает прямым цитопатическим действием на клетки печени. Присоединение дельта-инфекции у больных гепатитом В ведет к развитию тяжелых форм патологического процесса и переходу острого гепатита в хронический.

    Передается вирус гепатита D парентеральным путем.

    Микробиологическая диагностика гепатита D основана на обнаружении антител к D -АГ дельта-вируса в сыворотке крови больного с помощью метода иммуноферментного анализа.

    Первый маркер инфекции – вирусоспецифические антитела класса IgM – появляются на 10-15-й день болезни. Через 4-11 недель их сменяют антитела класса IgG , постоянно циркулирующие у инфицированных лиц.

    В микробиологической диагностике гепатита D также используют ПЦР или метод молекулярой гибридизации для выявления вирусной нуклеиновой кислоты.

    Средства специфической иммунопрофилактики не разработаны.

    Гепатит С . Возбудителем гепатита С является вирус, относящийся к семейству Flaviviridae , роду Hepavirus . Его вирон сферической формы, диаметром 35-65 нм, содержит однонитевую «плюс-нить» РНК, геномные ферменты, участвующие в репликации вируса, и суперкапсидную оболочку. В составе вирусной частицы присутствуют ядерный – капсидный (С) и поверхностный – суперкапсидный (Е1, Е2) гликопротеиновые антигены.

    Гепатит С распространен повсеместно. Основной путь заражения – парентеральный. Для заражения необходима большая инфицирующая доза, чем при гепатите В. инкубационный период от 2 до 26 недель.

    Для гепатита С характерны высокая частота безжелтушных форм (до 75%) и более легкое течение, чем для гепатита В. но в 20-50% случаев заболевание переходит в хроническое с последующим развитием цирроза печени и первичной гепатокарциномы. Редко встречаются молниеносные (фульминантные) формы гепатита.

    Основные методы микробиологической диагностики – иммуноиндикация и серологическое исследование (ИФА). Выявление антигенов вируса возможно в ранние сроки болезни, а антител к вирусу – в сравнительно поздние сроки заболевания.

    Специфическая профилактика гепатита С не разработана.

    Грипп – РНК-вирус, семейство ортомиксовирусов.

    Пандемии с XII в. В XIX в. было 8 пандемий, особенно тяжелая в 1889-90гг. В XX в. – 4 пандемии, в 1918г. «испанка» унесла 20 млн. человек. Во время пандемий в нашем столетии переболели 1,5 – 2 млрд. человек. Между пандемиями возникают эпидемии, когда переболевают 20-25%, в лучшем случае 10-12%.

    Этиология. Вирус был выделен в 1933 году (Смит, Эндрюс, Лейдлоу), в 1940 был открыт II вид, в 1947 – III и обозначаются А, В, С.

    Иммунитет развивается определенному виду вируса, что препятствует распространению вируса. Но тут же распространяются другие виды вирусов.

    Вирус гриппа В обладает меньшей изменчивостью. Вирус С стабилен. Вирус А имеет 2 АГ: гемагглютинин и нейраминидазу: Н (гемагглютинин) имеет 15 типов, N (нейраминидаза) – 10. По сочетанию этих АГ определяют подтип вируса, который меняется при разных эпидемиях. Вариабельность сочетания этих АГ определяет изменчивость вируса А. вирус типа В более устойчив.

    В составе вируса гриппа А имеются 2 АГ: типоспецифический S -АГ (растворимый) и штаммоспецифический оболочечный V -АГ (вирусный), состоящий из гемагглютинина, нейраминидазы и углеводного компонента.

    V -АГ изменчив. Каждые 2-3 года в структуре гемагглютинина и нейраминидазы вируса гриппа А происходят точечные мутационные изменения, приводящие к появлению штаммовых различий, а через 10-15 лет в результате антигенных сдвигов могут возникать новые их варианты, обусловленные генетической рекомбинацией между вирусом человека и вирусами гриппа животных, птиц.

    Сочетание гемагглютинина и нейраминидазы привело к возникновению 4-х серотипов вируса гриппа А – HoNI , HINI , H 2 N 2, H 3 N 2. При этом всякий раз такие глубокие изменения антигенной структуры V -АГ у вируса гриппа А приводили к тяжелым эпидемиям гриппа.

    Устойчивость. Устойчив особенно при низких температурах при – 70 о , при 65 о С погибает через 5-10 минут, при 50 о С утрачивает свои инфекционные свойства через несколько минут. В кислотной, щелочной среде, под действием эфира и дезинфицирующих растворов быстро погибает, чувствителен к действию УФ-лучей и ультразвука. В глицерине может сохраняться несколько месяцев. Чувствителен к высыханию.

    Патогенез и клиника. Воздушно-еапельный механизм передачи. Входные ворота – слизистые оболочки дыхательных путей. Редко – воздушно-пылевой.

    Оболочные АТ нейтрализуют вирус и заболевание не возникает. При снижении иммунитета вирус внедряется в клетки цилиндрического эпителия слизистой оболочки. Клетки гибнут, а вирус пораждает другие клетки. Поверхностный слой слизистой оболочки гибнет, а вирус проникает в кровь, таким образом создаются условия для вторичной инфекции. Катаральные являения при гриппе обусловленывторичной инфекцией, в том числе условно-патогенной. Инкубационный период – 12часов-3 дня – высокая температура, возникают осложнения.

    Начинается заболевание с общих штаммов. Чаще всего наблюдается лихорадка, озноб, головная и мышечная боль, разбитость, глазные симптомы (светобоязнь, слезотечение, жжение и боль при движении глаз). Позже присоединятся респираторные проявления – кашель, насморк, фарингит. С 3-4 дня начинается выздоровление, но возможны тяжелые осложнения.

    Источники инфекции – больной. Вирус выделяется и в инкубационный период. Наиболее заразен больной в первые 3 дня болезни. К 5-му дню вирус исчезает из организма, но может оставаться до 7 дней и более. Выделяют вирус и больные легкой формы, работающие, общающиеся со здоровыми, а также – носители. Такие формы заболевания определяются вирусологически и серологически. Носительство длится несколько дней, особенно много носителей при гриппе С.

    Иммунитет. Формируется в основном за счет антигемагглютининов, которые обладают вируснейтрализирующими свойствами – препятствуют адсорбции вирусов на чувствительной клетке. В формировании иммунитета играют роль также антинейраминидазные АТ. Кроме того организм от вируса защищает интерферон и другие ингибиторы, находящиеся в сыворотке крови. Иммунитет развивается типо- и штаммоспецифический. Так как идет постоянная смена подтипов вируса А, а перекрестного иммунитета нет, то защитить организм от этой инфекции пока не удается, также сложно прогнозировать направление изменчивости.

    По длительности: вирус А – 1-2 года, вирус В – 3-5 лет.

    Возбудитель Вич-инфекции

    Вирус иммунодефицита человека (ВИЧ) относят к семейству Retroviridae , роду лентивирусов. Вирионы вируса имеют сферическую форму. В сердцевине вириона содержатся две копии однонитевой РНК, соединенные на одном из концов водородными связями. Геномные белки вируса – обратная транскриптаза и внутренние белки р7 и р9. У вируса 9 генов, 3 из них кодируют структурные компоненты вириона: gag – внутренние белки, pol – обратную транскриптазу, env – типоспецифические белки суперкапсидной оболочки. Большое значение имеют регуляторные гены, образующие сложную систему регуляции синтеза вирусных компонентов. Они играют роль в переходе от латентной ВИЧ-инфекции к ее манифестации. Капсидная оболочка состоит из простых белков р18 и р24. Тип симметрии нуклеокапсида кубический. Суперкапсидная оболочка вируса образована двойным липидным слоем с расположенными на нем белковыми шипами из двух субъединиц ( g р41 и g р120) и как конверт покрывает нуклеокапсид. Белки суперкапсидной оболочки – это сложные гликопротеины, выполняющие адресную и якорную функцию. Белки g р120 и g р41 являются и главными антигенными маркерами ВИЧ.

    Антигенными свойствами обладают белки капсидной и суперкапсидной оболочек вируса, для которого характерна антигенная изменчивость, что сдерживает создание вакцины против ВИЧ-инфекции. Антигенная изменчивость вируса может наблюдаться доже в организме в ходе инфекции или носительства. В настоящее время различают два антигенных варианта ВИЧ1 и ВИЧ2. Первый распространен в Америке и Европе, а второй – в Западной и Центральной Африке.

    Рецепторные белки ВИЧ g р120 и g р41 имеют тропизм к клеткам, несущим рецепторы CD 4. Это прежде всего Т-хелперы, а также клетки нейроглии, макрофаги, моноциты. Гибель Т-хелперов приводит к развитию иммунодефицита. Особый тип репродукции ВИЧ, включающий образование ДНК-транскрипта на матрице его РНК при участии обратной транскриптазы, и интеграция его в геном пораженной клетки, сложность регуляции функционирования вирусного генома ведут к длительному персистированию вируса в организме, обусловливая длительные инкубационный и латентнвый периоды болезни, ее обострения и прогрессирующее тяжелое течение.

    В организме вирус находится в крови, проникает в слюну, сперму.

    Источник, эпидемиология и патогенез ВИЧ-инфекции.

    Различают следующие пути передачи инфекции: половой, парентеральный, трансплацентарный. Поэтому группы риска по заболеваемости ВИЧ-инфекцией в первую очередь составляют люди с заболеваниями крови, наркоманы, а также в силу профессиональной специфики врачи-лаборанты, хирурги, стоматологи. Прежде представление о ВИЧ-инфекции как о болезни прежде всего гомосексуалистов не соответствует действительности.

    Проникая в организм с кровью, вирус в первую очередь атакует лимфоциты CD 4. Белки суперкапсидной оболочки вируса распознают эти рецепторы и взаимодействуют с ними. Инфицирование макрофагов происходит как самим вирусом, так и комплексами вирус-клетка.

    После адсорбции, проникновения в клетку и депротеинизации вируса освобождается его РНК. За счет геномного фермента вируса обратной транскриптазы образуется ДНК-транскрипт, интегрирующий в клеточный геном. ДНК-провирус долгое время может существовать в неактивной форме. Клеточный ядерный фактор, активирующий транскрипцию клеточной ДНК, может активировать и транскрипцию ДНК-провируса. Это приводит к переходу от латентной формы инфекции к ее манифестации, хотя с момента инфицирования может пройти 10 лет и более.

    Активная репродукция вирусов ведет к гибели поврежденных клеток и развитию клинических симптомов, прежде всего синдрома приобретенного иммунодефицита. Гибель Т-хелперов приводит к подавлению клеточного и гуморального иммунных ответов, а поражение макрофагов – к подавлению синтеза интерлейкина-1, снижению хемотаксиса и угнетению механизмов фагоцитоза. Инфицированные макрофаги становятся основным резервуаром вируса в организме, так как эти клетки не гибнут, а разносят вирус в различные органы и ткани, инфицируют новые Т-лимфоциты, взаимодействуют с ними в лимфоузлах.

    ВИЧ-инфекция характеризуется многообразной патофизической и клинической картиной. Страдают не только органы иммунной системы, но и нервная, пищеварительная, дыхательная, сердечно-сосудистая системы. На фоне выраженного иммунодефицита развиваются вторичные бактериальные и рибковые инфекции, вызванные условно-патогенными микроорганизмами. Клиническим симптомом поздних стадий ВИЧ-инфекции является поражение ЦНС, развитие саркомы Капоши (гемангиома). Все симптомы развиваются постепенно и выраженность их индивидуальна.

    Методы микробиологической диагностики ВИЧ-инфекции.

    Диагностика ВИЧ-инфекции основана на выявлении антигенных маркеров ВИЧ: белков g р41, g р120, р18, р24, р7, р9. Для этого используют различные тест-системы для ИФА.

    Высокой специфичностью обладают и методы генетического анализа с использованием вирусных нуклеиновых зондов и ПЦР.

    Возможно выделение вирусов в культуре тканей из лимфоцитов с последующей идентификацией по ЦПД и в реакции вирусонейтрализации, но из-за сложности вирусологическое исследование мало употребительно: лишь в отдельных специализированных лабораториях.

    В лабораторной диагностике также используются методы оценки иммунного статуса, выявляющие резкое угнетение клеток Т4 и уменьшение показателя Т4/Т8.

    Для широкого обследования населения и отбора возможно инфицированных лиц применяют серологический метод диагностики – ИФА по обнаружению антител, но он не относится к методам ранней диагностики ВИЧ-инфекции.

    Проблемы лечения и специфической профилактики ВИЧ-инфекции.

    Для лечения ВИЧ-инфекции в настоящее время используют противовирусный препарат азидотимидин (ретровир), а также иммуностимуляторы и симптоматическую терапию, поскольку больные умирают от вторичных гнойных инфекций, вызываемых условно-патогенными бактериями и грибами, и от развития опухолей на фоне выраженного иммунодефицита.

    Появляются сообщения и о новых активных препаратах, но на современном этапе медики констатируют, что их использование останавливает развитие выраженных клинических симптомов заболевания, но не освобождает клетки от провируса. Весьма перспективно создание средств, ингибирующих обратную транскриптазу.

    В настоящее время ведутся исследования по созданию генно-инженерных, убитых и химических вакцин.

    ЛЕКЦИЯ

    От лат. «virus» - яд

    Вирусы — это внеклеточная форма жизни, обладающая собственным геномом и способная к воспроизведению только в клетках живых организмов.

    Вирион (или вирусная частица) состоит из одной или нескольких молекул ДНК или РНК, заключенных в белковую оболочку (капсид), иногда содержащую также липидные и углеводные компоненты

    Диаметр вирусных частиц (их называют также вирионами) равен 20-300 нм. Т.е. они намного меньше, чем мельчайшие из прокариотических клеток. Так как размеры белков и некоторых ам.к. находятся в диапазоне 2-50 нм, то вирусную частицу можно было бы считать просто комплексом макромолекул. Вследствие их малых размеров и неспособности к самовоспроизведению вирусы часто относят к разряду «неживого».

    Говорят «Вирус - это промежуточная форма жизни, или нежизни», т.к. вне клетки хозяина он превращается в кристалл.

    Говорят: в. это переход от химии к живому

    Жизненный цикл вируса начинается

    1. с проникновения внутрь клетки.

    2. Для этого он связывается со специфическими рецепторами на ее поверхности и

    а) либо вводит свою нуклеиновую кислоту внутрь клетки, оставляя белки вириона на ее поверхности,

    б) либо проникает целиком в результате эндоцитоза. В последнем случае после проникновения вируса внутрь клетки следует его «раздевание» — освобождение геномных нуклеиновых кислот от белков оболочки.

    3. В результате этой процедуры вирусный геном становится доступным для ферментных систем клетки, обеспечивающих экспрессию генов вируса.

    4. Именно после проникновения вирусной геномной нуклеиновой кислоты в клетку заключенная в ней генетическая информация расшифровывается генетическими системами хозяина и используется для синтеза компонентов вирусных частиц.

    По сравнению с геномами других организмов вирусный геном относительно мал и кодирует лишь ограниченное число белков, в основном белки капсида и один или несколько белков, участвующих в репликации и экспрессии вирусного генома. Необходимые метаболиты и энергия поставляются хозяйской клеткой.

    ДНК-содержащие вирусы несут в качестве генетического материала либо одно-, либо двухцепочечную ДНК, которая может быть как линейной, так и кольцевой. В ДНК закодирована информация о всех белках вируса. Вирусы классифицируют в зависимости от того, одно или двухцепочечная у них ДНК, и про- или эукариотической является клетка-хозяин. Вирусы заражающие бактерии называются бактериофагами.

    1 — вирусы оспы; 2 — вирусы герпеса; 3 - аденовирусы; 4 — паповавирусы; 5 — гепаднавирусы; 6 — парвовирусы;

    Первая группа — вирусы с двуцепочечной ДНК,

    - репликация осуществляется по схеме: ДНК —»РНК -> ДНК.

    - они получили название ретроидные вирусы.

    - п редставителями этой группы вирусов являются вирус гепатита В и вирус мозаики цветной капусты.

    1. Репликация ДНК-генома этих вирусов осуществляется при посредстве промежуточных молекул РНК:

    2. Молекулы РНК образуются в результате транскрипции вирусных ДНК в клеточном ядре хозяйским ферментом ДНК-зависимой РНК-полимеразой.

    3. Транскрибируется только одна из нитей вирусной ДНК.

    4. Синтез ДНК на РНК-матрице происходит в результате реакции, катализируемой обратной транскриптазой; сначала синтезируется (-) нить ДНК,

    5. а затем на вновь синтезированной (-) нити ДНК тот же фермент строит (+) нить.

    В целом общая схема репликации генома ретроидных вирусов поразительно похожа на схему репликации генома ретровирусов. По-видимому, данное сходство имеет под собой и эволюционную основу, так как первичная структура обратных транскриптаз этих вирусов выявляет определенное сходство между собой.

    Вторая группа — вирусы с двуцепочечной ДНК,

    - репликация осуществляется по схеме ДНК -> ДНК.

    - с генома этих вирусов в зараженной клетке ДНК-зависимая РНК-полимераза транскрибирует молекулы мРНК (т.е. (+) РНК),

    МРНК (т.е. (+) РНК) принимает участие в синтезе вирусных белков,

    Размножение вирусного генома осуществляет фермент ДНК-зависимая ДНК-полимераза: (±) днк → (+)РНК

    В одних случаях производством как мРНК, так и ДНК занимаются клеточные ферменты; в других случаях вирусы используют собственные ферменты. Бывает, что те и другие ферменты обслуживают процесс репликации и транскрипции. К этой группе относятся вирусы герпеса, оспы и др.

    Схема вируса гриппа

    Вирус гриппа - это пример вируса с «-»-одноцепочечной РНК. У него есть оболочка и спиральная сердцевина. Сердцевина состоит из восьми сегментов «-» РНК, которые в комплексе с белками образуют спиралевидные структуры. Каждый сегмент кодирует один из белков вируса. В наибольшем количестве вирус содержит белок матрикса, располагающийся на внутренней стороне оболочки и придающий ей стабильность. Все белки оболочки кодируются вирусной РНК, тогда как липиды являются по своему происхождению клеточными (см. ДНК-содержащие вирусы, сборка). Основные белки оболочки - гемагглютинин и нейраминидаза.

    Инфекционный процесс протекает по схеме (прозрачка 2 внизу) начинается с прикрепления вируса к поверхности клетки-хозяина через гемагглютинин. Затем происходит слияние оболочки с клеточной мембраной, нуклеопротеиновая сердцевина (нуклеокапсид) входит в клетку, и кодируемая вирусом РНК-зависимая РНК-полимераза синтезирует + цепи мРНК на вирусных «-» цепях, после чего на рибосомах клетки-хозяина продуцируются вирусные белки. Некоторые из этих белков играют важную роль в репликации вирусного генома.

    Репликация происходит в ядре, где с помощью той же, но вероятно, модифицированной РНК-полимеразы образуются «-» цепи РНК. После того как в ядро проступают нуклеокапсидные белки, происходит сборка нуклеокапсида. Затем нуклеокапсид проходит цитоплазму, присоединяя по пути белки оболочки, и покидает клетку, отпочковываясь от ее плазматической мембраны. Считается, что в процессе отпочковывания принимает участие нейраминидаза.

    Третью группу составляют двунитевые геномы, (±) РНК-геномы.

    Известные двунитевые геномы всегда сегментированы (т.е. состоят из нескольких разных молекул).

    Сюда относятся реовирусы. Их размножение проходит по варианту, близкому к предыдущему. Вместе с вирусной РНК в клетку попадает и вирусная РНК-зависимая РНК-полимераза, которая обеспечивает синтез молекул (+) РНК. В свою очередь (+) РНК обеспечивает производство вирусных белков на рибосомах хозяйской клетки и служит матрицей для синтеза новых (-) РНК-цепочек вирусной РНК-полимеразой

    Цепочки (+) и (-) РНК, комплексируясь друг с другом, образуют двунитевый (±) РНК-геном, который упаковывается в белковую оболочку.

    - Реовирусы птиц (от англ. respiratory респираторный, enteric кишечный, orphan сиротский) - это икосаэдрические вирусы без оболочки, белковый капсид которых состоит из двух слоев - наружнего и внутреннего. Внутри капсида находятся 10 или 11 сегментов двухцепочечной РНК.

    Реовирусы поражают респираторные и кишечные пути теплокровных животных (человека, обезьян, крупного и мелкого рогатого скота, летучих мышей,

    Инфекционный процесс начинается с проникновения в клетку РНК и затем протекает в соответствии со схемой (прозрачка 2 - внизу). После частичного разрушения наружнего капсида ферментами лизосом РНК в образовавшейся таким образом субвирусной частице транскрибируется, ее копии покидают частицу и соединяются с рибосомами. Затем в клетке-хозяине продуцируются белки, необходимые для формирования новых вирусных цастиц.

    Репликация РНК вирусов происходит по консервативному механизму. Одна из цепей каждого сегмента РНК служит матрицей для синтеза большого числа новых + цепей. На этих + цепях образуются затем как на матрице - цепи, + и - цепи при этом не расходятся, а остаются вместе в виде двухцепочечных молекул. сборка новых вирусных частиц из новообразованных + и --сегментови капсидных белков связана каким-то образом с миотическим веретеном клетки-хозяина.

    Сюда относятся вирусы, у которых цикл репликации генома можно разбить на две главные реакции: синтез РНК на матрице ДНК и синтез ДНК на матрице РНК.

    При этом в состав вирусной частицы в качестве генома может входить либо РНК (ретровирусы (Retroviridae - от REversed TRanscription)), либо ДНК (ретроидные вирусы).

    Вирусная частица содержит две молекулы геномной одноцепочечной (+) РНК.

    В вирусном геноме закодирован необычный фермент (обратная транскриптаза, или ревертаза), который обладает свойствами как РНК-зависимой, так и ДНК-зависимой ДНК-полимеразы.

    Только в 1970 г. американские ученые Г. Темин и Мицутани и независимо от них Д.Балтимор разрешили эту загадку. Они доказали возможность передачи генетической информации от РНК к ДНК. Это открытие перевернуло центральную догму молекулярной биологии о том, что генетическая информация может переноситься только в направлении ДНК-РНК-белок. Пять лет понадобилось Г. Темину для обнаружения фермента, осуществляющего перенос информации от РНК к ДНК, - РНК-зависимой ДНК-полимеразы. Этот фермент получил название обратной транскриптазы. Г. Темину удалось не только получить фрагменты ДНК, комплементарные заданной цепи РНК, но и доказать что ДНК-копии могут встраиваться в ДНК клеток и передаваться потомству.

    Этот фермент попадает в заражаемую клетку вместе с вирусной РНК и обеспечивает синтез ее ДНК-копии сначала в одноцепочечной форме [(-) ДНК], а затем в двуцепочечной [(±) ДНК]:

    Вирусный геном в форме нормального дуплекса ДНК (так называемая провирусная ДНК) встраивается в хромосому клетки хозяина.

    В результате двуцепочечная ДНК вируса представляет собой в сущности дополнительный набор генов клетки, который реплицируется вместе с ДНК хозяина при делении.

    Для образования новых ретровирусных частиц провирусные гены (гены вируса в хромосомах хозяина) транскрибируются в ядре клетки транскрипционным аппаратом хозяина в (+) РНК-транскрипты.

    Одни из них становятся геномом нового «потомства» ретровирусов, а другие подвергаются процессингу в мРНК и используются для трансляции белков, необходимых для сборки вирусных частиц

    В эту группу входят

    а) вирус иммунодефицита человека (ВИЧ)

    Информация о СПИДе есть в Ветхом Завете

    В нашем ганоме есть генетические метки прежних пандемий СПИДа

    17.1.1. Пикорнавирусы (семейство Picornaviridae)

    Picornaviridae (исп. pico - малый, rna - рибонуклеиновая кислота) - семейство бе-зоболочечных вирусов, содержащих одно-нитевую плюс РНК. Семейство насчитывает более 230 представителей и состоит из 8 ро­дов: Enterovirus (111 серотипов), Rhinovirus (105 серотипов), Aphtovirus (7 серотипов), Hepatovirus (2 серотипа - 1 человека. 1 - обе­зьяны), Cardiovirus (2 серотипа); Parecovirus, Erbovirus, Kobuvirus - названия новых родов. Роды состоят из видов, виды - из серотипов.

    Структура. Пикорнавирусы относятся к мелким просто организованным вирусам. Диаметр вируса - около 30 нм. Вирион состо­ит из икосаэдрического капсида, окружающе­го инфекционную однонитевую плюс РНК с протеином VPg (рис. 17.1).

    Капсид состоит из 12 пятиугольников (пен-тамеров), каждый из которых, в свою очередь, состоит из 5 белковых субъединиц - прото-меров. Протомеры образованы 4 вирусными полипептидами: VP1, VP2, VP3, VP4.

    Репродукция. Вирус взаимодействует с ре­цепторами на поверхности клетки (рис. 17.2). Геном вируса может поступить в клетку путем эндоцитоза (1) с последующим выходом нук­леиновой кислоты (2) из вакуоли или путем инъекции РНК через цитоплазматическую мембрану (1) клетки. На конце РНК имеется вирусный протеин (3) - VPg. Геном исполь­зуется, как иРНК, для синтеза белка {4, 5). Один большой полипротеин (4) транслиру­ется с вирусного генома. Затем полипротеин расщепляется на индивидуальные вирусные протеины, включая РНК-зависимую поли-меразу Полимераза синтезирует минус-нить матрицу с поверхности плюс-нити и репли­цирует геном. VPg ковалентно присоединяет­ся к 5"-концу вирусного генома. Структурные


    белки собираются в капсид (<5), в него вклю­чается геном, образуя вирион. Вирионы ос­вобождаются из клетки посредством ее ли­зиса. Репродукция происходит в цитоплазме клеток и сопровождается цитопатическим действием. В культуре клеток под агаровым покрытием вирусы образуют бляшки.

    17.1.1.1. Энтеровирусы

    Энтеровирусы (от греч. enteron - кишка) - группа вирусов, обитающая преимуществен­но в кишечнике человека и вызывающая раз­нообразные по клиническим проявлениям болезни человека.

    Энтеровирусы - РНК-содержащие вирусы семейства Picornaviridae рода Enterovirus. Род включает вирусы полиомиелита, Коксаки А и В (по названию населенного пункта в США, где они были впервые выделены), ECHO (аб­бревиатура от англ. Enteric cytopathogenic human orphan viruses - кишечные цитопатогенные человеческие вирусы сироты), энтеровирусы типов 68, 69, 70, 71 и др. В настоящее время имеются другие варианты классификации ро­да Enterovirus: например, энтеровирусы чело­века представлены видами полиовируса А, В, С и D, состоящими из серотипов.



    Морфология и химический состав. Энтеро­вирусы - мелкие и наиболее просто органи­зованные вирусы, имеют сферическую форму, диаметр 20-30 нм, состоят из одноцепочечной плюс-нитевой РНК и капсида с кубическим типом симметрии. Вирусы не имеют супер-капсидной оболочки. В их составе нет углево­дов и липидов, поэтому они нечувствительны к эфиру и другим растворителям жира.

    Культивирование. Большинство энтеровиру-сов (за исключением вирусов Коксаки А) хо­рошо репродуцируется в первичных и переви­ваемых культурах клеток из тканей человека и сопровождается цитопатическим эффектом. В культурах клеток под агаровым покрытием энтеровирусы образуют бляшки.

    Антигенная структура. Энтеровирусы имеют общие для всего рода группоспецифический и типоспецифические антигены.

    Резистентность. Энтеровирусы устойчивы к факторам окружающей среды в широком диапазоне рН - от 2,5 до 11, поэтому они длительно (месяцами) сохраняются в воде,


    почве, некоторых пищевых продуктах и на предметах обихода.

    Многие дезинфектанты (спирт, фенол, по­верхностно-активные вещества) малоэффек­тивны в отношении энтеровирусов, однако последние погибают при действии УФ-лучей. высушивания, окислителей, формалина, тем­пературе -50 °С в течение 30 мин, а при кипя­чении - в течение нескольких секунд.

    Восприимчивость животных. Энтеровирусы различаются по патогенности для лаборатор­ных животных. Вирусы Коксаки по патоген­ности для новорожденных мышей разделены на группы А и В. Вирусы ECHO непатогенны для всех видов лабораторных животных.



    Эпидемиология и патогенез. Заболевания, вызываемые энтеровирусами, распространены повсеместно, отличаются массовым характе­ром с преимущественным поражением детей.

    Источником инфекции являются больные и носители. Из организма больного возбуди­тели выделяются с носоглоточной слизью и фекалиями, из организма вирусоносителя - с фекалиями.

    Энтеровирусы передаются через воду, поч­ву, пищевые продукты, предметы обихода, загрязненные руки, через мух.

    Водные и пищевые эпидемические вспышки энтеровирусных инфекций регистрируются в течение всего года, но наиболее часто в летние месяцы. В первые 1-2 недели болезни энтеро­вирусы выделяются из носоглотки, обуславли­вая воздушно-капельный путь передачи.

    Возбудители инфекции проникают в организм человека через слизистые оболочки носоглотки и тонкой кишки, размножаются в их эпители­альных клетках и регионарных лимфатических узлах, затем попадают в кровь. Последующее распространение вирусов определяется их свойс­твами и состоянием больного.

    Клиника. Энтеровирусы вызывают заболева­ния, характеризующиеся многообразием кли­нических проявлений, так как могут поражать различные органы и ткани: ЦНС (полиомие­лит, полиомиелитоподобные заболевания (ми-алгия, миокардит), органы дыхания (острые респираторные заболевания), пищеваритель­ный тракт (гастроэнтерит, диарея), кожные и слизистые покровы (конъюнктивит, лихора­дочные заболевания с сыпью и без нее) и др.


    Иммунитет. После перенесенной энтерови-русной инфекции формируется стойкий, но типоспецифический иммунитет.

    Методы диагностики - вирусологический и сероло­гический с парными сыворотками больного. Вирусы выделяют из носоглоточной слизи в первые дни болезни, из кала, цереброспи­нальной жидкости. У погибших больных ви­русы выделяют из пораженных органов. При серодиагностике характерно нарастание тит­ров антител к энтеровирусам в 4 раза и более с 4-5-го до 14-го дня болезни.

    Лечение. Патогенетическое. Применяют препараты интерферона в первые дни заболе­вания и другие противовирусные препараты.

    Профилактика. Для профилактики энтеро-вирусных инфекций (за исключением поли­омиелита) специфические средства не приме­няют. Большое значение имеет неспецифичес­кая профилактика: своевременное выявление и изоляция больных, санитарный надзор за работой пищевых предприятий, водоснабже­нием, удалением нечистот и отбросов. Детям, общавшимся с больными, рекомендуют ин-терфероновые препараты.

    17.1.1.1.1. Вирусы полиомиелита

    Полиомиелит - острое лихорадочное за­болевание, которое иногда сопровождается поражением серого вещества (от греч. polios - серый) спинного мозга и ствола головного мозга, в результате чего развиваются вялые параличи и парезы мышц ног, туловища, рук.

    Таксономия. Полиомиелит известен с глубо­кой древности. Вирусную этиологию болез­ни доказали К. Ландштайнер и Э. Поппер в 1909 г. Возбудитель полиомиелита относится к семейству Picornaviridae, роду Enterovirus, виду Poliovirus.

    Структура. По структуре полиовирусы - ти­пичные представители рода Enterovirus.

    Антигенные свойства. Различают 3 серотипа внутри вида: 1, 2, 3, не вызывающие перекрес­тного иммунитета. Все серотипы патогенны для обезьян, у которых возникает заболева­ние, сходное по клиническим проявлениям с полиомиелитом человека.


    Патогенез и клиника. Естественная воспри­имчивость человека к вирусам полиомиелита высокая. Входными воротами служат слизис­тые оболочки верхних дыхательных путей и пищеварительного тракта. Первичная репро­дукция вирусов происходит в лимфатических узлах глоточного кольца и тонкой кишки. Это обуславливает обильное выделение вирусов из носоглотки и с фекалиями еще до появления клинических симптомов болезни. Из лимфа­тической системы вирусы проникают в кровь (виремия), а затем в ЦНС, где избирательно поражают клетки передних рогов спинного мозга (двигательные нейроны). В результате этого возникают параличи мышц. В случае накопления в крови вируснейтрализующих антител, блокирующих проникновение виру­са в ЦНС, ее поражения не наблюдается.

    Инкубационный период продолжается в среднем 7-14 дней. Различают 3 клинические формы полиомиелита: паралитическую (1 % случаев), менингеальную (без параличей), абортивную (легкая форма). Заболевание на­чинается с повышения температуры тела, об­щего недомогания, головных болей, рвоты, болей в горле. Полиомиелит нередко имеет двухволновое течение, когда после легкой формы и наступившего значительного улуч­шения развивается тяжелая форма болезни. Паралитическую форму чаще вызывает вирус полиомиелита серотипа 1.

    Иммунитет. После перенесенной болезни остается пожизненный типоспецифический иммунитет. Иммунитет определяется, в ос­новном, наличием вируснейтрализующих ан­тител, среди которых важная роль принадле­жит местным секреторным антителам слизис­той оболочки глотки и кишечника (местный иммунитет). Эффективный местный имму­нитет играет важнейшую роль в прерывании передачи «диких» вирусов и способствует вы­теснению их из циркуляции. Пассивный ес­тественный иммунитет сохраняется в течение 3-5 недель после рождения ребенка.

    Микробиологическая диагностика. Материалом для исследования служат кал, отделяемое носог­лотки, при летальных исходах - кусочки го­ловного и спинного мозга, лимфатические узлы.

    Вирусы полиомиелита выделяют путем за­ражения исследуемым материалом первич-


    ных и перевиваемых культур клеток. О реп­родукции вирусов судят по цитопатическому действию. Идентифицируют (типируют) вы­деленный вирус с помощью типоспецифи-ческих сывороток в реакции нейтрализации в культуре клеток. Важное значение имеет внутривидовая дифференциация вирусов, ко­торая позволяет отличить «дикие» патоген­ные штаммы от вакцинных штаммов, выделя­ющихся от людей, иммунизированных живой полиомиелитной вакциной. Различия между «дикими» и вакцинными штаммами выявля­ют с помощью И ФА, реакции нейтрализации цитопатического действия вируса в культуре клеток со штаммоспецифической иммунной сывороткой, а также в ПЦР.

    Серодиагностика основана на использова­нии парных сывороток больных с примене­нием эталонных штаммов вируса в качестве диагностикума. Содержание сывороточных иммуноглобулинов классов IgG, IgA, IgM оп­ределяют методом радиальной иммунодиф-фузии по Манчини.

    Лечение. Патогенетическое. Применение гомологичного иммуноглобулина для пре­дупреждения развития паралитических форм весьма ограничено.

    Эпидемиология и специфическая профилак­тика. Эпидемии полиомиелита охватывали в 1940-1950-х г.х тысячи и десятки тысяч че­ловек, из которых 10% умирали и пример­но 40 % становились инвалидами. Основной мерой профилактики полиомиелита является иммунизация. Массовое применение вакци­ны против полиомиелита привело к резкому снижению заболеваемости.

    Первая инактивированная вакцина для про­филактики полиомиелита была разработана американским ученым Дж. Солком в 1953 г. Однако парентеральная вакцинация этим пре­паратом создавала лишь общий гуморальный иммунитет, не формировала местной резис­тентности слизистых оболочек ЖКТ и не обес­печивала надежной специфической защиты.

    Естественно аттенуированные штаммы ви­русов полиомиелита всех трех типов получил в 1956 г. А. Сэбин, а в 1958 г. М. П. Чумаков и А. А. Смородинцев разработали первую перо-ральную живую культуральную вакцину из трех серотипов штаммов Сэбина. Вакцину исполь-


    зуют для массовой иммунизации детей, она создает стойкий общий и местный иммунитет.

    Всемирная организация здравоохранения в 1988 г приняла решение о глобальной ликви­дации полиомиелита путем охвата прививками всего детского населения планеты. Под ликви­дацией подразумевали прекращение заболева­ний и искоренение вируса полиомиелита.

    Использование оральной полиовакцины приве­ло к практически полному исчезновению случаев полиомиелита в развитых странах Европы и в Америке и резкому снижению заболеваемости в развивающихся странах. В России случаи поли­омиелита не регистрируются с 1 июля 2002 г.

    У живой полиомиелитной вакцины имеют­ся некоторые недостатки, наиболее серьезным из которых является возникновение случаев вакциноассоциированного полиомиелита у привитых и у контактных лиц, инфициро­ванных вирусами, выделяемыми привитыми детьми. Контактное инфицирование проис­ходит обычно вирусом одного серотипа.

    Показано, что у иммунокомпетентных лиц отсутствует длительное носительство полиови-руса после вакцинации, в то время как у лиц с иммунодефицитами вакцинный штамм может выделяться в течение 7-10 лет. Риск развития вакциноассоциированного паралитического по­лиомиелита у лиц с иммунодефицитами, особен­но с нарушениями В-клеточного иммунитета, выше, чем риск у иммунокомпетентных лиц.

    Неспецифическая профилактика сводится к санитарно-гигиеническим мероприятиям: обеспечение населения доброкачественными водой, пищевыми продуктами, соблюдение личной гигиены; выявление больных и подоз­рительных на заболевание.

    17.1.1.1.2. Вирусы Коксаки А и В

    Вирусы Коксаки Picornaviridae рода Enterovirus. Вирусы названы по населенному пункту в США, где они были впервые выделены. По патогенности для новорожденных мышей ви­русы разделены на группы А и В (29 сероти­пов): вирусы Коксаки А вызывают диффузный миозит и очаговый некроз поперечно-полоса­тых мышц; вирусы Коксаки В - поражение ЦНС, развитие параличей, некроз скелетной мускулатуры и - иногда - миокарда и др.


    Вирусы Коксаки А вызывают у челове­ка герпангину (герпетиформные высыпания на задней стенке глотки, дисфагия, лихорад­ка), пузырчатку в полости рта и конечнос­тей, полиомиелитоподобные заболевания, диарею у детей; возможна сыпь.

    Вирусы Коксаки В вызывают полиомие­литоподобные заболевания, энцефалит, мио­кардит, плевродинию (болезненные приступы в области груди, лихорадка, иногда плеврит).

    Микробиологическая диагностика. Вирусо­логический метод: вирус выделяют из фекалий, отделяемого носоглотки, заражают культуры клеток HeLa или почек обезьян (Коксаки В, отдельные серотипы Коксаки А) или мышей-сосунков. Учитывают характер патологичес­ких изменений у зараженных мышей. Вирусы идентифицируют в РТГА, PC К, РН, ИФА.

    17.1.1.1.3. Вирусы группы ECHO

    Вирусы группы ECHO - РНК-содержащие вирусы семейства Picornaviridaepom Enterovirus; насчитывают более 30 типов. Вирусы ECHO (от англ. Enteric cytopathogenic human orphans virus­es - кишечные цитопатогенные человеческие вирусы-сироты) непатогенны для всех видов лабораторных животных. Вызывают ОРВИ, асептический менингит, полиомиелитоподоб­ные заболевания; возможна сыпь.

    1) Вирусо­логический метод: вирус выделяют из це­реброспинальной жидкости, фекалий, отде­ляемого носоглотки; заражают культуры кле­ток почек обезьян. Вирусы идентифицируют в РТГА, РСК, РН, ИФА. 2) Серодиагностика: в сыворотке крови выявляют нарастание титра антител, используя РТГА, РСК, РН, ИФА.

    17.1.1.2. Риновирусы

    Риновирусы - РНК-содержащие виру­сы семейства Picornaviridae рода Rhinovirus. Последний представлен 2 видами, состоящи­ми из 100 серотипов, наиболее часто вызыва­ющих острые инфекции верхних дыхатель­ных путей (ОРВИ). Рецептором риновирусов является межклеточная адгезивная молекула I (ICAM-I), которая экспрессируется на эпи­телиальных клетках, фибробластах и эндоте-лиальных клетках. Риновирусы могут пере-


    даваться двумя механизмами: аэрозольным и
    контактно-бытовым. Проникают в организм
    через нос, полость рта, конъюнктиву. Процесс
    начинается в верхних дыхательных путях.
    Микробиологическая диагностика.

    1) Вирусологический метод: вирусы выделяют на культуре клеток, обнаруживают в РИФ.

    2) Серологический метод: антитела выявляют в парных сыворотках крови пациента с помо­щью реакции нейтрализации.

    17.1.1.3. Вирусы ящура

    Вирусы ящура - РНК-содержащие вирусы се­мейства Picornaviridae рода Aphtovirus, состоящего из одного вида, представленного 7 серотипами. Вызывают ящур- зоонозную инфекционную болезнь, характеризующуюся лихорадочным состоянием, язвенными (афтозными) пораже­ниями слизистой оболочки рта, кожи кистей и стоп у человека. Вирусы ящура по морфологии и химическому составу сходны с другими пикор-навирусами. Обладают высокой вирулентностью и дерматотропностью.

    Вирус может длительно (несколько недель) выживать в объектах окружающей среды, в пищевых продуктах; чувствителен к дезин-фектантам. Естественным резервуаром вируса служат больные животные, особенно крупный рогатый скот. От больных животных вирус выделяется с молоком, со слюной и мочой. Человек заражается при уходе за больными животными, а также при употреблении сыро­го молока и молочных продуктов.

    Восприимчивость человека к ящуру невысокая.

    Микробиологическая диагностика. 1) Вирус выявляют в содержимом афт, слюне и крови путем заражения морских свинок, мышей-со­сунков или культур клеток. 2) Для серодиаг­ностики исследуют парные сыворотки крови в РСК, РН, РПГА, ИФА.

    Профилактика. Профилактика ящура у че­ловека - неспецифическая.

    17.1.1.4. Вирус гепатита А

    Вирусные гепатиты наносят огромный ущерб здоровью населения и экономике всех стран мира. Они подразделяются на энтераль-ные - гепатиты А и Е и парентеральные - ге­патиты В, С, D, F, G и др. Вирусы паренте­ральных гепатитов описаны в гл. 17.6.


    Вирус гепатита А вызывает острую инфек­ционную болезнь, характеризующуюся ли­хорадкой, преимущественным поражением печени, интоксикацией, иногда желтухой и отличающуюся склонностью к эпидемичес­кому распространению. Антропоноз.

    Заболевание (под другими названиями) из­вестно с глубокой древности и описано еще Гиппократом в IV-V вв. до н. э. Вирус гепати­та А открыт в 1973 г С. Фейнстоном.

    Таксономия, морфология и антигенная струк­тура. Вирус гепатита А относится к семейству Picornaviridae роду Hepatovirus. Типовой вид - вирус гепатита А - имеет один серотип. Это РНК-содержащий вирус, просто организо­ванный, имеет диаметр 27-28 нм и один ви-русоспецифический антиген.

    Культивирование. Вирус выращивают в культурах клеток. Цикл репродукции более длительный, чем у энтеровирусов, цитопати-ческий эффект не выражен.

    Резистентность. Вирус гепатита А отличает­ся большей, чем у энтеровирусов, устойчивос­тью к нагреванию; он сохраняется при 60 °С в течение 12 ч, инактивируется при кипячении в течение 5 мин. Относительно устойчив во внешней среде (воде, выделениях больных).

    Восприимчивость животных. Эксперимен­тальную инфекцию возможно воспроизвести на обезьянах мармозетах и шимпанзе.

    Эпидемиология. Источником инфекции являются больные как с выраженными, так и с бессимптомными формами инфекции. Механизм заражения - фекально-оральный. Вирусы выделяются с фекалиями начиная со второй половины инкубационного периода и в начале клинических проявлений: в это время больные наиболее опасны для окру­жающих. С появлением желтухи интенсив­ность выделения вирусов снижается. Вирусы гепатита А передаются через воду, пищевые продукты, предметы обихода, грязные руки; в детских коллективах - через игрушки, гор­шки. Вирусы способны вызывать водные и пищевые эпидемические вспышки.

    Гепатит А распространен повсеместно, но особенно в местах с дефицитом воды, пло­хими системами канализации и водоснабже­ния и низким уровнем гигиены населения.


    Болеют преимущественно дети в возрасте от 4 до 15 лет. Подъем заболеваемости наблюдает­ся в летние и осенние месяцы.

    Патогенез. Вирус гепатита А обладает гепа-тотропизмом. После заражения репликация вирусов происходит в кишечнике, а оттуда че­рез портальную вену они проникают в печень и реплицируются в цитоплазме гепатоцитов. Повреждение гепатоцитов возникает не за счет прямого цитотоксического действия, а в ре­зультате иммунопатологических механизмов.

    Клиника. Инкубационный период состав­ляет от 15 до 50 дней, чаще около месяца. Начало острое, с повышением температуры и явлениями со стороны ЖКТ (тошнота, рвота и др.). Возможно появление желтухи на 5-7-й день. Клиническое течение заболевания, как правило, легкое, без особых осложнений; у детей до 5 лет - обычно бессимптомное. Продолжительность заболевания 2-3 недели. Хронические формы не развиваются.

    Иммунитет. После инфекции формируется стойкий пожизненный иммунитет, связан­ный с IgG. В начале заболевания в крови появляются IgM, которые сохраняются в ор­ганизме в течение 4-6 месяцев и имеют диа­гностическое значение. У детей первого года жизни обнаруживаются антитела, получен­ные от матери через плаценту. Помимо гумо­рального, развивается и местный иммунитет в кишечнике.

    Микробиологическая диагностика. Материа­лом для исследования служат сыворотка и испражнения. Диагностика основана глав­ным образом на определении в крови IgM с помощью ИФА, РИА и иммунной электрон­ной микроскопии. Этими же методами можно обнаружить вирусный антиген в фекалиях. Вирусологическое исследование не прово­дят из-за отсутствия методов, доступных для практических лабораторий.

    Лечение. Симптоматическое.

    Профилактика. Неспецифическая профи­лактика должна быть направлена на повыше­ние санитарной культуры населения, улучше­ние водоснабжения и условий приготовления пищи.

    Для специфической пассивной профилак­тики используют иммуноглобулин по эпид-показаниям. Иммунитет сохраняется около 3


    месяцев. Для специфической активной про­филактики разработана и применяется ина-ктивированная культуральная концентриро­ванная вакцина. Разработана также рекомби-нантная генно-инженерная вакцина.

    17.1.2. Реовирусы (семейство Reoviridae)

    Реовирусы (семейство Reoviridae) - семейство безоболочечных вирусов, содержащих лвуните-вую фрагментированную РНК; включает респи­раторные и кишечные вирусы, а также некоторые арбовирусы. Название семейства произошло от первых букв англ. слов: respiratory, enteric, orphan viruses. Семейство содержит 4 рода: Orthoreovirus, Orbivirus, Colfivirus, Rotavirus.

    Род Orthoreovirus представлен вирусами трех серотипов. Они широко распространены, вы­деляясь от людей, млекопитающих в норме или при желудочно-кишечных и респиратор­ных инфекциях. Род Orbivirus получил свое на­звание из-за кольцевидной формы капсомеров вирионов (лат. orbis - кольцо). Род Orbivirus включает возбудителей арбовирусной инфек­ции: вирус Кемерово (переносится клешами, вызывает кемеровскую лихорадку) и вирус си­него языка овец (переносится мокрецами). Род Colfivirus включает вирус колорадской кле­щевой лихорадки, вызывающий арбовирус-ную инфекцию (переносится клещами). Род Rotavirus содержит вирусы, вызывающие рас­пространенные диареи (табл. 17.1).

    Структура реовирусов. Вирионы реовирусов имеют сферическую форму (диаметр 70-85нм), двухслойный капсид икосаэдрического типа; оболочки нет (рис. 17.3). Геном представлен двунитевой фрагментированной (10-12 сегмен­тов) линейной РНК. Вирион содержит фермент транскриптазу (РНК-зависимую РНК-полиме-разу). Внутренний капсид и геномная РНК составляют сердцевину вириона. Внутренний капсид реовирусов содержит систему транс-


    крипции; белки лямбда-1, лямбда-3, мю-2. От сердцевины отходят шипы, представленные белком лямбда-2. У ротавирусов внутренний капсид включает белки VP-1, VP-2, VP-3, VP-6.

    Наружный капсид реовирусов состоит из белков сигма-1, сигма-3, мю-1с, а также бел­ков лямбда-2, отходящих от сердцевины и выступающих в виде шипов. Белок сигма-1 является гемагглютинином и прикрепитель­ным белком. Белок мю-1с определяет способ­ность реовирусов заражать клетки кишечника и впоследствии поражать ЦНС.

    У ротавирусов наружный капсид включает белки VP-4 (шипы, выступающие на поверх­ности вириона, являющиеся гемагглютинином и прикрепительным белком) и VP-7 - основ­ной компонент наружного капсида, являющий­ся типоспецифическим антигеном. Ротавирусы и ортореовирусы активизируются протеолизом (инфекционные субвирусные частицы) с уве­личением их инвазионной способности.

    Репродукция. Вирионы реовирусов могут адсор­бироваться (с помощью белка сигма-1) на клетке и проникать рецептор-опосредованным эндоцитозом в цитоплазму, где под влиянием ферментов лизосом про­исходит частичная депротеинизация - разрушение на­ружного капсида с образованием субвирусных частиц.



    Возможно проникновение вирусов в клетку другим механизмом, например инфекционных субвирусных частиц, не содержащих белка сигма-1. Инфекционные субвирусные частицы ротавирусов проникают через клеточную мембрану (механизм проникновения не­известен) и освобождают сердцевину в цитоплазме, а ферменты сердцевины инициируют продукцию иРНК. С каждого фрагмента геномной РНК считывается ин­дивидуальная и РНК. Транскрипция генома проходит в две фазы (ранняя и поздняя). Минус-нить РНК ис­пользуется как матрица. Сборка вирионов происходит в цитоплазме. Вирусы выходят при лизисе клетки.

    Микробиологическая диагностика. Диаг­ностика арбовирусных инфекций, вызываемых отдельными представителями реовирусов, про­водится с помощью вирусологического и серо­логического методов: заражают культуру кле­ток или мышей-сосунков (интрацеребрально); с помощью PC К, РПГА, РН выявляют антитела в парных сыворотках крови больного.

    Диагностику ротавирусной инфекции см. ниже.

    17.1.2.1. Ротавирусы (род Rotavirus)

    Ротавирусы человека вызывают острый энтерит новорожденных и детей раннего возраста. Они являются РНК-содержащими вирусами семейства Reoviridaepona Rotavirus. I Свое название получили из-за строения ви-риона (лат. rota - колесо).


    Структура ротавирусов. Вирион ротавиру­сов сферический (диаметр 70 нм), содержит двунитевую фрагментированную (11 сегмен­тов) РНК. Двухслойный капсид (наружный и внутренний) имеет форму колеса с отхо­дящими внутрь «спицами». Вирион имеет 8 белков. Внутренний капсид включает белки VP-1, VP-2, VP-3, VP-6. Наружный капсид включает: 1) белки VP-4 (шипы, выступаю­щие на вирионе, являющиеся гемагглюти-нином и прикрепительным белком); 2) белок VP-7 - основной компонент наружного кап-сида (типоспецифический антиген). Имеются неструктурные белки: NSP1, NSP2, NSP3, NSP4, NSP5, NSP5A. По антигенной структу­ре различают 6 серогрупп (A-F) и 4 серовара ротавирусов.

    Репродукция (рис. 17.4). Вирионы могут проникать рецептор-опосредованным эн-доцитозом в клетку (1), где под влиянием ферментов лизосом происходит частичная депротеинизация - разрушение наружного капсида с образованием субвирусных частиц. Однако это «тупик» для ротавирусов. Другой механизм проникновения заключается в том, что вирионы ротавирусов активируются про-теазами (например, в ЖКТ), превращаясь в инфекционные субвирусные частицы, кото­рые пенетрируют клеточную мембрану (2) и в цитоплазме утрачивают наружный капсид


    (под действием лизосом), освобождая сердце­вину (3). Ферменты сердцевины инициируют продукцию иРНК, используя в качестве мат­рицы минус-нить РНК. Белки VP-7 и NS28 синтезируются как гликопротеины и экспрес-сируются в эндоплазматическом ретикулуме (4). Плюс-РНК является иРНК. Она включе­на внутрь капсидов как матрица для реплика­ции +/- сегментированного генома. Капсиды ротавирусов агрегируют (5), связываются с белком NS28 в эндоплазматическом ретику­луме и приобретают белок VP-7 наружного капсида. Вирусы выходят при лизисе клетки.

    Источник инфекции - больные или вирусо-носители, выделяющие ротавирусы с калом (фекально-оральный механизм передачи). Пути передачи - водный (основной), пи­щевой, контактно-бытовой. Инкубационный период 1-3 дня. Ротавирусы распростране­ны повсеместно, вызывают гастроэнтериты, главным образом у детей (часто в возрасте от 6 месяцев до 2 лет); являются причиной смерти около миллиона людей из-за диа­реи. Размножаются в эпителиоцитах двенад­цатиперстной кишки, вызывая их гибель. Заболевание протекает с рвотой, болями в животе и диареей в течение 1 -2 суток. Частота стула 10-15 раз в сутки.

    Микробиологическая диагностика. 1) Вирус обнаруживают в фильтрате фекалиий с помо­щью иммунной электронной микроскопии, ИФА, иммунодиффузионной преципитации в агаре, РСК, РН, РИФ, реакции ко-агглю-тинации, клонированных РНК-зондов. 2) Серологический метод: в сыворотке крови определяют нарастание титра антител с помо­щью ИФА, РСК, РПГА, РН, РИФ.

    Лечение. Симптоматическое.

    Профилактика. Основой неспецифической профилактики является соблюдение санитар­но-гигиенических правил, санитарных норм водоснабжения и канализации. Специфическая профилактика заключается в применении вак­цин; разработана живая вакцина.

    17.1.3. Буньявирусы (семейство Bunyaviridae)

    Таксономия и классификация. Семейство Bunyaviridae насчитывает более 250 серотипов ви-


    русов, входящих в состав пяти родов: Bunyavirus, Phlebovirus, Nairovirus, Hantavirus, Tospovirus. Типовыми вирусами данных родов являются: вирус Буньямвера, вирус москитной лихорадки Сицилия, вирус болезни овец Найроби и вирус Хантаан соответственно. Тосповирусы непато­генны для человека и поражают растения.

    Прототипом вирусов данного семейства яв­ляется впервые выделенный в Центральной Африке и переносимый комарами вирус Буньямвера. Название вируса дано по мест­ности Буньямвера в Уганде.

    Морфология. Вирионы имеют овальную или сферическую форму, диаметр 80-120 нм. При электронной микроскопии напоминают пон­чик. Это сложные РНК-геномные вирусы, содержащие три внутренних нуклеокапсида со спиральным типом симметрии. Каждый нуклеокапсид состоит из нуклеокапсидного белка N, уникальной одноцепочечной минус-РНК и фермента транскриптазы (РНК-зави­симой РНК-полимеразы). Три сегмента РНК, связанные с нуклеокапсидом, обозначают по размерам: L (long) - большой, М (me­dium) - средний и S (short) - малый. РНК не обладает инфекционной активностью. В отличие от других вирусов с минус-РНК геномом (Orthomixoviridae, Paramixoviridae и Rhabdoviridae) , буньявирусы не содержат М-белка, поэтому они более пластичны. Сердцевина вириона, содержащая рибонукле-опротеин (РНП), окружена липопротеидной оболочкой, на поверхности которой находят­ся шипы - гликопротеины G1 и G2, которые кодируются М-сегментом РНК.

    Антигены. Белок N является носителем группоспецифических свойств и выявляется в РСК. Гликопротеины (G1 и G2) - типос-пецифические антигены, выявляемые в РН и РТГА. Это протективные антигены, обуслав­ливающие гемагглютинирующие свойства, которые у буньявирусов не столь выражены, как у ортомиксо- и парамиксовирусов. Они индуцируют образование вируснейтрализу-ющих антител. Гликопротеины - основные детерминанты патогенности, обуславливаю­щие клеточную органотропность вирусов и эффективность их передачи членистоногими.

    На основании анализа перекрестного свя­зывания в РСК буньявирусы объединяют в


    роды, внутри которых, на основании пере­крестной РН и РТГА, они распределяются по серогруппам.

    Репродукция буньявирусов. Репродукция бу-ньявирусов происходит в цитоплазме клетки, где сначала формируются РНП. При этом образуется три вида иРНК, каждая из ко­торых кодирует соответствующий полипеп­тид - L, N и предшественники белков G1 и G2. Вирусные белки в инфицированной клетке синтезируются быстро. Так, белок N можно выявить уже через 2 ч, a G1 и G2 - че­рез 4 и 6-8 ч соответственно. Созревание вирусов (приобретение внешней липидсодер-жащей оболочки) в результате почкования РНП, в отличие от других вирусов, происхо­дит не на плазматических мембранах клетки, а при прохождении через стенки везикул в области аппарата Гольджи. В последующем вирусные частицы транспортируются к плаз-молемме (клеточной мембране). Выход ви­русных частиц происходит путем экзоцитоза, а иногда- лизиса клетки. Буньявирусы, как и другие представители арбовирусов, облада­ют способностью размножаться в двух тем­пературных режимах: 36-40 и 22-25 °С, что позволяет им репродуцироваться не только в организме позвоночных, но и в организме пе­реносчиков - кровососущих членистоногих насекомых.

    Устойчивость вирусов к действию физических и химических факторов. Буньявирусы чувстви­тельны к действию эфира и детергентов, ина-ктивируются при прогревании при темпера­туре 56 °С в течение 30 мин и почти мгновен­но при кипячении, но длительно сохраняют инфекционную активность при заморажива­нии. Буньявирусы стабильны в весьма огра­ниченном диапазоне значений рН - 6,0-9,0, инактивируются обычно применяемыми де­зинфицирующими средствами.

    Особенности культивирования буньявирусов и восприимчивость к ним лабораторных жи­вотных. К буньявирусам восприимчивы но­ворожденные белые мыши, белые крысы и хомячки при заражении в головной мозг. Для культивирования вирусов применяют культу­ры клеток из переносчиков, почки эмбрионов человека, ВНК-21, фибробласты куриного эмбриона, где они не оказывают выраженно-


    го ЦПД. Вирусы можно культивировать в ку­риных эмбрионах. Универсальной моделью для выделения арбовирусов является заражение новорожденных белых мышей, у которых они вызывают развитие энцефалита, заканчиваю­щегося летально.

    Эпидемиология, патогенез и клиника. Бунья­вирусы широко распространены на всех кон­тинентах, а вызываемые ими заболевания имеют природную очаговость. Большая часть вирусов данного семейства относится к эко­логической группе арбовирусов (от англ. ar­thropod-borne viruses - вирусы, рожденные или передаваемые членистоногими), так как они передаются кровососущими членистоногими насекомыми. Последние являются не только их переносчиками, но также основным ре­зервуаром и постоянными хозяевами данных вирусов в природных очагах. Большинство буньявирусов передается комарами. Описана вертикальная (трансовариальная) и трансфа­зовая (от личинки к нимфе и имаго) передача буньявирусов в определенных членистоногих переносчиках. Выделение вирусов в течение зимы и весны из яиц, личинок и нимф кома­ров показывает, что вирусы зимуют в природе in ovo. Найровирусы большей частью пере­даются клещами, а флебовирусы - москита­ми и комарами. Некоторые флебовирусы и буньявирусы могут передаваться мокрецами Culicoides.

    Для заболеваний, вызванных данными ви­русами, характерна сезонность, обусловлен­ная изменением активности переносчиков. На территории России основное значение имеют клещи. Позвоночными хозяевами дан­ных вирусов являются грызуны, птицы, зай­цеобразные, жвачные животные, приматы. Заражение человека может происходить не только трансмиссивно через укусы кровосо­сущих членистоногих насекомых, но и при контакте с больными людьми в результате попадания на поврежденную кожу и слизис­тые оболочки крови, а также биологических выделений, содержащих вирус.

    Вирусы рода Хантаан составляют исключе­ние из правила в данном семействе, так как их основными хозяевами являются грызуны. Вместе с аренавирусами и филовирусами они выделены в экологическую группу нетранс-


    миссивных геморрагических лихорадок или робовирусов (от англ. rodent-borne viruses - вирусы, рожденные грызунами). Никаких свидетельств участия в их передаче членисто­ногих не обнаружено.

    Чаще всего вирусы данного семейства вы­зывают развитие бессимптомной инфекции, которая выявляется при проведении сероло­гических исследований. Большинство из них вызывает лихорадочные заболевания, некото­рые геморрагические лихорадки (Крым-Конго и с почечным синдромом - ГЛПС) и энцефа­литы (калифорнийский энцефалит).

    Наибольшее медицинское значение име­ют: вирус калифорнийского энцефалита и входящий в состав комплекса вирусов кали­форнийского энцефалита вирус Тягиня (род Bunjavirus); вирусы москитной лихорадки Сицилия, Неаполь и Рифт-валли. которая имеет большое значение в ветеринарии (рол Phlehovirus); вирус геморрагической лихо­радки Крым-Конго (род Nairovirus) и виру­сы геморрагической лихорадки с почечным синдромом (род Hantavirus). Наиболее пато­генны для человека: вирус лихорадки Рифт-валли, Крым-Конго и вирусы ГЛПС.

    После перенесенных заболеваний остается стойкий иммунитет.

    Микробиологическаядиагностика. Лаборатор­ная диагностика буньявирусных инфекций основана на выделении вирусов и обнаружении антител к ним в парных сыворотках крови. Так как вирусы данного семейства относятся к возбудителям особо опасных инфекций (вторая группа патогенности), выделение их может проводиться лишь в режимных лабораториях. Материалом для исследования служат кровь, взятая в остром периоде заболевания (при москитных лихорадках не позже 24-48 ч от начала заболевания), или кусочки тканей и органов (мозга, печени, селезенки, легких и почек), полученные на аутопсии. Вирус мо­жет быть выявлен в организме кровососущих членистоногих переносчиков и во внутренних органах погибших инфицированных живот­ных. Чаще всего буньявирусы выделяют на новорожденных белых мышах, а также на белых крысах и хомяках при интрацеребраль-


    ном заражении. Индикация вирусов прово­дится на основании развития заболевания и гибели животных. Проводят также заражение культур клеток с последующей индикацией в РИФ, так как для буньявирусов не характер­но развитие выраженного цитопатогенного действия. Идентификация вирусов проводит­ся в РН на мышах-сосунках, в РСК, РТГА, реакции иммунодиффузии, РИГА, а также с помощью РИФ, ИФА и РИА. Для постановки РИФ и ИФА используют моноклональные антитела, которые получены практически ко всем представителям арбо- и зоонозных ви­русов. Из молекулярно-генетических методов диагностики и идентификации применяют: молекулярную гибридизацию нуклеиновых кислот и ПЦР.

    Лечение и профилактика. Препараты для специфического лечения не разработаны. В ряде случаев применяют иммунные сыворот­ки переболевших лиц, рибавирин, интерфе­рон (реаферон). Профилактика основана на защите от комаров, клещей и других кровосо­сущих насекомых. Для создания искусствен­ного активного приобретенного иммунитета применяют убитые вакцины.

    17.1.3.1. Вирусы комплекса калифорнийского энцефалита

    Вирусы комплекса калифорнийского эн­цефалита относятся к роду Bunjavirus. Из 12 представителей вирусов комплекса калифор­нийского энцефалита 10 вирусов распростра­нено в Америке, один (Тягиня) в Евразии и Африке и один (Инко) в Северной Европе. Из американских представителей комплекса зна­чение в патологии человека установлено для вирусов калифорнийского энцефалита, Ла-Кросс, Джеймстаун-каньон и зайцев беляков.

    Вирус калифорнийского энцефалита выделен в 1943 г. в Калифорнии от комаров С. tarsalis, а затем в других штатах, а также в Манитобе (Канада).

    Вирусы данного рода вызывают лихорадки (Тягиня, Инко, Гуароа и т.д.) и энцефалиты (энцефалит Джеймстаун-каньон, калифор­нийский энцефалит, энцефалит Ла-Кросс и зайцев-беляков). Переносчиком вирусов ком­плекса калифорнийского энцефалита являют­ся комары (С. tarsalis, A. melanimon, A. dorsalis,


    A. vexans, A. nigromaculis, Psorophora signipen-nis, Culiseta inomata и др.), для которых харак­терна не только трансовариальная, но и вене­рическая передача. Резервуаром и источником вирусов являются комары и грызуны.

    Основная заболеваемость, вызванная виру­сами комплекса калифорнийского энцефали­та, связана с вирусом Ла-Кросс, эндемичным в 20 штатах США.

    Вирус Ла-Кросс. Изолирован от многих видов ко­маров, а также от слепней Hybomitra lasiophthalma. Однако основным его переносчиком следует считать выплаживающийся в дуплах деревьев A. triseriatus. У комаров установлена не только трансовариальная, но и алиментарная передача (у личинок). Вирус изолирован от кроликов, белок и бурундуков. Функционирование горизонтальной и вертикальной передачи вируса обеспечивает активную циркуляцию вируса, высо­кую зараженность комаров и стойкость природных очагов в относительно суровых Центральных частях умеренного пояса. Механизм заражения трансмиссив­ный. Инкубационный период- от 5 до 8-15 дней. Клиническая картина варьирует от общелихорадочного синдрома (в ряде случаев с фарингитом и другими по­ражениями верхних дыхательных путей) до энцефалита. Летальность 0,05-2 %. После перенесенного заболева­ния остается напряженный гуморальный иммунитет.

    Вирус лихорадки Тягиня. Вызывает заболева­ния на территории Европейской части России, включая Заполярье, а также в Сибири и на Дальнем Востоке. Он изолирован из 13 видов комаров. Резервуаром и источником вируса в природе являются комары, а также мно­гие виды млекопитающих, лесные грызуны, зайцы-русаки, ежи, кабаны, лисы, косули, возможно белки и ондатры. Из домашних и сельскохозяйственных животных играют роль кролики, свиньи, крупный рогатый скот, со­баки, лошади. Механизм заражения трансмис­сивный. Основной переносчик- A. vexans. Инкубационный период 2-13 дней. У чело­века лихорадка Тягиня может протекать как гриппоподобное заболевание, фарингит, брон­хопневмония, лихорадка с желудочно-кишеч­ными симптомами и асептическим менинги­том. Случаев с летальным исходом и тяжелыми последствиями не отмечено. Перенесенное за­болевание оставляет напряженный гумораль­ный иммунитет. Диагностика основана на изо­ляции вируса из крови и цереброспинальной


    жидкости путем интрацеребрального зараже­ния новорожденных белых мышей, а также заражения культур клеток и обнаружении ан­тител в парных сыворотках с помощью РСК, РТГА, РИГА и РНИФ. Большое значение име­ет обнаружение IgM в сыворотке крови или цереброспинальной жидкости к вирусам с по­мощью ИФА. Препараты для специфического лечения и профилактики не разработаны.

    Систематика и номенклатура вирусов. Принципы классификации и таксономия вирусов. Вироиды, прионы.

    Принципы классификации вирусов:

    Вирусы составляют царство Vira, которое подразделено по типу нуклеиновой кислоты на два подцарства – рибовирусы и дезоксирибовирусы. Подцарства делятся на семейства, которые в свою очередь подразделяются на роды. Понятие о виде вирусов пока еще четко не сформулировано, так же как и обозначение разных видов.

    В качестве таксономических характеристик первостепенное значение придается типу нуклеиновой кислоты и ее молекулярно-биологическим признакам: двунитевая, однонитевая, сегментированная, несегментированная, с повторяющимися и инвертированными последовательностями и др. однако в практической работе прежде всего используются характеристики вирусов, полученные в результате электронно-микроскопических и иммунологических исследований: морфология, структура и размеры вириона, наличие или отсутствие внешней оболочки (суперкапсида), антигены, устойчивость к высокой температуре, pH, детергентам и тд.

    В настоящее время вирусы человека и животных включены в состав 18 семейств. Принадлежность вирусов к определенным семействам определяется типом нуклеиновой кислоты, структурой, целостностью или фрагментацией генома, а также наличием или отсутствием внешней оболочки. При определении принадлежности к семейству ретровирусов обязательно учитывается наличие обратной транскриптазы.

    Вироиды и прионы

    В природе помимо вирусов обнаружены другие очень мелкие загадочные инфекционные агенты с необычными свойствами. К ним относятся вироиды и прионы.

    Вироиды. Название «вироид» было предложено в 1971 г. Т. Динером. Оно свидетельствует о том, что симптомы заболеваний, которые вызывают эти агенты у различных растений, похожи на симптомы заболеваний, вызываемых у них вирусами. Однако вироиды отличаются от вирусов по крайней мере по следующим четырем признакам.

    1. Вироиды, в отличие от вирусов, не имеют белковой оболочки и состоят только из инфекционной молекулы РНК. Они не обладают антигенными свойствами и поэтому не могут быть обнаружены серологическими методами.
    2. Вироиды имеют очень малые размеры: длина молекулы РНК вироидов равна 1 10"6 мм, она состоит из 300-400 нуклеотидов. Вироиды - самые маленькие способные к размножению единицы, известные в природе.

    3. Молекулы вироидов представляют собой одноцепочечные кольцевые РНК. Такую кольцевую структуру имеет еще только один вирус - вирус дельта-гепатита.



    4. Молекулы РНК вироидов не кодируют собственных белков, поэтому их размножение может происходить либо аутокаталитически, либо с участием клетки-хозяина.

    С 1971 г. обнаружено более 10 различных вироидов, отличающихся по первичной структуре, кругу поражаемых хозяев, по симптомам вызываемых ими заболеваний. Все известные вироиды построены по одному плану: 300-400 нуклеотидов образуют кольцо, которое удерживается парами оснований и образует двухцепо-чечную палочковидную структуру с перемежающимися короткими одно- и двухце-почечными участками.
    Вопрос о природе, происхождении вироидов и о том, каким способом они распространяются, остается открытым. Существует предположение, что вироиды образуются из нормальных клеточных РНК, однако убедительных подтверждений этому не было представлено.

    Прионы. Название«прионы» предложил открывший их в 1982 г. С. Прузинер. Прионы - низкомолекулярные, не содержащие нуклеиновых кислот белки, которые вызывают так называемые трансмиссивные губкообразные энцефалопатии. Последние выделены в особую группу медленных летальных прионных инфекций, для которых характерны очень длительный инкубационный период, медленно прогрессирующее течение, дегенеративные изменения в ЦНС, отсутствие признаков воспаления и выраженного иммунного ответа и летальный исход.

    Синтез прионов контролирует ген ргпР, который несет у человека 20-я хромосома. Установлено 18 различный мутаций этого гена, которые связаны с различными прионовыми болезнями.

    Прионы состоят из особого белка, который существует в виде двух изомеров. Один из них - нормальный клеточный прионовый протеин - изоформа РгРс. Он состоит из 254 аминокислотных остатков и имеет м. м. 33-35 кД. PrPtf растворим в детергентах, чувствителен к действию протеинкиназы К. Он, как полагают, участвует в регуляции суточных циклов многих гормонов. У здоровых животных содержание его составляет 1 мкг/г ткани мозга (больше всего его в нейронах).



    Другой изомер прионового протеина PrPSc -аномальный, имеет такую же м. м. Он отличается от РгРс вторичной структурой, устойчив к протеолизу, не растворяется детергентами, способен к самоагрегации олигомеризации. Конверсия ргРс в PrPSc присходит очень медленно, но ускоряется в присутствии экзогенного Ориона. Прионы PrPSc - возбудители прионных медленных инфекций.

    Содержание PrPbl в ткани мозга больных животных в 10 раз больше, чем у здоровых.
    Известны 12 нозологических единиц прионных болезней, из них 6 наблюдаются у животных (скрепи у овец, губкообразные энцефалопатии крупного рогатого скота, экзотических копытных и кошачьих, хроническое истощение у лосей и трансмиссивная энцефалопатия норок). Шесть болезней прионной этиологии описаны у человека.

    Куру (папуасское curu - дрожать, трястись) впервые описано в 1957 г. К. Гай-душеком у папуасов-каннибалов в Новой Гвинее. Характеризуется прогрессирующей мозжечковой атаксией, общим дрожанием, адинамией, а также психическими изменениями (эйфория, беспричинный смех и т. п.).

    Болезнь Крейтцфельда-Якоба (БКЯ - дегенерация кортикостриоспиналь-ная) встречается повсеместно. Характеризуется прогрессирующей деменцией с симптомами поражения пирамидальных и

    экстрапирамидальных нервных путей. В 1996 г. началась эпизоотия губкообразнон энцефалопатии коров («бешенство» коров) в Англии, а затем в ряде других стран Западной Европы. Она связана с нарушением природных схем питания животных: они стали получать в виде добавок к пище вещества, полученные из костей и мясных отходов овец и коров. Заражение мясом таких животных стало причиной заболевания людей БКЯ. В Англии описана новая форма БКЯ (она обозначена как VCJD). Она отличается от БКЯ тем, что ею болеют лица моложе 40 лет, а также более длительным течением и развитием нейропатологических изменений, не наблюдаемых при классическом течении болезни.

    Летальная семейная бессонница - потеря сна, гиперреактивность симпатической системы, прогрессирующее ослабление автономных и эндокринных циклических временных ритмов; наблюдается у лиц среднего возраста (около 45 лет).

    Синдром Герстманна-Штрейслера (СГШ) - медленная инфекция. Зарегистрирована в Великобритании, США, Японии и других странах мира. Характеризуется дегенеративными поражениями ЦНС, которые проявляются в формировании губкообразного состояния, образовании амилоидных бляшек во всем мозге. Болезнь выражается в развитии медленно прогрессирующей атаксии и деменции. Патогенез не изучен. Заболевание тянется длительно и заканчивается смертью.

    Амиотрофический лейкоспонгиоз - медленная инфекция человека, характеризующаяся прогрессирующим развитием атрофических парезов мышц конечностей и туловища, нарушением дыхания и заканчивается смертью.
    Синдром Альперса - медленная прионная инфекция. Наблюдается главным Образом в детстве, характеризуется симптомами, свидетельствующими о поражении ЦНС.
    Для прионовых болезней человека характеры 4 классических нейропатологических признака: спонгиозные изменения (множество овальных вакуолей диаметром 1-50 мк в сером веществе мозга), потеря нейронов, астроцитоз и формирование амилоидных бляшек.

    Предполагается, что прионы играют роль в этиологии шизофрении, миопатии и ^которых других заболеваний человека. Природа прионов остается неясной. С висами их объединяют малые размеры (они способны проходить через бактериальные фильтры) и неспособность размножаться на искусственных питательных средах; специфический круг поражаемых хозяев; длительная персистенция в культуре клеток, полученной из тканей зараженного хозяина, а также в организме больного человека и животного. Вместе с тем они существенным образом отличаются от вирусов: во-первых, у них отсутствует собственный геном, следовательно, они не могут рассматриваться, в отличие от вирусов, как живые существа; во-вторых, они не индуцируют никакого иммунного ответа. В-третьих, прионы обладают значительно более высокой резистентностью, чем обычные вирусы, к действию высокой температуры (выдерживают кипячение в течение 1 ч), УФ-излучению, ионизирующей радиации и к различным дезинфектантам; нечувствительны к интерферонам и не индуцируют их синтеза.

    По мнению С. Прузинера, есть два пути передачи аномального приона PrPSc: наследственный (мутации в гене ргпР) и трансмиссивный, или инфекционный (алиментарный и нозокомиальный). Прионовые болезни в том и другом случае наблюдаются в виде спорадических или групповых заболеваний.

    К. Гайдушек в 1976 г. за открытие инфекционной природы прионных болезней и С. Б. Прузинер в 1997 г. за открытие прионов и разработку прионной теории были удостоены Нобелевских премий.

    Репродукция вирусов.

    Репродукция вируса в клетке происходит в несколько фаз:

    1) первая фаза – адсорбция вируса на поверхности клетки, чувствительной к данному вирусу.

    2) вторая фаза – проникновение вируса в клетку хозяина путем виропексиса.

    3) третья фаза – «раздевание» вирионов, освобождение нуклеиновой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем слияния оболочки вириона и клетки-хозяина. В этом случае вторая и третья фазы объединяются в одну.

    4) четвертая фаза – синтез компонентов вириона. Нуклеиновая кислота вируса образуется путем репликации. На рибосомы клетки транслируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

    5) пятая фаза – сборка вириона. Путем самосборки образуются нуклеокапсиды.

    6) шестая фаза – выход вирионов из клетки. Простые вирусы, например, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

    Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

    Иной путь – интегративный – заключается в том, что после проникновения вируса в клетку и «раздевания» вирусная нуклеиновая кислота интегрирует в клеточный геном, то есть встраивается в определенном месте в хромосому клетки и затем в виде так называемого провируса реплицируется вместе с ней. Для ДНК- и РНК-содержащих вирусов этот процесс совершается по-разному. В первом случае вирусная ДНК интегрирует в клеточный геном. В случае РНК-содержащих вирусов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента «обратной транскриптазы» образуется ДНК, которая встраивается в клеточный геном. Провирус несет дополнительную генетическую информацию, поэтому клетка приобретает новые свойства. Вирусы, способные осуществить такой тип взаимодействия с клеткой, называются интегративными. К интегративным вирусам относятся некоторые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус иммунодефицита человека, умеренные бактериофаги.

    Кроме обычных вирусов, существуют прионы – белковые инфекционные частицы, не содержащие нуклеиновую кислоту. Они имеют видфибрилл, размером до 200 нм. Вызывают у человека и у животных медленные инфекции с поражением мозга: болезнь Крейтцфельда-Якоба, куру, скрепи и другие.

    4)Особенности репродукции вирусов в зависимости от типа нуклеиновой кислоты (+ и – РНК). Виды взаимодействия вирусов и клетки: продуктивный, абортивный, интегративный.

    В зависимости от типа нуклеиновой кислоты этот процесс совершается следующим образом.

    1)репродукция происходит в ядре: аденовирусы, герпес, паповавирусы. Используют ДНК-зависимую РНК-полимеразу клетки.

    2)репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК-полимеразу.

    1)рибовирусы с позитивным геномом (плюс-нитиевые): пикорна-, тога-, коронавирусы. Транскрипции нет.

    2)рибовирусы с негативным геномом (минус-нитиевые): грипп, корь, паротит, орто-, парамиксовирусы.

    (-)РНК, иРНК-белок (иРНК-комплементарная (-)РНК). Этот процесс идет при участии специального вирусного фермента – вирионная РНК-зависимая РНК-полимераза (в клетке такого фермента быть не может).

    3)ретровирусы (-)РНК, ДНК, иРНК-белок (иРНК гомологична РНК). В этом случае процесс образования ДНК на базе (-)РНК возможен при участии фермента – РНК-зависимой ДНК-полимеразы (обратнойтранскриптазы или ревертазы).

    Выявление вирусных Аг

    ИФА. В настоящее время уже появились коммерческие наборы для выявления Аг некоторых возбудителей, позволяющие их идентифицировать в течение 5-10 мин. Для выявления Аг на твёрдой фазе сорбируют известные AT и добавляют сыворотку, содержащую Аг; после инкубирования несвязанный Аг декантируют, систему промывают и вносят меченые AT, специфичные к сорбированным AT. Повторяют процедуру инкубирования и отмывания, вносят хромогенный субстрат, положительный результат фиксируют при изменении окраски системы.

    Гибридизация ДНК - высокоспецифичный метод, позволяющий идентифицировать геном вируса после его гибридизации комплементарными молекулами ДНК. В качестве маркёра применяют ферменты и изотопы. Метод определяет способность вирусной ДНК гибридизироваться с меченой комплементарной ДНК; специфичность метода прямо пропорциональна длине I комплементарной цепочки. Перспективен метод гибридизации нуклеиновых кислот in situ. Для постановки реакции меченую ДНК наносят на биоптаты тканей (в том числе на фиксированные формалином или заключённые в парафиновые блоки) и регистрируют взаимодействие с комплементарной ДНК. Метод используют для выявления вирусов простого герпеса, папилломы человека, Эпстайна-Барр и др.

    ПЦР. Метод значительно увеличивает чувствительность метода гибридизации, повышая содержание вирусной ДНК в материале, полученном от больного, а также ускоряет время получения результата.

    Занятие №7. Общая характеристика вирусов и особенности их репродукции. ДНК- и РНК-содержащие вирусы.

    1)Строение (структура, химический состав) вирусов. Типы симметрии нуклеокапсида.

    Морфологию и структуру вирусов изучают с помощью электронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий.

    Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы.

    Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц - капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

    Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.

    Фенотипическое смешивание довольно широко распространено среди близкородственных безоболочечных вирусов, таких, например, как вирусы полиомиелита типов 1 и 2, вирусов ЭКХО и Коксаки, других пикорнавирусов. Таким образом, немутационные вирусы-гибриды - полноценные вирионы. Подобно вирусам-мутантам, возникают путем комплементации, а не вследствие скрещивания геномов, как рекомбинанты. Состояния гетерозиготности и транскапсидизации вирусов неустойчивы и быстро исчезают при пассажах. Биологическое значение гетерозигот не выяснено. Транскапсидизация же может обеспечить вирусам-гибридам широкий круг хозяев и преодоление межвидовых барьеров.

    Капсид и суперкапсид защищают вирионы от влияния окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называются сердцевиной.

    Тип симметрии . Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа).

    Включения - скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазматические включения - тельца Гварниери; вирусы герпеса и аденовирусы - внутриядерные включения.

    Размеры вирусов определяют с помощью электронной микроскопии, методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным - натуральной оспы (около 350 нм).

    Вирусы имеют уникальный геном , так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) геномом. Минус-нить РНК этих вирусов выполняет только наследственную функцию.

    Внутримолекулярные рекомбинации у вирусов, как и других микроорганизмов, реализуются механизмом разрыв - воссоединение, а у РНК-вирусов с сегментированным геномом - перемешиванием генов. В общем, у вирусов различают две группы рекомбинаций -рекомбинация у ДНК-вирусов и рекомбинация-пересортировка у РНК-вирусов с сегментированным геномом.

    Среди генетических рекомбинаций ДНК-вирусов выделяют рекомбинации:

    1) между двумя дикими типами вирусов с интактными (лат intactus - нетронутый), т. е. полными, геномами;

    2) между диким типом и его мутантным вариантом;

    3) между вариантами мутантов дикого типа вируса.

    ДНК-содержащие вирусы несут в качестве генетического материала либо одно -, либо двухцепочечную ДНК, которая может быть как линейной, так и кольцевой. В ДНК закодирована информация о всех белках вируса. Вирусы, заражающие бактерии, называются бактериофагами. К ДНК-содержащим вирусам относятся вирусы гепатита В, герпес, вирусы оспы, паповавирусы, гепаднавирусы, парвовирусы.

    По виду цепи ДНК вирусы делятся на 3 группы:

    Первая группа - вирусы с двуцепочечной ДНК. Репликация ДНК-генома этих вирусов осуществляется при посредстве промежуточных молекул РНК: Молекулы РНК образуются в результате транскрипции вирусных ДНК в клеточном ядре хозяйским ферментом ДНК-зависимой РНК-полимеразой. Транскрибируется только одна из нитей вирусной ДНК. Синтез ДНК на мРНК происходит в результате реакции, катализируемой обратной транскриптазой: сначала синтезируется (-) нить ДНК, а затем на вновь синтезированной (-) нити ДНК тот же фермент строит (+) нить.

    Вторая группа - вирусы с двуцепочечной ДНК.В одних случаях производством как мРНК, так и ДНК занимаются клеточные ферменты; в других случаях вирусы используют собственные ферменты. Бывает, что те и другие ферменты обслуживают процесс репликации и транскрипции. К этой группе относятся вирусы герпеса, оспы и др.

    Третья группа - вирусы с одноцепочечной ДНК, с негативной, либо с позитивной полярностью. Попав в клетку, вирусный геном сначала превращается в двуцепочечную форму, это превращение обеспечивает клеточная ДНК-зависимая ДНК-полимераза. Транскрипция и репликация на последующих этапах происходит так же, как и для вирусов, с (±) ДНК-геномом. Структура вируса: это молекула ДНК в белковой оболочке, называемой капсидом. Однако есть много разных вариантов строения вирусов: от просто покрытой белком ДНК до сложных макромолекулярных комплексов, окруженных мембранными структурами, например, вирус оспы. Если у вируса есть мембрана‚ говорят, что он в оболочке, а если мембраны нет, то вирус называют «раздетым». Различают четыре основных вида капсидов: спиральные, икосаэдрические, сложные без оболочки, сложные с оболочкой. Неизменным итогом заражения клеток ДНК-содержащими бактериофагами является лизис. ДНК-содержащие вирусы животных вызывают лизис редко, однако клетки могут погибнуть из-за возникших при заражении хромосомных повреждений, вследствие иммунологической реакции организма или просто в результате нарушения вирусом нормальных клеточных функций.

    ДНК-содержащие опухолеродные вирусы разделяются на 5 классов:
    * Полиомавирусы – обезьяний вирус SV40, вирус полиомы мышей и вирусы человека ВК и JC.
    * Папилломавирусы – 16 вирусов папилломы человека и множество папилломовирусов животных.
    * Аденовирусы – 37 вирусов человека, множествоаденовирусов животных (например, 24 вируса обезьян и 9 вирусов крупного рогатого скота).
    * Герповирусы – вирусы простого герпеса человека, цитомегаловирус человека, вирус Эпштейна– Барр и онкогенные вирусы приматов, лошадей, кур, кроликов, лягушек.
    * Вирусы, подобные вирусу гепатита В , – вирус гепатита В человека, гепатита североамериканского сурка, гепатита земляных белок и гепатита уток.

    IV. РНК-содержащие вирусы

    РНК-содержащие микроорганизмы представлены гриппом и парагриппом, вирусом иммунодефицита человека (ВИЧ), гепатитом А парамиксовирусами, вирусами гриппа, коронавирусами, аренавирусами, ретровирусами, реовирусами, пикорнавирусами, капицивирусами, рабдовирусами, тогавирусами, флавивирусами и буньявирусами. РНК-содержащие вирусы не имеют ДНК, генетическая информация закодирована в РНК. Геномы почти всех известных РНК-содержащих вирусов - это линейные молекулы.

    Геномы РНК-содержащих вирусов можно разделить на 3 группы.

    Первая группа - это однонитевые геномы положительной полярности. Такие геномы обозначают как (+)РНК. Вирусные (+)РНК-геномы кодируют несколько белков. С помощью этого фермента синтезируются сначала (-) нити РНК фага, затем при наличии особого белка, называемого «хозяйским фактором», репликаза осуществляет синтез (+) нити РНК. На заключительной стадии из накопившихся вирусных белков и (+) РНК формируются вирионы. Упрощенная схема этого процесса такова:(+) РНК (-) РНК Инфекционный процесс состоит в проникновении вируса в растительную клетку с последующей быстрой утратой им капсида. Затем в результате трансляции непосредственно (+)РНК рибосомами клетки-хозяина образуются несколько белков, часть которых необходима для репликации вирусного генома.

    Репликация осуществляется РНК-репликазой, продуцирующей копии РНК для новых вирионов. Синтез белка капсида происходит после того как инфицировавшая клетку РНК подвергается некоторой модификации, делающей возможным присоединение рибосом клетки к тому участку РНК, которым кодируется этот белок. Сборка вириона начинается с образования дисков из белка капсида. Два таких белковых диска образуют структуру, которая после связывания с ней РНК приобретает форму спирали. Присоединение молекул белка продолжается до тех пор, пока РНК не будет покрыта полностью. В окончательной форме вирион представляет собой цилиндр длиной 300 нм.

    Вторая группа - это однонитевые геномы с негативной полярностью, т.е. (-)РНК-геномы.Поскольку (-)РНК не может выполнять функции мРНК, для образования «своих» мРНК вирус внедряет в клетку не только геном, но и фермент, умеющий снимать с этого генома комплементарные копии по схеме: (-) РНК (+) РНК. Этот вирусный фермент упакован в вирионе в удобной для доставки в клетку форме. Инфекционный процесс начинается с того, что вирусный фермент копирует вирусный геном, образуя (+) РНК, выступающую в качестве матрицы для синтеза вирусных белков, в том числе РНК-зависимой РНК-полимеразы, которая входит в состав образующихся вирионов. К вирусам с негативным РНК-геномом относятся: вирусы гриппа, кори, бешенства, желтой карликовости картофеля и др.

    Третью группу составляют двунитевые геномы, (±) РНК-геномы. Известные двунитевые геномы всегда сегментированы, т.е. состоят из нескольких разных молекул, Сюда относятся реовирусы. Их размножение проходит по варианту, близкому к предыдущему. Вместе с вирусной РНК в клетку попадает и вирусная РНК-зависимая РНК-полимераза, которая обеспечивает синтез молекул (+) РНК. В свою очередь (+) РНК обеспечивает производство вирусных белков на рибосомах хозяйской клетки и служит матрицей для синтеза новых (-) РНК-цепочек вирусной РНК-полимеразой. Цепочки (+) и (-) РНК, комплексируясь друг с другом, образуют двунитевой (±) РНК-геном, который упаковывается в белковую оболочку. Реовирусы поражают респираторные и кишечные пути теплокровных животных (человека, обезьян, крупного и мелкого рогатого скота, летучих мышей.

    Инфекционный процесс начинается с проникновения в клетку РНК. После частичного разрушения наружнего капсида ферментами лизосом РНК в образовавшейся таким образом субвирусной частице транскрибируется, ее копии покидают частицу и соединяются с рибосомами. Затем в клетке-хозяине продуцируются белки, необходимые для формирования новых вирусных частиц. Репликация РНК вирусов происходит по консервативному механизму. Одна из цепей каждого сегмента РНК служит матрицей для синтеза большого числа новых (+) цепей. На этих (+) цепях образуются затем как на матрице (–) цепи, (+) и (–) цепи при этом не расходятся, а остаются вместе в виде двухцепочечных молекул.

    К РНК-содержащим вирусы также относятся вирусы, у которых цикл репликации генома можно разбить на две главные реакции: синтез РНК на матрице ДНК и синтез ДНК на матрице РНК. При этом в состав вирусной частицы в качестве генома может входить либо РНК, либо ДНК. Вирусная частица содержит две молекулы геномной одноцепочечной (+)РНК. В вирусном геноме закодирован необычный фермент, который обладает свойствами как РНК-зависимой, так и ДНК-зависимой ДНК-полимеразы.

    V. Вирусные заболевания

    Репродукция вирусов в природе поддерживается разными типами организмов: бактериями, грибами, простейшими, растениями, животными. Например, насекомые часто страдают от вирусов, которые накапливаются в их клетках в виде крупных кристаллов. Растения нередко поражаются мелкими и просто устроенными РНК-содержащими вирусами. Эти вирусы даже не имеют специальных механизмов для проникновения в клетку. Они переносятся насекомыми (которые питаются клеточным соком), круглыми червями и контактным способом, заражая растение при его механическом повреждении. Вирусы бактерий (бактериофаги) имеют наиболее сложный механизм доставки своего генетического материала в чувствительную бактериальную клетку. Сначала «хвост» фага, имеющий вид тонкой трубочки, прикрепляется к стенке бактерии. Затем специальные ферменты «хвоста» растворяют участок бактериальной стенки и в образовавшееся отверстие через «хвост», как через иглу шприца, впрыскивается генетический материал фага (обычно ДНК).

    Более десяти основных групп вирусов патогенны для человека. Среди ДНК-содержащих вирусов это семейство поксвирусов (вызывающих натуральную оспу, коровью оспу и другие оспенные инфекции), вирусы группы герпеса (герпетические высыпания на губах, ветряная оспа), аденовирусы (заболевания дыхательных путей и глаз), семейство паповавирусов (бородавки и другие разрастания кожи), гепаднавирусы (вирус гепатита B). РНК-содержащих вирусов, болезнетворных для человека, значительно больше. Пикорнавирусы (от лат. pico – очень мелкий, англ. RNA – РНК) – самые мелкие вирусы млекопитающих, похожие на некоторые вирусы растений; они вызывают полиомиелит, гепатит А, острые простудные заболевания. Миксовирусы и парамиксовирусы – причина разных форм гриппа, кори и эпидемического паротита (свинки). Арбовирусы (от англ. arthropod borne – «переносимые членистоногими») – самая большая группа вирусов (более 300) – переносятся насекомыми и являются возбудителями клещевого и японского энцефалитов, желтой лихорадки, менингоэнцефалитов лошадей, колорадской клещевой лихорадки, шотландского энцефалита овец и других опасных болезней. Реовирусы – довольно редкие возбудители респираторных и кишечных заболеваний человека – стали предметом особого научного интереса в силу того, что их генетический материал представлен двухцепочечной фрагментированной РНК. Венерические болезни, ветряная оспа, гепатит, грипп, денге лихорадка, инфекционный мононуклеоз, корь, краснуха, менингит, оспа натуральная, полиомиелит, респираторные вирусные заболевания, свинка, Синдром приобретенного иммунодефицита (СПИД), энцефалит.

    Возбудители некоторых болезней, в том числе очень тяжелых, не укладываются ни в одну из вышеперечисленных категорий. К особой группе медленных вирусных инфекций еще недавно относили, например, болезнь Крейтцфельда – Якоба и куру – дегенеративные заболевания головного мозга, имеющие очень продолжительный инкубационный период. Однако оказалось, что они вызываются не вирусами, а мельчайшими инфекционными агентами белковой природы – прионами.


    Похожая информация.