• Флэш-память. Твердотельный накопитель. Типы флеш-памяти. Карта памяти. NAND и NOR: что они такое, и с чем их едят

    Всем привет! Буквально на днях встретил своего давнишнего приятеля. Мы разговорились, и он, со словами «Смотри с каким телефоном я сейчас хожу!», продемонстрировал свою старенькую кнопочную Nokia. Выяснилось, что на его iPhone стала постоянно «слетать» прошивка - пришлось отдать смартфон в сервисный центр. Казалось бы, обычное дело...

    Однако, для приятеля оказался необычным тот перечь работ, которые будет проводить сервис. Полная диагностика, обновление программного обеспечения (при необходимости) и другие «обычные штуки» - здесь все стандартно и понятно. Главный же вопрос вызвала вот такая фраза мастера - «скорей всего, надо перекатывать Nand Flash».

    Я, конечно, в сервисе не показал что не понимаю о чем речь - дескать и так все знаю без вас. Вы главное - делайте. Но пришел домой и сразу полез «гуглить» - а что это вообще такое, Nand Flash? И на фига его куда-то катать внутри iPhone?

    Посмеялись с ним, разошлись, а я подумал - почему бы не написать коротенькую заметку на эту тему? Много времени это не займет, а людям, которые столкнулись с той же проблемой что и мой знакомый, станет чуточку понятней, что вообще происходит с их смартфоном. Подумал - сделал. Поехали!:)

    Что такое Nand Flash в iPhone?

    Это внутренняя память устройства. Да, да, то самое и которого очень часто не хватает владельцам iPhone на 16 GB.

    Грубо говоря, Nand Flash в iPhone 7 32 GB это и есть те самые 32 GB внутренней памяти.

    Расположена память на основной системной плате устройства и ни чем примечательным не выделяется - самый обычный чип.

    Естественно, это никакая не флешка - нельзя разобрать iPhone, легко отсоединить Nand Flash, поставить другую и думать что все будет «ОК». Не будет. Хотя, стоит оговориться, что в некоторых случаях это все-таки возможно. Но об это чуть дальше. А пока переходим к неполадкам...

    Причины неисправности

    Вариантов не очень много, и все они, как правило «стандартные»:

    1. Падения устройства.
    2. Иные физические повреждения.
    3. Попадание жидкости.
    4. Брак.
    5. Джейлбрейк.

    Здесь особо и расписывать нечего - понятное дело, что если устройство бросать и заливать водой, то это скажется на его работоспособности.

    Хотя, отдельно все-таки отмечу такой пункт, как заводской брак - такое тоже очень даже возможно. Я был свидетелем подобной ситуации - iPhone только что куплен, а работать толком не работает - перезагружается, при восстановлении показывает ошибки и вообще ведет себя странно. Отдали в сервис, как итог - брак Nand Flash памяти и последующая замена устройства.

    Симптомы неисправности Flash памяти iPhone

    Каких-то четких и определенных симптомов у этой неисправности нет (на экране не выскакивает надпись - у вашего устройства проблемы с памятью), поэтому обо всем этом можно догадаться только по косвенным признакам:


    Кстати, об ошибках...

    Ошибки iTunes, указывающие на неисправность Nand Flash

    Самый верный способ борьбы с различными неполадками в работе устройства. Однако, если у iPhone существуют проблемы с Nand Flash памятью, то процесс восстановления может прерываться и сопровождаться следующими характерными ошибками:


    Но, важно помнить вот о чем - iTunes устроен таким образом, что одна и та же цифра ошибки может иметь несколько причин.

    Например, ошибка 4013 может сигнализировать как о проблемах с самой микросхемой, так и о неоригинальности использования провода для подключения к ПК.

    Как видите, разброс очень большой - от простого провода, до очень сложного ремонта. Поэтому, использовать этот перечень ошибок для предварительного анализа ситуации можно, а вот слепо доверять - нельзя.

    Ремонт Nand Flash памяти - возможно ли это?

    Возможно. Но, конечно же, не «в домашних условиях». Более того, далеко не все сервисные центры умеют проделывать эту операцию. Например, «в палатке на рынке» вам с большой долей вероятности помочь не смогут - там просто не будет необходимого оборудования. Да и навык, какой-никакой, должен быть.

    В который раз отдельно замечу - если у вашего iPhone не закончился гарантийный срок (), то ничего выдумывать не нужно - . С большой долей вероятности вы получите взамен новое устройство.

    Если с гарантией «пролет», а ремонт Nand Flash памяти все-таки необходим, то у сервисного центра есть два варианта исправления ситуации:


    Кстати, если говорить про оборудование для прошивки Nand Flash, то подобные программаторы достаточно разнообразны, но одна вещь их все-таки объединяет - цена. Все они стоят приличных денег - далеко не каждый может позволить себе такую штуку.

    Какой вывод можно сделать из всего этого? Проблемы с памятью iPhone - это достаточно серьезная поломка, которую очень тяжело исправить самостоятельно. Но и безнадежной ситуацию назвать нельзя. Главное - найти хороший сервисный центр с грамотными специалистами и необходимым оборудованием. И тогда iPhone еще долго будет радовать вас своей работой!

    P.S. Да уж, короткой заметки не получилось:) Впрочем, что есть, то есть - не удалять же теперь. Да и информация полезная - кому-нибудь да пригодится. Согласны? Ставьте «лайки», жмите на кнопки социальных сетей - поддержите автора! Он старался, честно. Спасибо!

    P.S.S. Остались какие-то вопросы? Есть чем дополнить статью или хочется рассказать свою историю? Для этого существуют комментарии - пишите смело!

    Производительность и срок службы SSD в первую очередь зависят от флэш-памяти NAND и контроллера с прошивкой. Они являются основными составляющими цены накопителя, и при покупке логично обращать внимание именно на эти компоненты. Сегодня мы поговорим о NAND.

    Тонкости технологического процесса производства флэш-памяти вы при желании найдете на сайтах, специализирующихся на обзорах SSD. Моя же статья ориентирована на более широкий круг читателей и преследует две цели:

    1. Приоткрыть завесу над невнятными спецификациями, опубликованными на сайтах производителей SSD и магазинов.
    2. Снять вопросы, которые могут у вас возникнуть при изучении технических характеристик памяти разных накопителей и чтения обзоров, написанных для «железных» гиков.

    Для начала я проиллюстрирую проблему картинками.

    Что указывают в характеристиках SSD

    Технические характеристики NAND, публикуемые на официальных сайтах производителей и в сетевых магазинах, далеко не всегда содержат подробную информацию. Более того, терминология сильно варьируется, и я подобрал для вас данные о пяти различных накопителях.

    Вам что-нибудь говорит эта картинка?

    Ок, допустим, Яндекс.Маркет — не самый надежный источник информации. Обратимся к сайтам производителей — так легче стало?

    Может быть, так будет понятнее?

    А если так?

    Или все-таки лучше так?

    Между тем, во всех этих накопителях установлена одинаковая память! В это трудно поверить, особенно глядя на две последних картинки, не правда ли? Дочитав запись до конца, вы не только в этом убедитесь, но и будете читать подобные характеристики как открытую книгу.

    Производители памяти NAND

    Производителей флэш-памяти намного меньше, чем компаний, продающих SSD под своими брендами. В большинстве накопителей сейчас установлена память от:

    • Intel/Micron
    • Hynix
    • Samsung
    • Toshiba/SanDisk

    Intel и Micron не случайно делят одно место в списке. Они производят NAND по одинаковым технологиям в рамках совместного предприятия IMFT .

    На ведущем заводе в американском штате Юта одна и та же память выпускается под марками этих двух компаний почти в равных пропорциях. С конвейера завода в Сингапуре, который сейчас контролирует Micron, память может сходить также и под маркой ее дочерней компании SpecTek.

    Все производители SSD покупают NAND у вышеперечисленных компаний, поэтому в разных накопителях может стоять фактически одинаковая память, даже если ее марка отличается.

    Казалось бы, при таком раскладе с памятью все должно быть просто. Однако существует несколько типов NAND, которые в свою очередь подразделяются по разным параметрам, внося путаницу.

    Типы памяти NAND: SLC, MLC и TLC

    Это три разных типа NAND, главным технологическим отличием между которыми является количество битов, хранящихся в ячейке памяти.

    SLC является самой старой из трех технологий, и вы вряд ли найдете современный SSD с такой NAND. На борту большинства накопителей сейчас MLC, а TLC - это новое слово на рынке памяти для твердотельных накопителей.

    Вообще, TLC давно используется в USB-флэшках, где выносливость памяти не имеет практического значения. Новые технологические процессы позволяют снизить стоимость гигабайта TLC NAND для SSD, обеспечивая приемлемое быстродействие и срок службы, в чем логично заинтересованы все производители.

    Занятно, что пока широкая публика обеспокоена ограниченным количеством циклов перезаписи SSD, по мере развития технологий NAND этот параметр только снижается!

    Как определить конкретный тип памяти в SSD

    Вне зависимости от того, приобрели вы твердотельный накопитель или только планируете покупку, после прочтения этой записи у вас может возникнуть вопрос, вынесенный в подзаголовок.

    Ни одна программа тип памяти не показывает. Эту информацию можно найти в обзорах накопителей, но есть и более короткий путь, особенно когда нужно сравнить между собой несколько кандидатов на покупку.

    На специализированных сайтах можно найти базы данных по SSD, и вот вам пример .

    Я без проблем нашел там характеристики памяти своих накопителей, за исключением SanDisk P4 (mSATA), установленного в планшете.

    В каких SSD установлена самая лучшая память

    Давайте сначала пройдемся по основным пунктам статьи:

    • производителей NAND можно пересчитать по пальцам одной руки
    • в современных твердотельных накопителях используется два типа NAND: MLC и TLC, только набирающая обороты
    • MLC NAND различается интерфейсами: ONFi (Intel, Micron) и Toggle Mode (Samsung, Toshiba)
    • ONFi MLC NAND делится на асинхронную (дешевле и медленнее) и синхронную (дороже и быстрее)
    • производители SSD используют память разных интерфейсов и типов, создавая разнообразный модельный ряд на любой кошелек
    • официальные спецификации редко содержат конкретную информацию, но базы данных SSD позволяют точно определить тип NAND

    Конечно, в таком зоопарке не может быть однозначного ответа на вопрос, вынесенный в подзаголовок. Вне зависимости от бренда накопителя, NAND соответствует заявленным спецификациям, иначе ОЕМ-производителям нет смысла ее покупать (они дают на SSD свою гарантию).

    Однако… представьте, что лето вас порадовало небывалым урожаем земляники на даче!

    Она вся сочная и сладкая, но вам просто не съесть столько, поэтому вы решили продать часть собранных ягод.

    Самую лучшую землянику вы оставите себе или выставите на продажу? :)

    Можно предположить, что производители NAND устанавливают самую лучшую память в свои накопители. Учитывая ограниченное количество компаний, выпускающих NAND, список производителей SSD получается еще короче:

    • Crucial (подразделение Micron)
    • Intel
    • Samsung

    Опять же, это лишь предположение, не подкрепленное достоверными фактами. Но разве вы поступили бы иначе на месте этих компаний?

    Потребность в энергонезависимой флэш-памяти растет пропорционально степени продвижения компьютерных систем в сферу мобильных приложений. Надежность, малое энергопотребление, небольшие размеры и незначительный вес являются очевидными преимуществами носителей на основе флэш-памяти в сравнении с дисковыми накопителями. С учетом постоянного снижения стоимости хранения единицы информации в флэш-памяти, носители на её основе предоставляют все больше преимуществ и функциональных возможностей мобильным платформам и портативному оборудованию, использующему такую память. Среди многообразия типов памяти, флэш-память на основе ячеек NAND является наиболее подходящей основой для построения энергонезависимых устройств хранения больших объемов информации.

    В настоящее время можно выделить две основных структуры построения флэш-памяти: память на основе ячеек NOR и NAND. Структура NOR (рис.1) состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает возможность произвольного доступа к данным и побайтной записи информации. В основе структуры NAND (рис.2) лежит принцип последовательного соединения элементарных ячеек, образующих группы (в одной группе 16 ячеек), которые объединяются в страницы, а страницы – в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение производится к блокам или к группам блоков.

    рис.1 Структура NOR рис.2 Структура NAND

    В результате различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее памяти NOR. Поскольку 16 прилегающих друг другу ячеек памяти NAND соединены последовательно друг с другом без каких-либо контактных промежутков, достигается высокая площадь размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. А поскольку он используется как для программирования, так и для стирания, достигается низкое энергопотребление микросхемы памяти. Последовательная структура организации ячеек позволяет получить высокую степень масштабируемости, что делает NAND-флэш лидером в гонке наращивания объемов памяти. Ввиду того, что туннелирование электронов осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у NAND-флэш ниже, чем в других технологиях флэш-памяти, в результате чего она имеет более высокое количество циклов программирования/стирания. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

    Основные отличия в параметрах флэш-памяти, изготовленной по различным технологиям, приведены в таблице 1.

    Таблица 1. Сравнительные характеристики модулей памяти на основе ячеек NAND и NOR

    Параметр NAND NOR
    Емкость ~ 1 Гбит (2 кристалла в корпусе) ~ 128 Мбит
    Напряжение питания 2.7 – 3.6 В 2.3 – 3.6 В
    Ввод/вывод х8 / х16 х8 / х16
    Время доступа 50 нС (цикл последовательного доступа)
    25 мкС (случайный доступ)
    70 нС (30 пФ, 2.3 В)
    65 нС (30 пФ, 2.7 В)
    Скорость программирования (типовая) -
    200 мкС / 512 байт
    8 мкС / байт
    4.1 мС / 512 байт
    Скорость стирания (типовая) 2 мС / блок (16 кБ) 700 мС / блок
    Совокупная скорость
    программирования и стирания (типовая)
    33.6 мС / 64 кБ 1.23 сек / блок (основной: 64 кБ)

    Ведущим лидером в производстве NAND-флэш микросхем является фирма Hynix. Она производит несколько разновидностей микросхем памяти, различающихся по следующим ключевым параметрам:

    • емкость (256 Мбит, 512 Мбит и 1 Гбит);
    • ширина шины, 8 или 16 бит (х8, х16);
    • напряжение питания: от 2.7 до 3.6 В (3.3 В устройства) или от 1.7 до 1.95 В (1.8 В устройства);
    • размер страницы: в х8 устройствах (512 + 16 запасных) байт, в 16х – (256 + 8 запасных) слов;
    • размер блока: в х8 устройствах (16 К + 512 запасных) байт, в 16х – (8 К + 256 запасных) слов;
    • время доступа: случайный доступ 12 мкС, последовательный 50 нС;
    • время программирования страницы 200 мкС;

    Все микросхемы NAND-флэш от Hynix характеризуются типичным временем стирания блока 2 мС, имеют аппаратную защиту данных при переходных процессах по питанию и позволяют выполнять 100000 циклов записи/стирания. Гарантированное время сохранности данных составляет 10 лет. Важной особенностью микросхем памяти Hynix является их повыводная совместимость вне зависимости от емкости. Это позволяет очень легко улучшать потребительские характеристики конечного изделия. В таблице 2 приведены базовые параметры всех микросхем NAND-флэш фирмы Hynix.

    Таблица 2. Сравнительный перечень микросхем NAND-флэш фирмы Hynix

    Об"ем Тип Организаця Напряжение
    питания
    Диапазон
    рабочих
    температур*
    Сккорость
    (ns)
    Корпус
    256Mbit 32Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
    32Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
    16Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
    16Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
    512Mbit 64Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
    64Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
    32Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
    32Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
    1Gb 128Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
    128Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
    128Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
    128Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
    64Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
    64Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
    64Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
    64Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA

    * - Диапазоны температур
    C - Коммерческий диапазон рабочих температур 0...+70°C
    E - Расширенный диапазон рабочих температур -25...+85°C
    I - Индустриальный диапазон рабочих температур -40...+85°C

    Более детально особенности микросхем памяти Hynix можно рассмотреть на примере кристаллов серии HY27xx(08/16)1G1M. На рис.3 показана внутренняя структура и назначение выводов этих приборов. Линии адреса мультиплексированы с линиями ввода/вывода данных на 8-ми или 16-ти разрядной шине ввода/вывода. Такой интерфейс уменьшает количество используемых выводов и делает возможным переход к микросхемам большей емкости без изменения печатной платы. Каждый блок может быть запрограммирован и стерт 100000 раз. Для увеличения жизненного цикла NAND-флэш устройств настоятельно рекомендуется применять код корректировки ошибок (ECC). Микросхемы имеют выход «чтение/занят» с открытым стоком, который может использоваться для идентификации активности контроллера PER (Program/Erase/Read). Поскольку выход сделан с открытым стоком, существует возможность подключать несколько таких выходов от разных микросхем памяти вместе через один «подтягивающий» резистор к положительному выводу источника питания.


    Рис.3 Внутренняя организация микросхем NAND-флэш Hynix

    Для оптимальной работы с дефектными блоками доступна команда «Copy Back». Если программирование какой-либо страницы оказалось неудачным, данные по этой команде могут быть записаны в другую страницу без их повторной отправки.

    Микросхемы памяти Hynix доступны в следующих корпусах:

    • 48-TSOP1 (12x20x1.2 мм) – рис.4;
    • 48-WSOP1 (12х12х0.7 мм)
    • 63-FBGA (8.5х15х1.2 мм, 6х8 массив шаровых контактов, 0.8 мм шаг)


    Рис.4 NAND-флэш Hynix

    Массив памяти NAND-структуры организован в виде блоков, каждый из которых содержит 32 страницы. Массив раздел на две области: главную и запасную (рис.5). Главная область массива используется для хранения данных, в то время как запасная область обычно задействована для хранения кодов коррекции ошибок (ECC), программных флагов и идентификаторов негодных блоков (Bad Block) основной области. В устройствах х8 страницы в главной области разделены на две полустраницы по 256 байт каждая, плюс 16 байт запасной области. В устройствах х16 страницы разделены на главную область объемом 256 слов и запасную объемом 8 слов.


    Рис.5 Организация массива NAND-памяти

    NAND-флэш устройства со страницами 528 байт / 264 слова могут содержать негодные блоки, в которых может быть одна и более неработоспособных ячеек, надежность которых не гарантируется. Помимо этого, дополнительные негодные блоки могут появиться в ходе эксплуатации изделия. Информация о плохих блоках записывается в кристалл перед отправкой. Работа с такими блоками выполняется по процедуре, детально описанной в справочном руководстве по микросхемам памяти Hynix.

    При работе с микросхемами памяти выполняются три основных действия: чтение (рис.6), запись (рис.7) и стирание (рис.8).

    Процедура чтения данных


    Рис.6 Диаграмма процедуры чтения

    Процедуры чтения данных из NAND-памяти могут быть трех типов: случайное чтение, постраничное чтение и последовательное построчное чтение. При случайном чтении для получения одной порции данных нужна отдельная команда.

    Чтение страницы выполняется после доступа в режиме случайного чтения, при котором содержимое страницы переносится в буфер страницы. О завершении переноса информирует высокий уровень на выход «Чтение/занят». Данные могут быть считаны последовательно (от выбранного адреса столбца до последнего столбца) по импульсу сигнала на Read Enable (RE).

    Режим последовательного построчного чтения активен, если на входе Chip Enable (CE) остается низкий уровень, а по входу Read Enable поступают импульсы после прочтения последнего столбца страницы. В этом случае следующая страница автоматически загружается в буфер страниц и операция чтения продолжается. Операция последовательного построчного чтения может использоваться только в пределах блока. Если блок изменяется, должна быть выполнена новая команда чтения.

    Процедура записи данных


    Рис.7 Диаграмма процедуры записи

    Стандартной процедурой записи данных является постраничная запись. Главная область массива памяти программируется страницами, однако допустимо программирование части страницы с необходимым количеством байт (от 1 до 528) или слов (от 1 до 264). Максимальное число последовательных записей частей одной и той же страницы составляет не более одной в главной области и не более двух в резервной области. После превышения этих значений необходимо выполнить команду стирания блока перед любой последующей операцией программирования этой страницы. Каждая операция программирования состоит из пяти шагов:

    1. Один цикл на шине необходим для настройки команды записи страницы.
    2. Четыре шинных цикла требуются для передачи адреса.
    3. Выдача данных на шину (до 528 байт / 264 слов) и загрузка в буфер страниц.
    4. Один цикл на шине необходим для выдачи команды подтверждения для старта контроллера PER.
    5. Выполнение контроллером PER записи данных в массив.

    Процедура стирания блока


    Рис.8 Диаграмма процедуры стирания

    Операция стирания выполняется за один раз над одним блоком. В результате её работы все биты в указанном блоке устанавливаются в «1». Все предыдущие данные оказываются утерянными. Операция стирания состоит из трех шагов (рис.8):

    1. Один цикл шины необходим для установки команды стирания блока.
    2. Только три цикла шины нужны для задания адреса блока. Первый цикл (A0-A7) не требуется, поскольку верны только адреса с А14 по А26 (старшие адреса), А9-А13 игнорируются.
    3. Один цикл шины необходим для выдачи команды подтверждения для старта контроллера PER.

    Помимо Hynix микросхемы NAND-памяти выпускаются еще несколькими производителями, среди которых весьма большую номенклатуру и объем продаж изделий имеет компания Samsung. Она производит две базовые линейки микросхем памяти NAND Flash и One NAND™. Модули памяти семейства One NAND™ представляют собой одиночный кристалл памяти со стандартным интерфейсом NOR-флэш, основанный на массиве ячеек NAND-флэш.

    Ассортимент выпускаемых компанией Samsung изделий более широк, чем у Hynix. Представлены модули емкостью от 4 Мбит до 8 Гбит, работающие в коммерческом и индустриальном температурных диапазонах. Доступны как 8-ми, так и 16-разрядные модификации на разные диапазоны питающих напряжений: 1,65…1,95 В или 2,7…3,6 В. Выпускаемые Samsung изделия имеют развитые аппаратные возможности защиты данных: защиту от записи для BootRAM, защитный режим для Flash-массива и защиту от случайной записи при включении и выключении.

    В остальном устройство микросхем памяти Hynix и изделий семейства NAND Flash от Samsung практически идентично. В этой ситуации предпочтительным для потребителя вариантом является продукция того производителя, рыночная стоимость изделий которого наиболее приемлема.

    Высокое быстродействие при считывании последовательных потоков данных предопределяет широкую сферу применимости NAND-флэш. Весьма популярным и перспективным рынком для памяти такого типа является рынок твердотельных накопителей для шины USB. В таблице 3 отражены возможности производимых в настоящее время микросхем NAND-флэш применительно к этой сфере. Помимо этого, наиболее выгодным оказывается использование такой памяти в MP3-плеерах, цифровых фотоаппаратах, компьютерах - наладонниках и в другом подобном оборудовании.

    Таблица 3. Преимущества и недостатки использования NAND-флэш в твердотельных накопителях

    Категория Содержимое
    Возможности Преимущества Хранилище данных, которые могут быть переданы через USB
    Малый размер, легкость создания портативных устройств
    Нет ограничений в объеме памяти
    Безопасное хранение данных, физически более надежное в сравнении в HDD
    Поддержка функции «горячей» установки Plug&Play
    Быстрая скорость передачи:
    USB 1.1: максимум до 12 Мбод, USB 2.0: максимум 480 Мбод
    Превосходная совместимость со стандартизованным USB интерфейсом
    Возможность питания от USB порта (500 мА, 4,5…5,5 В)
    Недостатки Необходимость в программном обеспечении в операционной системе хост-контроллера
    Необходимость в использовании чипсета USB-хоста
    Высокая стоимость в сравнении с HDD сравнимой емкости
    Емкость продукта От 16 Мбит до 8 Гбит
    Скорость передачи Запись До 13 Мб/с под USB 2.0 у карты CF от SanDisk
    Чтение До 15 Мб/с под USB 2.0 у SanDisk
    Применение ПК (настольные, переносные), DVC,PDA, сотовые телефоны и пр.
    Ведущие производители, использующие флэш-память M-Systems, Lexar Media, SanDisk и др.
    Ассоциации USB-IF (форум конструкторов USB), UTMA (ассоциация универсальной транспортабельной памяти)

    Флэш-память NAND использует логический элемент NOT AND, и, как и многие другие типы памяти, хранит данные в большом массиве клеток, где каждая ячейка содержит один или несколько битов данных.

    Любой вид памяти может подвергаться влиянию внутренних и внешних факторов, таких как износ, физическое повреждение, ошибки аппаратного обеспечения и прочие. В таких случаях мы рискуем расстаться со своими данными на совсем. Что же делать в таких ситуациях? Не стоит волноваться, поскольку существуют программы восстановления данных , которые восстанавливают данные легко и быстро, без необходимости покупать дополнительное оборудование или, в крайнем случае, начинать работу над утерянными документами заново. Рассмотрим NAND флэш-память детальнее.

    Как правило, массив NAND делится на множество блоков. Каждый байт в одном из этих блоков может быть индивидуально написан и запрограммирован, но один блок представляет наименьшую стираемую часть массива. В таких блоках каждый бит имеет двоичное значение 1. Например, монолитное устройство NAND флэш-памяти объемом 2 Гб обычно состоит из блоков по 2048 Б (128 КБ) и 64 на каждый блок. Каждая страница вмещает 2112 Б, и состоит из 2048 байт данных и дополнительной зоны в 64 байта. Запасные области обычно используется для ECC, информации об износе ячеек и другие накладные функции программного обеспечения, хотя физически он не отличается от остальной части страницы. NAND устройства предлагаются с 8-битным или 16-битным интерфейсом. Узел данных подключен к NAND памяти через двунаправленную шину данных 8 или 16 бит. В 16-битном режиме команды и адреса используют 8 бит, остальные 8 бит приходятся на использование во время циклов передачи данных.

    Типы флэш-памяти NAND

    Флэш-память NAND, как мы уже отмечали, бывает двух типов: одноуровневая (SLC) и многоуровневая (MLC). Одноуровневая флэш-память – SLC NAND (single level cell) хорошо подойдет для приложений, которые требуют высокую и среднюю плотность. Это простейшая в использовании и удобная технология. Как описано выше, SLC NAND хранит один бит данных в каждой ячейке памяти. SLC NAND предлагает относительно высокую скорость чтения и записи, хорошую производительность и алгоритмы коррекции простых ошибок. SLC NAND может быть дороже других технологий NAND в расчете на один бит. Если приложению требуется высокая скорость чтения, например, высокопроизводительная медиа карта, некоторые гибридные диски, твердотельные устройства (SSD) или другие встроенные приложения — SLC NAND может стать единственным подходящим выбором.

    Многоуровневая флэш-память – MLC NAND (multilevel cell) предназначена для приложений более высокой плотности и с медленным циклом.

    В отличие от SLC NAND многоуровневые ячейки MLC NAND хранят два или больше бит на одну ячейку памяти. Чтобы определить место для каждого бита, применяется напряжение и ток. В устройствах SLC требуется только один уровень напряжения. Если ток обнаружен, то значение бита равно 1; если ток не обнаружен, то бит обозначается как 0. Для устройства MLC для определения значений битов используются три разных уровня напряжения.

    Как правило, MLC NAND предлагает объем в два раза больше, чем SLC NAND для одного устройства и стоит также дешевле. Поскольку SLC NAND в три раза быстрее, чем MLC NAND и предлагает производительность выше, более чем в 10 раз; но для многих приложений, MLC NAND предлагает правильное сочетание цены и производительности. В самом деле, MLC NAND представляет почти 80% от всех поставок флэш-памяти NAND. И флэш-память MLC NAND доминирует по выбору потребителя по классу SSD потому, как их производительность превосходит магнитные жесткие диски.

    Срок службы твердотельного накопителя зависит от количества байтов, которые были записаны в NAND флэш-память. Большинство устройств на базе MLC имеют гарантию сроком в один-три года. Однако важно понимать, как именно будет использоваться устройство, поскольку SSD на базе MLC могут прослужить меньше если предполагается множественная перезапись на диск. С другой стороны решения на базе SLC прослужат дольше предполагаемых трех лет даже при тяжелых PE циклах.

    История NAND-флэш

    Флэш-память NAND – это энергонезависимый твердотельный накопитель, что внес значительные изменения в индустрии хранения данных, возраст которой на сегодняшний момент составляет уже 26 лет. Флэш-память была изобретена доктором Фуджио Масуока (Fujio Masuoka) во время работы в компании Toshiba приблизительно в 1980 году. По словам Toshiba имя «флэш» было предложено коллегой доктора Масуока, г-ном Шо Цзи Аризуми (Sho-ji Ariizumi), в виду того, что процесс стирания содержимого памяти напомнил ему вспышку камеры.

    Копания Toshiba поставила NAND флэш-память на коммерческую ногу в 1987 году; многое изменилось с тех пор. Рынок NAND флэш-памяти вырос быстро при продажах, в восемь раз превышающих объемы продаж памяти DRAM (Dynamic random access memory — динамическая память с произвольным доступом). NAND память стала высокопрочным устройством хранения данных и выбором многих пользователей. Такая память сегодня используется в различных картах памяти и USB-накопителях, облачных хранилищах встречается у многих пользователей, как в промышленности и предпринимательстве, так и в домашних устройствах. Устройства Apple’s iPhone, iPod и iPad, а также телефоны и планшеты на базе Android также широко используют NAND флэш-память. С тех времен это нововведение пробилось в новую эпоху, в которой потребители могут всегда воспользоваться своими файлами: видео, музыкой, книгами и документами, где бы Вы ни находились.

    Высококачественная NAND запрограммирована на чтение информации небольшими блоками, или страницами, в то время, как флэш-память типа NOR считывает и записывает данные по 1 байту за раз. NOR флэш-память более предпочтительна для устройств, которые хранят и запускают коды, обычно небольших объемов.

    Введение твердотельной NAND флэш-памяти и устройств хранения данных в дополнение к обычным магнитным жестким дискам дало предприятиям новые возможности для запуска их сервера и хранения ключевых бизнес-приложений. Поскольку такая память не имеет движущихся частей, NAND флэш может обрабатывать и перемещать данные из одного места в другое значительно быстрее благодаря отличной скорости чтения и записи. Приложения, использующиеся в финансовых услугах, розничной торговле и облачных веб-сервисах, часто эксплуатируют серверы, оснащенные NAND флэш-памятью.

    Флэш-память хранит информацию в массиве, состоящем из ячеек памяти и транзисторов с плавающим затвором. В устройствах с ячейками одного уровня (SLC), каждая ячейка хранит только один бит информации. Некоторые более новые типы флэш-памяти, известные как устройства многоуровневых ячеек (MLC), могут хранить больше, чем один бит на ячейку, выбирая между несколькими уровнями электрического заряда с целью применить к транзистору с плавающим затвором и его ячейкам.

    Ключевые факты, касающиеся NAND Flash

    Эволюция типов флэш-памяти впечатляет. StorageNewsletter.com, уважаемый и общепризнанный источник ежедневных электронных новостей для промышленности, следит за развитием NAND флэш-памяти довольно продолжительное время и имеет целый архив данных по существованию этой технологии.

    Флэш-чипы: увеличение объемов и более низкая цена флэш-памяти и твердотельных накопителей напрямую зависят от процесса производства микросхем флэш-памяти NAND. SanDisk и Toshiba теперь предлагают линию MLC на 128 ГБ и чип с ячейкой в 3 бита каждая. Среди крупных мировых производителей флэш-памяти находятся такие компании, как: Intel, Samsung, Seagate, Nvidia, LSI, Micron и Western Digital.

    Флэш-ключи (или флэшки): первые USB-флэш были разработаны в конце 1990-х годов компанией M-Systems, которая позже была приобретена компанией SanDisk. В 2001 году в США компания IBM начала производить версию памяти объемом в 8 Мб, называемую «память ключей». Сейчас объем такой памяти достигает 128 ГБ и цены были значительно снижены.

    Та же компания M-Systems стала первым производителем SSD в 1995 году. С 1999, SN.com зафиксировали 590 разных моделей, запущенных в производство 97 компаниями. Среди остальных, BiTMICRO Networks в 1999 выпустили модель E-Disk SNX35 размером в 3.5 дюйма и объемами от 128MB до 10GB, временем доступа в 500 мс и со скоростью чтения и записи в 4MБ/с с помощью интерфейса SCSI-2. В следующий год M-Systems произвели FFD SCSI объемом в 3 ГБ, 2,5 дюймовый SSD с максимальной скоростью чтения в 4 МБ/с и записи в 3 МБ/с.

    Сегодня же можно получить память объемом 16 ТБ (PCIe SSD от компании OCZ) со скоростью чтения до 4 ГБ/с и записи до 3,8 ГБ/с. Компания OCZ также объявила в 2012 году о максимально малом времени записи и чтения информации: 0.04 мс для чтения и 0.02 мс для операций записи.

    Мы часто можем попасть в ситуацию, когда данные удаляются или повреждаются вследствие различных ошибок, как в системе, так и ошибок самого человека. О том, как восстановить данные с карты памяти можно узнать .

    Критерии выбора устройства с NAND-флэш

    Итак, когда дело доходит до выбора устройства (на примере SSD) с технологией NAND-флэш необходимо учитывать несколько критериев выбора:

    Убедитесь в том, что SSD устройство, операционная и файловая система поддерживает TRIM, особенно, если карта использует контроллер жёсткого диска, что усложняет процесс сбора «мусора», ненужных данных:

    — узнайте о том, поддерживает ли Ваша ОС трим можно узнать в любом источнике информации; — существуют приложения, которые способствуют добавлению трим-технологии для Вашей ОС, если такова не поддерживается. Но прежде узнайте, не повредит ли это общей производительности устройства. SSD с памятью NAND станет отличным выбором, когда нужна высокая производительность, отсутствие шума, устойчивость к внешним факторам влияния или малое потребление энергии: — непоследовательное считывание даст возможность увеличить производительность по сравнению с HDD; — узнайте о максимально возможной производительности устройства, чтобы не превысить пределы; Для лучшего выполнения операций и круглосуточного их проведения лучше выбирать SLC, чем MLC: — SSD на базе NAND отлично ускоряет работу серверов, но помните, что для этого также понадобиться запасное место для «мусора» и/или трим. — Система RAID с SSD даст высокие показатели производительности и устойчивости, но используйте специально разработанные для SSD рэйд-контроллеры, иначе накопиться столько «мусора», что не справиться даже трим или система сбора. Устройства SSD с большими показателями выносливости, конечно же, прослужат дольше: — Например, выбирайте устройство объемом в 100 ГБ вместо 128 ГБ, 200 ГБ вместо 256 ГБ и так далее. Тогда Вы будете точно знать, что 28 или 56 и так далее гигабайт памяти это, возможно, зарезервированное место для расчета износа, реорганизации файлов и дефектных ячеек памяти. Для использования в промышленности, на производстве или в офисах, лучше выбирать устройства бизнес-класса, например, PCI Express (PCIe) SSD устройство:

    Карты PCIe со специально настроенным контроллером SSD может дать очень высокую производительность ввода-вывода данных и хорошую выносливость.

    Для успешной работы с микросхемами NAND FLASH (нанд флэш) необходимо, как минимум:

      Иметь представление о структуре NAND FLASH (нанд флэш), существующих способах и алгоритмах использования информации хранимой в такой памяти.

      Иметь программатор, который корректно поддерживает работу с памятью NAND Flash т.е. позволяет выбрать и реализовать необходимые параметры и алгоритмы обработки.

    Программатор для NAND FLASH должен быть очень быстрым . Программирование или чтение микросхемы обьемом в несколько Гбит на обычном программаторе по времени занимает несколько часов. Очевидно, что для более или менее регулярного программирования NAND Flash нужен специализированный быстрый программатор, адаптированный для работы с мс. высокой плотности. На сегодняшний день, самый быстрый программатор Flash NAND - ChipProg-481.

    Программирование NAND FLASH на программаторах ChipProg

    При работе с NAND Flash программатор предоставляет широкий спектр возможностей по выбору/настройке способов и параметров программирования. Все параметры влияющие на алгоритм работы программатора с микросхемой, выводятся в окно "Редактор параметров микросхемы и алгоритма программирования". При необходимости, любой из этих параметров может быть изменен, с тем что бы выбранное действие (программирование, сравнение, чтение, стирание) - производилось по алгоритму необходимому пользователю программатора.

    Окно "Редактор параметров микросхемы и алгоритма программирования" в интерфейсе программатора при программировании NAND Flash .

    Большое количество настраиваемых параметров, формирующих алгоритм работы программатора NAND Flash продиктовано желанием предоставить универсальный инструмент, позволяющий пользователю максимально полно реализовать все особенности присущие структуре NAND Flash . Для облегчения жизни, программаторы ChipProg-481 предоставляют следующие возможности при выборе любой микросхемы NAND Flash :

    • Все параметры принимают значения заданные в предшествующем сеансе (сессии) программирования выбранной NAND Flash . (количество сохраненных сессий неограниченно).
    • Все параметры принимают значения заданные для данной NAND Flash в рамках "проекта" (количество "проектов" неограниченно)
    • Все параметры автоматически принимают необходимые значения после запуска "скрипта". "Скрипты" пишутся на встроенном в оболочку программатора C подобном языке.
    • Все (или выборочно) параметры принимают значения по умолчанию.
    • Значения всех параметров доступны для редактирования в графическом интерфейсе программатора.

    Рассмотрим режимы и параметры программирования реализованные в программаторе.

    Режимы программирования.

    1. Invalid Block Management
    2. Spare Area Usage
    3. Guard Solid Area
    4. Tolerant Verify Feature
    5. Invalid Block Indication Option

    1. Работа с плохими блoками .

    Перед программированием NAND Flash можно/нужно выбрать один из способов работы с плохими блоками.

    2. Использование области Spare Area.

    Do Not Use

    Spare Area в микросхеме не используется. В микросхеме программируются страницы памяти без учета Spare Area.

    User Data

    Spare Area используется как пользовательская память. В этом случае при программировании микросхемы информация из буфера помещается сначала в основную страницу микросхемы, а затем в дополнительную область Spare Area. В этом случае буфер программатора выглядит как непрерывный поток основных страниц микросхемы и пристыкованных к ним областей Spare Area.

    User Data with IB Info Forced

    Spare Area интерпретируется аналогично предыдущему случаю за исключением того, что маркеры плохих блoкoв прописываются вместо информации пользователя.

    3. Guard Solid Area

    Режим использования специальной области без плохих блoкoв. Обычно такие области используются в качестве загрузчиков микропроцессоров. В этой области недопустимо использование плoxих блoкoв.
    Опция используется совместно с параметрами:

    • Solid Area - Start Block - начальный блoк области без плoxих блoкoв.
    • - количество блoкoв в этой области.

    В случае, если внутри заданного диапазона Solid Area попадется плохой блoк, программатор выдаст ошибку.

    4. Не чувствительность к ошибкам сравнения.

    Эта опция позволяет включить режим не чувствительности к ошибкам сравнения.
    Обычно, эту опцию имеет смысл использовать, если в устройстве пользователя применяются алгоритмы контроля и коррекции ошибок (ECC). В этих случаях допускается наличия определенного количества ошибок на определенный размер массива данных. Эти параметры и указываются в параметрах алгоритма программирования NAND Flash :

    • ECC Frame size (bytes) - размер массива данных.
    • Acceptable number of errors - допустимое количество однобитных ошибок.

    5. Invalid Block Indication Option.

    В этой опции выбирается информация, которая используется в качестве маркера плохих блоков. Допускается выбрать либо значение 00h, либо 0F0h.

    • IB Indication Value ~ 00 или F0

    Параметры программирования.

    1. User Area
    2. Solid Area
    3. RBA Area
    4. ECC Frame size
    5. Acceptable number of errors

    a. Пользовательская область.

    Пользовательская область - это область микросхемы, с которой работают процедуры Программирования, Чтения и Сравнения.
    Процедуры Стирания и Контроля на чистоту работают со всем массивом микросхемы.

    Пользователю необходимо установить параметры:

    • User Area - Start Block - начальный блoк пользовательской области.
    • User Area - Number of Blocks - количество блoков в пользовательской области.

    b. Область без ошибок.

    Параметры режима Guard Solid Area.

    • Solid Area - Start Block - начальный блoк области без плoхих блоков.
    • Solid Area - Number of Blocks - количество блоков в этой области.

    c. Область размещения RBA.

    • RBA Area - Start Block - начальный блок таблицы RBA.
    • RBA Area - Number of Blocks - количество блоков в таблице RBA.

    d. Размер фрейма ECC .

    • ECC Frame Size - параметр определяющий размер массива данных, в котором допускаются однобитные ошибки.

    e. Допустимое количество ошибок .

    • Acceptable number of errors - параметр определяет количество однобитных ошибок, допустимых в массиве, размер, которого определяется параметром ECC Frame size.

    Карта плохих блоков

    Карта плохих блоков создается в подслое Invalid Block Map. Карта блоков представляется как непрерывный массив бит. Хорошие блоки представляются значением 0, плохие блоки - 1.

    Например, значение 02h по нулевому адресу говорит о том, что 0,2,3,4,5,6,7 блоки являются хорошими, 1-ый блок является плохим. Значение 01h по первому адресу говорит о том, что только 8-ой блок является плохим из группы блоков 8..15.

    Копирование NAND Flash

    В качестве иллюстрации важности "зрячего" выбора режимов и параметров при программировании NAND Flash в программаторе, рассмотрим ситуацию, при которой у некоторых программистов возникают проблемы. Чаще всего, это замена NAND Flash в "устройстве", которое перестало работать. Стандартный подход - по аналогии с заменой обычной микросхемы памяти:

    1. Получить прошивку работающей микросхемы. Как правило, для этого считывается содержимое из микросхемы-оригинала.
    2. Прошить новую аналогичную микросхему.
    3. Сравнить содержание запрограммированной мс. с прошивкой "оригинала". Если сравнение прошло, микросхема - копия готова.

    В случае, когда требуется программировать NAND Flash , не все так просто и однозначно.

    1. Прошивка Nand Flash , полученная при считывании программатором из "оригинала" - существенным образом зависит от установленных в программаторе режимов и параметров.
    2. Для того что бы корректно запрограммировать новую NAND Flash и получить полную копию, необходимо перед программированием установить в программаторе режимы и параметры соответствующие прошивке "оригинала". При этом, необходимо учитывать возможность существования плохих блоков.

    Для получения микросхемы-копии, у которой прошивка NAND Flash идентична образцу, необходимо поступать следующим образом.

    Подготовка к копированию.

    Для копирования необходимы микросхема-оригинал и микросхема-копия (мс. в которую предполагается записать образ оригинала). Обязательные требования:

    1. Обе микросхемы NAND Flash и оригинал и копия должны быть одного типа.
    2. Микросхема-копия не должна иметь плохих блоков.

    Чтобы определить, имеет ли микросхема-копия плохие блоки, необходимо установить микросхему в программатор, и в окне “Редактор параметров микросхемы” задать параметры микросхемы по умолчанию - кнопка "All Default".

    Запускается процедура контроля на стертость (для экономии времени можно сразу же отменить эту процедуру, считывание карты плохих блоков осуществляется в самом начале). В окне "Программирование" интерфейса программатора, в поле “Информация об операциях” появляется информация о плохих блоках.


    Копирование.

    Перед копированием микросхемы NAND Flash в программаторе обязательно должны быть сделаны следующие настройки параметров в окне “Редактор параметров микросхемы”:

    Invalid Block(IB) Management

    Do NOT USE

    Spare Area Usage

    User Data

    User Area – Number of Blocks

    Максимальное значение блоков в микросхеме

    В программатор устанавливается NAND Flash образец и считывается. Затем в программатор устанавливается микросхема-копия, стирается, записывается и сравнивается. В случае успешного прохождения всех трех процедур запрограммированная NAND Flash оказывается полной копией оригинала.

    Структура памяти NAND Flash.

    NAND Flash память * подразделяется на блоки (Block) памяти, которые в свою очередь делятся на страницы (Page). Страницы бывают большие (large page) и маленькие (small page). Размер страницы зависит от общего размера микросхемы. Для маленькой страницы обычно характерны микросхемы объемом от 128Kбит до 512Кбит. Микросхемы с большим размером страницы имеют объем от 256Кбит до 32Гбит и выше. Маленький размер страницы равен 512 байтам для микросхем с байтной организацией и 256 словам для микросхем со словной организаций шины данных. Большая страница имеет размер 2048 байт для байтных микросхем и 1024 для словных. В последнее время появляются микросхемы с еще большим размером страницы. Она уже составляет 4096 байт для байтных микросхем.

    Структура памяти микросхем NAND Flash с малым размером страницы фирмы STMicroelectronics.

    Структура памяти микросхем с большим размером страницы фирмы STMicroelectronics.

    Плохие блоки NAND Flash

    Характерной особенностью микросхем NAND Flash является наличие плохих (дефектных) блоков (Bad blocks) как в новых микросхемах, так и появление таких блоков в процессе эксплуатации. Для маркирования плохих блоков, а также для сохранения дополнительной служебной информации или кодов коррекции, в архитектуре NAND Flash в дополнении к каждой странице памяти данных предусмотрена добавочная область Spare area. Для микросхем с малой страницей эта область имеет размер 16 байт / 8 слов. Для микросхем с большой страницей - 64 байта / 32 слова.

    Обычно производитель микросхем гарантирует количество плохих блоков, не превышающее определенного размера. Информация о плохих блоках поставляется производителем микросхем в определенном месте дополнительной области Spare Area.

    Маркирование плохих блоков в микросхемах NAND Flash осуществляется записью обычно значения 0 по определенному адресу в области Spare Area нулевой страницы плохого блока. Маркеры плохих блоков лежат в определенных адресах области Spare Area.

    Организация памяти

    Адрес маркеров плохих блоков в Spare Area

    Байтная организация, размер страницы - 512 байт.

    Словная организация, размер страницы - 256 слов.

    Байтная организация, размер страницы - 2048 байт и больше.

    Словная организация, размер страницы - 1024 слов и больше.

    Нужно иметь ввиду, что маркеры плохих блоков помещаются в обычные ячейки Flash памяти Spare Area, которые стираются при стирании всего блока памяти. Поэтому для сохранения информации о плохих блоках перед стиранием обязательно нужно сохранить эту информацию, а после стирания ее - восстановить.
    В программаторах ChipProg при установке опции InvalidBlockManagement в любое значение кроме Do Not Use сохранение и восстановление информации о плохих блоках происходит автоматически.

    Существует три наиболее распространенных способа обработки плохих блоков:

    1. Skip Bad Blocks (Пропуск плохих блоков. )
    2. Reserved Block Area (Резервирование блоков)
    3. Error Checking and Correction (Контроль и коррекция ошибок. )

    1. Пропуск плохих блоков .

    Алгоритм пропуска плохих блоков заключается в том, что при записи в микросхему анализируется в какой блок осуществляется запись. В случае наличия плохого блока, запись в этот блок не осуществляется, плохой блок пропускается, запись осуществляется в блок следующий после плохого.

    2. Резервирование блоков.

    В этом методе память всей микрохемы делится на три области: User Block Area (UBA) - пользовательская область, Block Reservoir - резервная область, следуемая сразу за пользовательской областью, и таблицу соответствия плохих блоков хорошим (Reserved Block Area - RBA).

    Алгоритм замены плохих блоков в этом методе таков: при выявлении плохого блока из области UBA блок переносится в область Block Reservoir, при этом в таблице RBA делается соответствующая запись замены блока.

    Формат таблицы RBA:

    2 байта В области RBA находятся две таблицы в двух блоках. Таблица во втором блоке используется как резервная на случай, если информация в первой окажется недостоверной.

    3. Контроль и коррекция ошибок .

    Для увеличения достоверности данных могут использоваться алгоритмы контроля и коррекции ошибок (Error Checking and Correction - ECC). Эта дополнительная информация может помещаться в свободное пространство Spare Area.

    *) Примечание: NAND ~ Not AND - в булевой математике обозначает отрицание «И»