• Импульсная характеристика цифрового фильтра пример. Фильтр с конечной импульсной характеристикой. Кафедра Систем Сбора и Обработки Данных

  • 7 Общие сведения о сигналах. Классификация сигналов.
  • 8 Формы представления сигналов. Аналоговые, дискретные, цифровые сигналы.
  • 9 Детерминированные и случайные сигналы: периодические, почти периодические, переходные, стационарные, эргодические, нестационарные.
  • 10 Вычисление числовых характеристик сигналов
  • 11 Параметры, характеризующие форму сигнала
  • 12 Интегрирование полигармонических сигналов в частотной области
  • 13 Формирование периодических сигналов. Табличный способ.
  • 14 Формирование полигармонических сигналов.
  • 15 Единичный импульс. Представление дискретных сигналов.
  • 16 Дискретизация непрерывных сигналов. Теорема Котельникова. Частота Найквиста.
  • 17 Линейные системы, инвариантные к сдвигу.
  • 18 Импульсная характеристика линейных систем. Устойчивость и физическая реализуемость.
  • 19 Ряд Фурье и интегральное преобразование Фурье. Ряд Фурье в комплексной форме.
  • 20 Преобразование Фурье для прямоугольного импульса.
  • 21 Представление периодической последовательности единичных импульсов в частотной области.
  • 23 Быстрое преобразование Фурье. Алгоритм с прореживанием по времени. (цос_материалы_лекций 24-30)
  • 24 Алгоритм двоичной инверсии. Базовая операция бпф. (26-30)
  • 25 Применение бпф для обработки действительных последовательностей. (цос_материалы_лекций 29-31)
  • 26 Понятие линейной дискретной системы//метода 8.1
  • 27 Импульсная характеристика линейных систем. Устойчивость и физическая
  • 28. Цифровая свертка сигналов.
  • 29 Линейные разностные уравнения с постоянными коэффициентами.
  • 30 Z-преобразование: реализация, свойства, применение.
  • 32 Типовые z-преобразования. Z-преобразование цифрового единичного скачка.
  • 33 Типовые z-преобразования. Z-преобразование убывающей дискретной экспоненты.
  • 34 Обратное z-преобразование. Способы вычисления.
  • 35 Передаточная функция линейной дискретной системы. Определение по импульсной характеристике. (См. Вопрос)
  • 36 Передаточная функция линейной дискретной системы. Определение по разностному уравнению. Нули и полюсы.
  • 37 Передаточная функция звена первого порядка.
  • 38 Передаточная функция звена второго порядка.
  • 39 Частотная характеристика линейной дискретной системы.
  • 40 Расчет ачх и фчх по передаточной функции.
  • 41 Расчет ачх и фчх звена первого порядка.
  • 42 Расчет ачх и фчх звена второго порядка.
  • 43. Понятие цифрового фильтра.
  • 44 Этапы проектирования цифрового фильтра.
  • 45 Обеспечение линейности фчх цифрового фильтра.
  • 46 Цифровые фильтры с бесконечной импульсной характеристикой. Метод билинейного z-преобразования расчета бих-фильтров низкой частоты.
  • 47 Цифровые фильтры с бесконечной импульсной характеристикой. Метод билинейного z-преобразования расчета бих-фильтров высокой частоты.
  • 48 Цифровые фильтры с конечной импульсной характеристикой. Расчет ких-фильтров.
  • 49 Сглаживание данных. Скользящее усреднение.
  • 50 Сглаживание данных. Сглаживание параболами.
  • 51 Сглаживание данных. Сглаживание Спенсера.
  • 52 Сглаживание данных. Медианная фильтрация.
  • 53 Определение параметров тренда методом наименьших квадратов.
  • 54 Понятие вейвлет-преобразования, отличие от преобразования Фурье.
  • 55 Математическое описание вейвлетных функций.
  • 56 Расчет дискретных вейвлетов.
  • 48 Цифровые фильтры с конечной импульсной характеристикой. Расчет ких-фильтров.

    Фильтр с конечной импульсной характеристикой (Нерекурсивный фильтр , КИХ-фильтр ) или FIR-фильтр (FIR сокр. от finite impulse response - конечная импульсная характеристика) - один из видов линейных цифровых фильтров, характерной особенностью которого является ограниченность по времени его импульсной характеристики (с какого-то момента времени она становится точно равной нулю). Такой фильтр называют ещё нерекурсивным из-за отсутствия обратной связи. Знаменатель передаточной функции такого фильтра - некая константа.

    Разностное уравнение, описывающее связь между входным и выходным сигналами фильтра: гдеP - порядок фильтра,x (n ) - входной сигнал,y (n ) - выходной сигнал, аb i - коэффициенты фильтра. Иными словами, значение любого отсчета выходного сигнала определяется суммой масштабированных значенийP предыдущих отсчетов. Можно сказать иначе: значение выхода фильтра в любой момент времени есть значение отклика на мгновенное значение входа и сумма всех постепенно затухающих откликовP предыдущих отсчетов сигнала, которые всё ещё оказывают влияние на выход (послеP -отсчетов импульсная переходная функция становится равной нулю, как уже было сказано, поэтому все члены послеP -го тоже станут равными нулю). Запишем предыдущее уравнение в более ёмком виде:

    Для того, чтобы найти ядро фильтра положим

    x (n ) = δ(n )

    где δ(n ) - дельта-функция. Тогда импульсная характеристика КИХ-фильтра может быть записана как:

    Z-преобразование импульсной характеристики даёт нам передаточную функцию КИХ-фильтра:

    ]Свойства

    КИХ-фильтр обладает рядом полезных свойств, из-за которых он иногда более предпочтителен в использовании, чем БИХ-фильтр. Вот некоторые из них:

      КИХ-фильтры устойчивы.

      КИХ-фильтры при реализации не требуют наличия обратной связи.

      Фаза КИХ-фильтров может быть сделана линейной

    Прямая форма КИХ фильтра

    КИХ фильтры могут быть реализованы с использованием трех элементов: умножитель, сумматор и блок задержки. Вариант, показанный на рисунке есть прямая реализация КИХ-фильтров типа 1.

    Реализация прямой формы КИХ фильтра

    Пример программы

    Ниже приведен пример программы КИХ-фильтра, написанный на C:

    /* КИХ Фильтр на 128 отводов */

    float fir_filter(float input)

    static float sample;

    acc = 0.0f; /* Аккумулятор */

    /* Умножение с накоплением */

    for (i = 0; i < 128; i++) {

    acc += (h[i] * sample[i]);

    /* Выход */

    /* Смещаем задержаный сигнал */

    for (i = 127; i > 0; i--)

    sample[i] = sample;

    49 Сглаживание данных. Скользящее усреднение.

    50 Сглаживание данных. Сглаживание параболами.

    51 Сглаживание данных. Сглаживание Спенсера.

    52 Сглаживание данных. Медианная фильтрация.

    Скользящее усреднение, сглаживание пораболами, сглаживание Спенсера, медианная фильтрация

    При разработке способов определения параметров физических процессов, медленно изменяющихся во времени, важной задачей является устранения влияния шумовых эффектов или случайных помех, которые накладываются на обрабатываемый сигнал, получаемый на выходе первичного преобразователя.

    Для устранения такого эффекта можно применить сглаживание данных. Одним из наиболее простых способов такого сглаживание является арифметическое усреднение. При его применении каждое -ое значение дискретной функции (обрабатываемого массива данных) вычисляется в соответствии с выражением:

    где - количество точек для арифметического усреднения (нечетное целое число);

    Ое значение функции до обработки;

    Известны и другие, достаточно эффективные способы сглаживания, например, параболами второй степени по пяти, семи, девяти и одиннадцати точкам в соответствии с выражениями:

    или параболами четвертой степени по семи, девяти, одиннадцати и тринадцати точкам:

    В практических применениях дают хорошие результаты другие эффективные способы, например, 15-точечное сглаживание Спенсера:

    Подставив в эти выражения комплексную экспоненту , где, можно определить передаточную функциюсоответствующего преобразования.

    Для арифметического усреднения

    Выражение в скобках представляет собой геометрическую прогрессию со знаменателем, следовательно это выражение можно представить в виде:

    .

    Эта формула представляет собой передаточную характеристику фильтра низких частот и из нее видно, что, чем больше слагаемых задействованы при усреднении, тем больше подавление шумовых высокочастотных составляющих в сигнале (см. рисунок 6.1).

    Однако смысловое понятие частоты при обработке временных трендов отличается от аналогичного понятия при обработке сигналов. Это объясняется тем, что при исследовании временных трендов интерес представляет не их частотный состав, а вид изменения (увеличение, уменьшение, постоянство, цикличность и т.д.).

    Также достаточно эффективно для сглаживания данных применение, так называемых, эвристических алгоритмов.

    Одним из них является медианная фильтрация. В ходе ее реализации в скользящем временном окне размерностью , гдецелое нечетное число, центральный элемент заменяется средним элементом последовательности, представляющих собой упорядоченные, в порядке возрастания значений, элементы массива данных сглаживаемого сигнала, попавших во временное окно. Достоинством медианной фильтрации является способность удалять импульсные помехи, длительность которых не превышает, практически без искажения плавно изменяющихся сигналов. Данный способ подавления шумов не имеет строгого математического обоснования, однако простота вычислений и эффективность получаемых результатов обусловили широкое его распространение.

    Рисунок 6.1 - Графики передаточной характеристики

    операции арифметического усреднения для m=5, 7, 9, 11

    Другим интересным алгоритмом сглаживания является медианное усреднение. Его сущность состоит в следующем. В скользящем временном окне, размерности (- целое нечетное число), элементы массива данных упорядочиваются в порядке возрастания, а затем из упорядоченной последовательности удаляется попервых и последних элементов (<). Центральный элемент временного окна из последовательности сглаживаемых данных заменяется значением, вычисляемым как

    Этот способ позволяет подавить импульсные и радиочастотные помехи, а также достигнуть хорошего сглаживания сигналов.

    "

    Рассмотрим наиболее простые из цифровых фильтров - фильтры с постоянными параметрами.

    На вход цифрового фильтра подается входной сигнал в виде последовательности числовых значений, следующих с интервалом (рис. 4.1, а). При поступлении каждого очередного значения сигнала в цифровом фильтре производится расчет очередного значения выходного сигнала Алгоритмы расчета могут быть самыми разнообразными; в процессе расчета, кроме последнего значения входного сигнала могут использоваться

    предыдущие значения входного и выходного сигналов: Сигнал на выходе цифрового фильтра также представляет собой последовательность числовых значений, следующих с интервалом . Этот интервал является единым для всего устройства цифровой обработки сигналов.

    Рис. 4.1. Сигнал на входе и на выходе цифрового фильтра

    Поэтому если на вход цифрового фильтра подать простейший сигнал в виде единичного импульса (рис. 4.2, а)

    то на выходе получим сигнал в виде дискретной последовательности числовых значений, следующих с интервалом

    По аналогии с обычными аналоговыми цепями назовем этот ответный сигнал импульсной характеристикой фильтра (рис. 4.2, б). В отличие от импульсной характеристики аналоговой цепи функция является безразмерной.

    Рис. 4.2. Единичный импульс и импульсная характеристика цифрового фильтра

    Подадим на вход фильтра произвольный дискретный сигнал рис. 4.1, а), представляющий собой набор дискретных значений

    Под действием первого элемента на выходе фильтра формируется последовательность умноженная на при действии последовательность умноженная на и сдвинутая вправо на величину и т. д. В результате на выходе получим последовательность причем

    Таким образом, выходной сигнал определяется как дискретная свертка входного сигнала и импульсной характеристики. В этом отношении цифровые фильтры аналогичны обычным цепям, где выходной сигнал равен свертке входного сигнала и импульсной характеристики.

    Формула (4.1) представляет собой алгоритм цифровой фильтрации. Если импульсная характеристика фильтра описывается последовательностью с конечным числом членов, то фильтр может быть реализован в виде схемы, изображенной на рис. 4.3. Здесь буквой обозначены элементы задержки сигнала на время (на одну ячейку); -элементы, умножающие сигнал на соответствующий коэффициент.

    Схема, изображенная на рис. 4.3, не является электрической схемой цифрового фильтра; эта схема представляет собой графическое изображение алгоритма цифровой фильтрации и показывает последовательность арифметических операций, выполняемых при обработке сигнала.

    Рис. 4.3. Схема нерекурсивного цифрового фильтра

    Для цифровых фильтров, обрабатывающих сигналы в виде абстрактных числовых последовательностей, понятие «задержка на время » является не совсем корректным. Поэтому элементы, задерживающие сигнал на одну ячейку, на схемах цифровых фильтров обычно отмечают символом обозначающим задержку сигнала на языке -преобразований. В дальнейшем будем придерживаться этого обозначения.

    Вернемся к схеме цифрового фильтра, изображенной на рис. 4.3, Такие фильтры, где для расчета используются лишь значения входного сигнала, называют простыми или нерекурсивными.

    Алгоритм нерекурсивного фильтра легко записать, если известна импульсная характеристика фильтра. Для практической реализации алгоритма необходимо, чтобы импульсная характеристика содержала конечное число членов. Если импульсная характеристика содержит бесконечное число членов, но они быстро убывают по величине, то можно ограничиться конечным числом членов, отбросив те, значения которых малы. В случае, если элементы импульсной характеристики не убывают по величине, алгоритм нерекурсивного фильтра оказывается нереализуемым.

    Рис. 4.4. -цепь

    В качестве примера рассмотрим простейший цифровой фильтр, аналогичный -цепи (рис. 4.4). Импульсная характеристика -цепи имеет вид

    Чтобы записать импульсную характеристику соответствующего цифрового фильтра, в выражении следует заменить на Однако импульсная характеристика -цепи имеет размерность а импульсная характеристика цифрового фильтра должна быть безразмерной. Поэтому опустим множитель в выражении (4.2) и запишем импульсную характеристику цифрового фильтра в виде

    Такая импульсная характеристика содержит бесконечно много членов, но их величина убывает по экспоненциальному закону, и можно ограничиться членами, выбирая таким, чтобы

    Теперь можно записать выражение для сигнала на выходе фильтра

    Это выражение является одновременно алгоритмом цифрового фильтра. Схема этого фильтра представлена на рис. 4.5.

    Второй подход к анализу процессов в цифровых фильтрах аналогичен операторному методу анализа обычных аналоговых цепей, только вместо преобразования Лапласа используют -преобразование.

    Рис. 4.5. Схема нерекурсивного цифрового фильтра, аналогичного -цепи

    Определим параметр цифрового фильтра, аналогичный передаточной функции электрической цепи. Для этого применим -преобразование к импульсной характеристике цифрового фильтра:

    Функцию называют системной функцией фильтра.

    В соответствии с выражением (4.1) сигнал на выходе цифрового фильтра равен дискретной свертке входного сигнала и импульсной характеристики фильтра. Применяя к этому выражению теорему о -преобразовании свертки, получим, что -преобразование выходного сигнала равно -преобразованию входного сигнала, умноженному на системную функцию фильтра:

    Таким образом, системная функция играет роль передаточной функции цифрового фильтра.

    В качестве примера найдем системную функцию цифрового фильтра первого порядка, аналогичного -цепи:

    Третий метод анализа прохождения сигналов через цифровые фильтры аналогичен классическому методу дифференциальных уравнений. Рассмотрим этот метод на примере цепей порядка.

    Простейшей аналоговой цепью 1-го порядка является -цепь (см. рис. 4.4), прохождение сигналов через которую описывается дифференциальным уравнением

    Для дискретной цепи вместо дифференциального уравнения (4.8) должно быть записано разностное уравнение, где входной и выходной сигналы задаются для дискретных моментов времени а вместо производной должна фигурировать разность соседних значений сигнала . Для дискретной цепи 1-го порядка разностное уравнение может быть записано в достаточно общем виде

    Применим к уравнению -преобразование

    откуда найдем системную функцию фильтра

    Формула (4.10) является достаточно общим выражением для системной функции цифрового фильтра 1-го порядка. При она совпадает с полученным ранее выражением (4.7) для системной функции цифрового фильтра, эквивалентного -цепи.

    Найдем алгоритм цифровой фильтрации, соответствующий системной функции (4.10). Для этого решим уравнение (4.9) относительно

    Эквивалентная схема этого алгоритма приведена на рис. 4.6. По сравнению с нерекурсивным фильтром (см. рис. 4.5) здесь добавилась своеобразная «цепь обратной связи», которая означает, что значения выходного сигнала используются в последующих

    Рис. 4.6. Схема рекурсивного цифрового фильтра, аналогичного -цепи

    расчетах. Фильтры такого типа называют рекурсивными.

    Алгоритм (4.11) соответствует фильтру, который полностью эквивалентен рассмотренному ранее нерекурсивному фильтру. Но для определения одного значения выходного сигнала с помощью алгоритма нерекурсивного фильтра (4.4) требуется выполнить операций, а при использовании алгоритма рекурсивного фильтра (4.11) - только две операции. В этом состоит основное преимущество рекурсивных фильтров. Кроме того, рекурсивные фильтры позволяют производить обработку сигнала с более высокой точностью, так как они позволяют более правильно реализовать импульсную характеристику без отбрасывания ее «хвоста». Рекурсивные фильтры позволяют реализовать алгоритмы, вообще нереализуемые с помощью нерекурсивных фильтров. Например, при фильтр, работающий по схеме рис. 4.6, является, по существу, идеальным накопителем-интегратором и имеет импульсную характеристику вида Фильтр с такой характеристикой по нерекурсивной схеме не может быть реализован.

    Рассмотренные примеры показывают, что нет смысла применять нерекурсивные алгоритмы для создания цифровых фильтров с импульсной характеристикой большой протяженности. В этих случаях целесообразнее использовать рекурсивные фильтры.

    Область применения нерекурсивных алгоритмов - это реализация цифровых фильтров с импульсной характеристикой, содержащей небольшое число членов. Примером может служить простейший дифференциатор, сигнал на выходе которого равен приращению входного сигнала:

    Схема такого цифрового фильтра изображена на рис. 4.7.

    Рис. 4.7. Схема простейшего цифрового дифференциатора

    Рассмотрим теперь цифровой фильтр общего вида, который описывается уравнением

    Это уравнение можно рассматривать и как разностное уравнение порядка и как алгоритм цифровой фильтрации, если его переписать иначе, а именно

    Рис. 4.8. Схема рекурсивного цифрового фильтра порядка

    Алгоритму (4.13) соответствует схема, изображенная на рис. 4.8. Найдем системную функцию такого фильтра. Для этого применим к уравнению -преобразование:

    Выражение (4.14) позволяет установить связь между шачениями элементов схемы фильтра и системной функцией. Коэффициенты в числителе системной функции определяют значения коэффициентов при

    (в нерекурсивной части фильтра), а коэффициенты в знаменателе определяют рекурсивную часть фильтра.

    НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

    ФАКУЛЬТЕТ АВТОМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

    Кафедра Систем Сбора и Обработки Данных

    Дисциплина «Теория и обработка сигналов»

    ЛАБОРАТОРНАЯ РАБОТА № 10

    ЦИФРОВЫЕ ФИЛЬТРЫ

    С КОНЕЧНОЙ ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКОЙ

    Группа: АТ-33

    Вариант: 1 Преподаватель :

    Студент: Шадрина А.В. доц. Щетинин Ю.И.

    Цель работы: изучение методов анализа и синтеза фильтров с конечной импульсной характеристикой с использованием сглаживающих оконных функций.

    Выполнение работы:

    1. Графики импульсной характеристики КИХ-фильтра нижних частот с прямоугольным окном частотой среза для значений длины фильтра и .

    Импульсная характеристика идеального дискретного КИХ-фильтра имеет бесконечную длину и не равна нулю для отрицательных значений :

    .

    Для того чтобы получить физически осуществимый фильтр, следует ограничить импульсную характеристику конечным числом , а затем сдвинуть усеченную характеристику вправо на величину .

    Значение – это длина (размер) фильтра, – порядок фильтра.

    Matlab Script (labrab101.m)

    N = input("Введите длину фильтра N = ");

    h = sin(wc.*(n-(N-1)/2))./(pi.*(n-(N-1)/2));

    xlabel("Номер отсчёта, n")

    >> subplot(2,1,1)

    >> labrab101

    Введите длину фильтра N = 15

    >> title("Импульсная характеристика КИХ-фильтра для N=15")

    >> subplot(2,1,2)

    >> labrab101

    Введите длину фильтра N = 50

    >> title("Импульсная характеристика КИХ-фильтра для N=50")

    Рис.1. Графики импульсной характеристики КИХ-фильтра нижних частот с прямоугольным окном частотой среза для значений длины фильтра и

    Комментарий: Если рассматривать частотную характеристику цифрового фильтра как ряд Фурье: , то коэффициенты этого ряда будут представлять собой значения импульсной характеристики фильтра. В данном случае было проведено усечение ряда Фурье в первом случае до , а во втором – до , а затем усеченные характеристики были сдвинуты по оси отсчётов вправо на для получения каузального фильтра. При ширина главного лепестка составляет 2, а при - 1, т.е. при увеличении длины фильтра главный лепесток импульсной характеристики сужается. Если же рассматривать уровень боковых лепестков (с помощью ), то при увеличении он увеличился по абсолютной величине с до . Таким образом, можно сделать вывод, что при использовании аппроксимации идеальной АЧХ фильтра прямоугольным окном нельзя одновременно сузить главный лепесток (и тем самым уменьшить переходную область) и уменьшить уровни боковых лепестков (уменьшить пульсации в полосах пропускания и задерживания фильтра). Единственным управляемым параметром прямоугольного окна является его размер, с помощью которого можно влиять на ширину главного лепестка, однако же, на боковые лепестки он особого влияния не оказывает.

    2. Вычисление ДВПФ импульсных характеристик из п.1 с помощью функции . Графики их АЧХ в линейном масштабе и в децибелах для 512 отсчетов частоты. Полоса пропускания, переходная полоса и полоса задерживания фильтра. Влияние порядка фильтра на ширину переходной полосы и уровень пульсаций АЧХ в полосах пропускания и задерживания.

    Matlab Function (DTFT.m)

    function = DTFT(x,M)

    N = max (M, length(x));

    % Приведение FFT к размеру 2^m

    N = 2^ (ceil (log (N)/log (2)));

    % Вычисление fft

    % Вектор частот

    w = 2*pi*((0:(N-1))/N);

    w = w - 2*pi*(w>=pi);

    % Сдвиг FFT к интервалу от -pi до +pi

    X = fftshift(X);

    w = fftshift(w);

    Matlab Script (labrab102.m)

    h1 = sin(wc.*(n1-(N1-1)/2))./(pi.*(n1-(N1-1)/2));

    h2 = sin(wc.*(n2-(N2-1)/2))./(pi.*(n2-(N2-1)/2));

    DTFT(h1,512);

    DTFT(h2,512);

    plot(w./(2*pi),abs(H1)./max(abs(H1)),"r")

    xlabel("f, Гц"), ylabel("|H1|/max(|H1|)"), grid

    plot(w./(2*pi),abs(H2)./max(abs(H2)),"b")

    xlabel("f, Гц"), ylabel("|H2|/max(|H2|)"), grid

    plot(w./(2*pi),20*log10(abs(H1)),"r")

    title("АЧХ КИХ-фильтра нижних частот с прямоугольным окном для N = 15")

    xlabel("f, Гц"), ylabel("20lg(|H1|), dB"), grid

    plot(w./(2*pi),20*log10(abs(H2)),"b")

    title("АЧХ КИХ-фильтра нижних частот с прямоугольным окном для N = 50")

    xlabel("f, Гц"), ylabel("20lg(|H2|), dB"), grid

    Рис.2. Графики АЧХ КИХ-фильтра нижних частот с прямоугольным окном частотой среза для значений длины фильтра и в линейном масштабе

    Рис.3. Графики АЧХ КИХ-фильтра нижних частот с прямоугольным окном частотой среза для значений длины фильтра и в логарифмическом масштабе

    Комментарий:

    Таблица.1. Диапазон полосы пропускания, переходной области и полосы задерживания для значений длины фильтра и

    Длина фильтра

    Полоса пропускания, Гц

    Переходная область, Гц

    Полоса задерживания, Гц

    Фильтр с конечной импульсной характеристикой (Нерекурсивный фильтр , КИХ-фильтр ) или FIR-фильтр (FIR сокр. от finite impulse response - конечная импульсная характеристика) - один из видов линейных цифровых фильтров , характерной особенностью которого является ограниченность по времени его импульсной характеристики (с какого-то момента времени она становится точно равной нулю). Такой фильтр называют ещё нерекурсивным из-за отсутствия обратной связи . Знаменатель передаточной функции такого фильтра - некая константа.

    Динамические характеристики

    где - дельта-функция . Тогда импульсная характеристика КИХ-фильтра может быть записана как:

    #define N 100 // порядок фильтра float h[ N] = { #include “f1.h” }; //вставка файла с известными коэффициентами фильтра float x[ N] ; float y[ N] ; short my_FIR(short sample_data) { float result = 0 ; for ( int i = N - 2 ; i >= 0 ; i-- ) { x[ i + 1 ] = x[ i] ; y[ i + 1 ] = y[ i] ; } x[ 0 ] = (float ) sample_data; for (int k = 0 ; k < N; k++ ) { result = result + x[ k] * h[ k] ; } y[ 0 ] = result; return ((short ) result) ; }

    См. также

    Ссылки

    • Расчет КИХ фильтра с линейной фазочастотной характеристикой методом частотной выборки

    Wikimedia Foundation . 2010 .

    • Ромодин, Владимир Александрович
    • Вохма (река)

    Смотреть что такое "Фильтр с конечной импульсной характеристикой" в других словарях:

      Фильтр - получить на Академике действующий промокод BeTechno или выгодно фильтр купить со скидкой на распродаже в BeTechno

      фильтр с конечной импульсной характеристикой - — Тематики электросвязь, основные понятия EN finite impulse response (filter)FIR … Справочник технического переводчика

      Фильтр с бесконечной импульсной характеристикой - (Рекурсивный фильтр, БИХ фильтр) или IIR фильтр (IIR сокр. от infinite impulse response бесконечная импульсная характеристика) линейный электронный фильтр, использующий один или более своих выходов в качестве входа, то есть… … Википедия

      КИХ-фильтр

      Нерекурсивный фильтр - Фильтр с конечной импульсной характеристикой (нерекурсивный фильтр, КИХ фильтр, FIR фильтр) один из видов линейных электронных фильтров, характерной особенностью которого является ограниченность по времени его импульсной характеристики (с какого … Википедия

      Рекурсивный фильтр - Фильтр с бесконечной импульсной характеристикой (Рекурсивный фильтр, БИХ фильтр) линейный электронный фильтр, использующий один или более своих выходов в качестве входа, то есть образует обратную связь. Основным свойством таких фильтров является … Википедия

      Цифровой фильтр - Цифровой фильтр в электронике любой фильтр, обрабатывающий цифровой сигнал с целью выделения и/или подавления определённых частот этого сигнала. В отличие от цифрового, аналоговый фильтр имеет дело с аналоговым сигналом, его свойства… … Википедия

      Дискретный фильтр - Цифровой фильтр в электронике любой фильтр, обрабатывающий цифровой сигнал с целью выделения и/или подавления определённых частот этого сигнала. В отличие от цифрового аналоговый фильтр имеет дело с аналоговым сигналом, его свойства недискретны,… … Википедия

      Линейный фильтр - Линейный фильтр динамическая система, применяющая некий линейный оператор ко входному сигналу для выделения или подавления определённых частот сигнала и других функций по обработке входного сигнала. Линейные фильтры широко применяются в… … Википедия

      Скользящая средняя (фильтр) - У этого термина существуют и другие значения, см. Скользящая средняя (значения). Блок схема простого КИХ фильтра второго порядка, реализующего скользящее среднее Скользящая средняя, скользящее среднее разновидность цифрового фильтра с… … Википедия

      Скользящая средняя (значения) - Скользящая средняя, скользящее среднее (англ. moving average): Скользящая средняя семейство функций, значение которых в каждой точке определения равно среднему значению исходной функции за предыдущий период. Скользящая средняя… … Википедия