• Как правильно заряжать аккумуляторы Li-ion: советы. Типы современных литиевых аккумуляторных батарей

    Литий-ионные аккумуляторы не столь «привередливы», как их никель-металл-гидридные собратья, но все равно требуют определенного ухода. Придерживаясь пяти простых правил , можно не только продлить жизненный цикл литий-ионных аккумуляторных батарей, но и повысить время работы мобильных устройств без подзарядки.

    Не допускайте полного разряда. У литий-ионных аккумуляторов отсутствует так называемый эффект памяти, поэтому их можно и, более того, нужно заряжать, не дожидаясь разрядки до нуля. Многие производители рассчитывают срок жизни литий-ионного аккумулятора количеством циклов полного разряда (до 0%). Для качественных аккумуляторов это 400-600 циклов . Чтобы увеличить срок службы вашего литий-ионного аккумулятора, чаще заряжаете свой телефон. Оптимально, как только показатель заряда батареи опустится ниже отметки 10-20 процентов, можете ставить телефон на зарядку. Это увеличит количество циклов разряда до 1000-1100 .
    Данный процесс специалисты описывают таким показателем как Глубина Разряда (Depth Of Discharge). Если ваш телефон разряжен до 20%, то Глубина Разряда составляет 80%. В нижеприведенной таблице показана зависимость количества циклов разряда литий-ионного аккумулятора от Глубины Разряда:

    Разряжайте раз в 3 месяца. Полный заряд на протяжении длительного времени также же вреден для литий-ионных аккумуляторов, как и постоянная разрядка до нуля.
    Из-за крайне нестабильного процесса заряда (мы часто заряжаем телефон как придется, и где получится, от USB, от розетки, от внешнего аккумулятора и тд.) специалисты рекомендуют раз в 3 месяца полностью разряжать аккумулятор и после этот заряжать до 100% и подержать на зарядке 8-12 часов. Это помогает сбросить так называемый верхний и нижний флаги заряда аккумулятора. Более подробно об этом можно прочитать .

    Храните частично заряженными . Оптимальным состоянием для длительного хранения литий-ионного аккумулятора является уровень заряда от 30 до 50 процентов при температуре 15°C. Если же оставить батарею полностью заряженной, со временем ее емкость существенно снизится. А вот аккумулятор, который долгое время пылился на полке разряженным до нуля, скорее всего, уже не жилец – пора отправлять его на утилизацию.
    В нижеприведенной таблице показано сколько остается емкости в литий-ионном аккумуляторе в зависимости от температуры хранения и уровня заряда при хранении в течение 1 года.

    Используйте оригинальное зарядное устройство. Мало кто знает, что зарядное устройство в большинстве случаев встроено непосредственно внутрь мобильных устройств, а внешний сетевой адаптер лишь понижает напряжение и выпрямляет ток бытовой электросети, то есть напрямую на батарею не воздействует. Некоторые гаджеты, например цифровые фотокамеры, лишены встроенного зарядного устройства, и поэтому их литий-ионные аккумуляторы вставляют во внешний «зарядник». Вот тут-то использование внешнего зарядного устройства сомнительного качества вместо оригинального может негативно сказаться на работоспособности батареи.

    Не допускайте перегрева. Ну а злейшим врагом литий-ионных аккумуляторов является высокая температура – перегрева они напрочь не переносят. Поэтому не допускайте попадания на мобильные устройства прямых солнечных лучей, а также не оставляйте их в непосредственной близости от источников тепла, например электрообогревателей. Максимально допустимые температуры, при которых возможно использование литий-ионных аккумуляторов: от –40°C до +50°C

    Также, вы можете посмотреть

    Который широко распространён в современной бытовой электронной технике и находит свое применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны , ноутбуки , электромобили , цифровые фотоаппараты и видеокамеры . Первый литий-ионный аккумулятор выпустила корпорация Sony в 1991 году .

    Характеристики

    В зависимости от электро-химической схемы литий-ионные аккумуляторы показывают следующие характеристики:

    • Напряжение единичного элемента 3,6 В.
    • Максимальное напряжение 4,2 В, минимальное 2,5–3,0 В. Устройства заряда поддерживают напряжение в диапазоне 4,05–4,2 В
    • Энергетическая плотность : 110 … 230 Вт*ч/кг
    • Внутреннее сопротивление : 5 … 15 мОм/1Ач
    • Число циклов заряд/разряд до потери 20 % ёмкости: 1000-5000
    • Время быстрого заряда: 15 мин - 1 час
    • Саморазряд при комнатной температуре: 3 % в месяц
    • Ток нагрузки относительно ёмкости (С):
      • постоянный - до 65С, импульсный - до 500С
      • наиболее приемлемый: до 1С
    • Диапазон рабочих температур: −0 ... +60 °C(при отрицательных температурах заряжание батарей невозможен)

    Устройство

    Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделенных пропитанными электролитом пористыми сепараторами. Пакет электродов помещен в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъемникам. Корпус имеет предохранительный клапан, сбрасывающий внутреннее давление при аварийных ситуациях и нарушении условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком тока в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решетку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC6, окислы (LiMO 2) и соли (LiM R O N) металлов. Первоначально в качестве отрицательных пластин применялся металлический литий, затем - каменноугольный кокс. В дальнейшем стал применяться графит. В качестве положительных пластин до недавнего времени применяли оксиды лития с кобальтом или марганцем, но они все больше вытесняются литий-ферро-фосфатными, которые оказались безопасны, дешевы и нетоксичны и могут быть подвержены утилизации, безопасной для окружающей среды. Литий-ионные аккумуляторы применяются в комплекте с системой контроля и управления - СКУ или BMS (battery management system) и специальным устройством заряда/разряда. В настоящее время в массовом производстве литий-ионных аккумуляторов используются три класса катодных материалов: - кобальтат лития LiCoO 2 и твердые растворы на основе изоструктурного ему никелата лития - литий-марганцевая шпинель LiMn 2 O 4 - литий-феррофосфат LiFePO 4 . Электро-химические схемы литий-ионных аккумуляторов: литий-кобальтовые LiCoO2 + 6xC → Li1-xCoO2 + xLi+C6 литий-ферро-фосфатные LiFePO4 + 6xC → Li1-xFePO4 + xLi+C6

    Благодаря низкому саморазряду и большому количеству циклов заряда-разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом помимо системы BMS (СКУ) они укомплектовываются инверторами (преобразователи напряжения).

    Преимущества

    • Высокая энергетическая плотность.
    • Низкий саморазряд.
    • Отсутствие эффекта памяти .
    • Не требуют обслуживания.

    Недостатки

    Аккумуляторы Li-ion первого поколения были подвержены взрывному эффекту. Это объяснялось тем, что в них использовался анод из металлического лития, на котором в процессе многократных циклов зарядки/разрядки возникали пространственные образования (дендриты), приводящие к замыканию электродов и, как следствие, возгоранию или взрыву. Эту проблему удалось окончательно решить заменой материала анода на графит. Подобные процессы происходили и на катодах литий-ионных аккумуляторов на основе оксида кобальта при нарушении условий эксплуатации (перезарядке). Литий-ферро-фосфатные аккумуляторы полностью лишены этих недостатков. Кроме того, все современные литий-ионные аккумуляторы снабжаются встроенной электронной схемой, которая предотвращает перезаряд и перегрев вследствие слишком интенсивного заряда.

    Аккумуляторы Li-ion при неконтролируемом разряде могут иметь более короткий жизненный цикл в сравнении с другими типами аккумуляторов. При полном разряде литий-ионные аккумуляторы теряют возможность заряжаться при подключении зарядного напряжения. Эта проблема решаема путем приложения импульса более высокого напряжения, но это отрицательно сказывается на дальнейших характеристиках литий-ионных аккумуляторов. Максимальный срок «жизни» Li-ion аккумулятора достигается при ограничении заряда сверху на уровне 95 % и разряда 15–20 %. Такой режим эксплуатации поддерживается системой контроля и управления BMS (СКУ), которая входит в комплект любого литий-ионного аккумулятора.

    Оптимальные условия хранения Li-ion-аккумуляторов достигаются при заряде на уровне 40–70 % от ёмкости аккумулятора и температуре около 5 °C. При этом низкая температура является более важным фактором для малых потерь ёмкости при долговременном хранении. Средний срок хранения (службы) литий-ионного АКБ составляет в среднем 36 месяцев, хотя может колебаться в интервале от 24 до 60 месяцев.

    Потеря ёмкости при хранении :

    температура с 40 % зарядом со 100 % зарядом
    0 ⁰C 2 % за год 6 % за год
    25 ⁰C 4 % за год 20 % за год
    40 ⁰C 15 % за год 35 % за год
    60 ⁰C 25 % за год 40 % за три месяца

    Согласно всем действующим регламентам хранения и эксплуатации литий-ионных аккумуляторов, для обеспечения длительного хранения необходимо подзаряжать их до уровня 70 % ёмкости 1 раз в 6–9 месяцев.

    См. также

    Примечания

    Литература

    • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
    • Юрий Филипповский Мобильное питание. Часть 2. (RU). КомпьютерраLab (26 мая 2009). - Подробная статья о Li-ion аккумуляторах.. Проверено 26 мая 2009.

    Ссылки

    • ГОСТ 15596-82 Термины и определения.
    • ГОСТ 61960-2007 Аккумуляторы и аккумуляторные батареи литиевые
    • Литий-ионные и литий-полимерные аккумуляторы. iXBT (2001 г.)
    • Литий-ионные аккумуляторные батареи отечественного производства

    Литий-ионные (Li-ion) аккумуляторы, использующиеся в большинстве современных планшетов, смартфонов и ноутбуков, требуют разных правил обслуживания и эксплуатации по сравнению с никель-кадмиевыми (Ni-Cd) и никель-металлгидридными (Ni-MH) аккумуляторами, используемыми в более ранних устройствах.

    На самом деле, правильный уход за литий-ионным аккумулятором может в 15 раз увеличить срок его службы по сравнению со случаями неправильного использования. В данной статье приведем советы, как максимально продлить жизненный цикл дорогостоящих литий-ионных батарей во всех ваших портативных устройствах.

    Совсем недавно журналисту интернет-портала Windows Secrets Фреду Ланге (Fred Langa) пришлось заменить поврежденный смартфон - и это была его ошибка.

    Основной симптом не предвещал ничего хорошего - чехол телефона был деформирован, потому что сам корпус устройства стал сгибаться.

    При разборе и детальном рассмотрении выяснилось, что аккумулятор смартфона вздулся.

    Изначально Фред не заметил никаких изменений: батарея выглядела более или менее нормально, если смотреть на нее лицом (рисунок 1). Однако, когда аккумулятор положили на плоскую поверхность стало очевидно, что верхняя и нижняя его грани уже не были плоскими и параллельными друг другу. На одной из сторон батареи образовалась серьезная выпуклость (рисунок 2). Эта выпуклость привела к тому, что телефон стал сгибаться и деформироваться.


    Выпуклость аккумулятора свидетельствовала о серьезной проблеме: накопление токсичных газов под высоким давлением внутри батареи.

    Корпус батареи прекрасно сделал свою работу, но из-за токсичных газов аккумулятор представлял собой крошечную бомбу-скороварку, которая только и ждет детонации.

    В случае Фреда оказались повреждены и телефон, и аккумулятор - настало время для покупки нового смартфона.

    Самое печальное, что данную проблему можно было легко предотвратить. В заключительной части статьи будут приведены ошибки Фреда.

    Чтобы избежать повторения ошибок прошлого с новым смарфтоном и другими литий-ионными устройствами, такими как планшеты, ноутбуки, Фред начал серьезно исследовать вопросы правильной эксплуатации и обслуживания литий-ионных аккумуляторов.

    Фреда не интересовали вопросы продления работы от одного заряда аккумулятора - эти техники хорошо знакомы. Большинство устройств предлагают ручные или автоматические режимы энергосбережения и методы настройки яркости экрана, замедления производительности процессора и уменьшения количества запущенных приложений.

    Фред скорее сосредоточился на вопросах продления срока службы аккумуляторов - способов сохранить батарею в нормальном работоспособном состоянии и расширения ресурса батареи до максимального уровня.

    Данная статья включает краткие тезисные выводы на основе исследования Фреда. Следуйте пяти предлагаемым советам и тогда ваши литий-ионные аккумуляторы будут работать полноценно, долго и безопасно во всех ваших портативных устройствах.

    Совет 1: Следите за температурой и не перегревайте аккумулятор

    Удивительно, но теплота является одним из главных врагов литий-ионных аккумуляторов. Причинами, вызывающими перегревания аккумулятора, могут быть факторы неправильного использования, например, скорость и продолжительность циклов зарядки и разрядки батареи.

    Внешнее физическое окружение также имеет значение. Просто оставив устройство с литий-ионнным аккумулятором на солнце или в закрытом автомобиле, Вы можете существенно снизить способность батареи принимать и удерживать заряд.

    Идеальными температурными условиями для литий-ионных аккумуляторов является комнатная температура в 20 градусов Цельсия. Если устройство нагревается до 30С, его способность нести заряд снижается на 20 процентов. Если устройство используется при 45С, что легко достижимо на солнце или при интенсивном использовании устройства ресурсоемкими приложениями емкость батареи снижается примерно на половину.

    Таким образом, если ваше устройство или аккумулятор становятся заметно теплыми при использовании, постарайтесь перейти в более прохладное место. Если такой возможности нет, попытайтесь уменьшить количество энергии, потребляемое устройством за счет отключения ненужных приложений, служб и функций, снижения яркости экрана или активации режима энергосбережения устройства.

    Если это все равно не помогает, полностью отключите устройство до тех пор, пока температура не вернется в нормальное состояние. Для еще более быстрого охлаждения извлеките батарею (конечно, если это позволяет конструкция устройства) - так устройство остынет быстрее благодаря физическому разделению с источником питания.

    Кстати, несмотря на то, что высокие температуры - это главная проблема с литий-ионными батареями, низкотемпературные режимы эксплуатации не вызывают серьезных беспокойств. Низкие температуры не причиняют долгосрочный ущерб батареи, хотя холодный аккумулятор не сможет выдать всю мощность, который он может потенциально выдать в оптимальном температурном режиме. Падение мощности становится очень заметным при температурах ниже 4С. Большинство литий-ионных аккумуляторов потребительского класса по существу становятся бесполезными при температурах около или ниже точки замерзания.

    Если устройство с литий-ионным источником питания становится чрезмерно охлажденным по какой-либо причине, не пытайтесь его использовать. Оставьте его отключенным и перенесите в теплое место (карман или отапливаемое помещение) пока устройство не примет нормальную температуру. Также, как и в случае с перегревом, физически удалите батарею, и раздельное нагревание позволит ускорить процесс прогрева. После того, как батарея прогревается до нормальной температуры, ее электролитические свойства восстановятся.

    Совет 2: Отключайте зарядное устройство, чтобы сохранить батарею

    Перезарядка - т.е. слишком длительное подключение аккумулятора к источнику тока высокого напряжения может также снизить способность батареи удерживать заряд, сократить срок ее службы или что называется “убить наповал”.

    Большинство литий-ионных аккумуляторов потребительского класса предназначены для работы на уровне напряжения в 3,6В на ячейку, но во время зарядки работают при повышенных 4,2В. Если зарядное устройство слишком длительное время выдает повышенное напряжение, внутренняя батарея может повредиться.

    В тяжелых случаях, перезарядка может привести к тому, что инженеры называют “катастрофическими” последствиями. Даже в умеренных случаях, избыток тепла, выделяемый при перезарядке создаст негативный температурный эффект, описанный в первом совете.

    Высококачественные зарядные устройства могут согласованно работать со схемой современных литий-ионных аккумуляторов, снижая опасность перезарядка, уменьшая зарядный ток пропорционально заряду батареи.

    Эти свойства значительно отличаются в зависимости от вида технологии, используемой в батареи. Например, при применении никель-кадмиевых (Ni-Cd) и никель-металлгидридных (Ni-MH) аккумуляторов старайтесь оставлять их подключенными к зарядному устройству как можно дольше. Это связано с тем, что старые типы батарей имеют высокий уровень саморазряда, т.е. они начинают терять существенное количество запасенной энергии сразу же после отключения от зарядного устройства, даже если само портативное устройство отключено.

    На самом деле, никель-кадмиевая батарея может потерять до 10 процентов заряда в первые 24 часа после зарядки. После этого периода времени, кривая саморазряда начинает выравниваться, но никель-кадмиевый аккумулятор продолжает терять по 10-20 процентов в месяц.

    Ситуация с никель-металлгидридными батареями еще хуже. Их скорость саморазряда на 30 процентов больше, чем у никель-кадмиевых коллег.

    Тем не менее, литий-ионные батареи имеют очень низкий уровень саморазряда. Хорошая работоспособная батарея потеряет лишь 5 процентов своего заряда в первые 24 часа после зарядки и еще 2 процента в течение первого месяца после этого.

    Таким образом, нет никакой необходимости оставлять устройство с литий-ионным аккумулятором, подключенным к зарядному устройству до последнего момента. Для получения наилучших результатов и продления срока службы батареи, отключите зарядное устройство, когда будет показан полный заряд.

    Новые устройства на литий-ионных батареях не нужно продолжительно заряжать перед первым использованием (в устройствах с никель-кадмиевыми и никель-металлгидридными батареями рекомендуется зарядка от 8 до 24 часов). Литий-ионные батарей максимально заряжены, когда они показывают 100-процентный заряд. В расширенной зарядке нет необходимости.

    Не все циклы разряда одинаково влияют на состояние батареи. Длительное и интенсивное использование выделяет больше тепла, серьезно нагружая аккумулятор, а меньшие по продолжительности, более частые циклы разряда наоборот продлевают ресурс батареи.

    Вы можете подумать, что повышенное циклов небольших разряда/заряда может серьезно снизить срок службы источника питания. Это было закономерно лишь для устаревших технологий, но не относится к современным литий-ионным аккумуляторам.

    Спецификации аккумулятора могут вводить в заблуждение, т.к. многие производители рассматривают цикл заряда как время необходимое для достижения 100-процентного уровня заряда. Например, две зарядки с 50 до 100 процентов эквивалентны одному полному циклу заряда. Аналогичным образом, три цикла по 33 процента или 5 циклов по 20 процентов также эквивалентны одному полному циклу.

    Короче говоря, большое количество мелких циклов заряда-разряда не снижает общий объем циклов полной зарядки литиевой батареи.

    Опять же, теплота и высокая нагрузка от тяжелых разрядов снижают ресурс батареи. Таким образом, пытайтесь снизить число глубоких разрядов к минимуму. Не допускайте снижения уровня заряда аккумуляторов до значений, близких к нулю (когда устройство само отключается). Вместо этого рассматривайте нижние 15-20 процентов заряда аккумулятора как экстренный резерв - только для крайних случаев. Привыкайте к замене аккумулятора, если есть такая возможность или к подключению устройства к внешнему источнику питания перед тем, как батарея будет полностью разряжена.

    Как Вы знаете, быстрая разрядка и быстрая зарядка сопровождаются выделением избыточной теплоты и негативно сказываются на ресурсе батареи.

    Если Вы интенсивно использовали устройство на повышенных нагрузках, дайте батареи остынуть до комнатной температуры перед подключением к зарядному устройству. Аккумулятор не сможет принять полный заряд будучи нагретым.

    Во время зарядки устройства следите за температурой батареи - она не должна сильно перегреваться. Горячая батарея во время заряда обычно свидетельствует о быстром протекании слишком большого тока.

    Перезарядка больше всего вероятна с дешевыми небрендированными зарядными устройствами, использующими схемы быстрой зарядки или с беспроводными (индуктивными) зарядными устройствами.

    Дешевое зарядное устройство может быть обычным трансформатором с подключенными к нему проводами. Подобные “немые зарядки” просто распределяют ток и практически не принимают обратную связь от заряжаемого устройства. Перегрев и перенапряжение очень распространены при использовании подобных зарядных устройств, что медленно разрушает батарею.

    “Быстрые” зарядки предназначены для обеспечения минутной порции заряда, а не длительной часовой зарядки. Существуют различные подходы к технологии быстрого заряда, и не все из них совместимы с литий-ионными батареями. Если зарядное устройство и батарея не предназначены для совместной работы, быстрый заряд может вызывать перенапряжение и перегрев. Вообще говоря, лучше не использовать зарядное устройство одного бренда для зарядки портативного девайса другого бренда.

    Беспроводные (индуктивные) зарядные устройства используют специальную поверхность зарядки для восстановления заряда аккумулятора. На первый взгляд это очень удобно, но дело в том, что подобные зарядки выделяют избыточную теплоту даже в нормальном режиме работы (Некоторые кухонные плиты использую явление индукции для нагрева кастрюль и сковородок).

    Литиевые батареи не только испытывают негативный фактор в виде теплоты, но и тратят энергию во время зарядки по беспроводной технологии. По своей природе, эффективность индуктивного зарядного устройства всегда ниже обычного аналога. Тут каждый волен делать выбор самостоятельно, но для Фреда повышенный нагрев и меньшая эффективность являются достаточными факторами для отказа от подобных устройств.

    В любом случае, самый безопасный подход предполагает использование рекомендованного производителем зарядного устройства из комплекта поставки. Это единственный гарантированный способ держать температуру и напряжение в пределах нормы.

    Если нет возможности использовать OEM зарядное устройство, применяйте устройство с низким выходным током, чтобы снизить вероятность повреждения аккумулятора из-за быстрого поступления большой мощности.

    Одним из источников питания с низким выходным током является USB-порт на обычном компьютере. Стандартный порт USB 2.0 обеспечивает силу тока 500мА (0,5А) на один порт, а USB 3.0 выдает соответственно 900мА (0,9А) на один порт. Для сравнения, некоторые специальные зарядные устройства могут выдавать 3000-4000мА (3-4А). Низкие силы тока USB портов в общем случае гарантируют безопасную зарядку с нормальным температурным режимом для большинства современных литий-ионных аккумуляторов.

    Совет 5: Если есть возможность, используйте запасной аккумулятор

    Если ваше устройство позволяет быстро заменять батарею, наличие запасного аккумулятора является отличной страховкой. Это не только в 2 раза увеличивает время работы устройства, но также избавляет от необходимости полного разряда аккумулятора или использования быстрого заряда. Когда заряд аккумулятора достигнет отметки в 15-20 процентов, просто поменяйте разряженную батарею на запасную, и Вы мгновенно получите полный заряд устройства без каких-либо проблем с перегревом.

    Запасной аккумулятор имеет и другие преимущества. Например, если Вы окажетесь в ситуации, когда установленная батарея перегрелась (например, из-за интенсивной работы устройства или из-за высокой температуры окружающей среды), Вы можете поменять горячую батарею, чтобы быстрее ее охладить, а при этом продолжать использовать устройство.

    Наличие двух батареи избавляет от необходимости использовать быстрый заряд - Вы можете спокойно использовать устройство, когда аккумулятор неспешно заряжается от безопасного источника питания.

    Фатальные ошибки Фреда

    Фред предположил, что он мог повредить батарею смартфона во время дорожного путешествия. Он использовал функцию GPS в устройстве для навигации во время ясного солнечного дня. Смартфон длительное время находился на солнце в держателе в районе приборной панели автомобиля, яркость смартфона была включена на максимум, чтобы различать карту среди ярких солнечных лучей.

    Кроме того, все стандартные фоновые приложение - электронная почта, мессенджер и т.д. были запущены. Устройство использовало модуль 4G для скачивания музыкальных треков и беспроводной модуль Bluetoorth для передачи звука в головное звуковое устройство автомобиля. Определенно, телефон работал в стрессовом режиме.

    Чтобы телефон получал питание он был подключен к адаптеру 12В, купленного по критериям невысокой цены и наличия правильного разъема.

    Сочетание прямых солнечных лучей, высокой нагрузки процессора, включенного на максимальной яркости экрана и сомнительного качества адаптера, привело к чрезмерному перегреву смартфона. Фред с ужасом вспоминает насколько горячим было устройство при вытаскивании из держателя. Этот тяжелый перегрев как раз и стал катализатором смерти батареи.

    По всей видимости, проблема усугублялась по ночам, когда Фред оставлял устройство подключенным к сети на всю ночь с помощью стороннего зарядного устройства, при этом не контролируя момент полного заряда аккумулятора.

    Со своим новым смартфоном Фред будет использовать только комплексное зарядное устройство и запасной аккумулятор. Фред надеется на длительный и безопасный период эксплуатации как батареи, так и телефона, которые он собирается достичь с помощью перечисленных советов.

    Нашли опечатку? Нажмите Ctrl + Enter

    Потребительский рынок литий-ионных (Li-ion) аккумуляторов огромен – около $10 млрд, при этом он довольно устойчив, темп роста составляет всего 2% в год. А как же электромобили, спросите вы? Действительно, в ближайшие годы, в связи развитием электромобилей, прогнозируется темп ежегодного роста литий-ионных аккумуляторов в 10%. На удивление, самой большой областью роста рынка Li-ion батарей по-прежнему остается «все остальное», начиная от мобильных телефонов и заканчивая вилочными погрузчиками.

    «Другие» приложения для литий-ионных аккумуляторов, как правило, имеют одну общую черту – это устройства, которые получают питание от запечатанных свинцово-кислотных батарей (англ. sealed lead acid (SLA)). За последние почти 200 лет свинцово-кислотные батареи заняли лидирующую позицию на рынке электроники, но они вот уже несколько лет вытесняются с рынка литий-ионными аккумуляторами. Поскольку во многих случаях литий-ионные батареи стали заменять свинцово-кислотные батареи (аккумуляторы), стоит сравнить эти два вида накопителей энергии, подчеркнув основные технические особенности и экономическую целесообразность применения Li-ion вместо традиционных SLA устройств.

    История применения аккумуляторных батарей

    Свинцово-кислотная батарея – первая перезаряжаемая батарея, разработанная для коммерческого использования в 1850-х годах. Несмотря на довольно приличный возраст в более чем 150 лет, они по-прежнему активно применяются в современных устройствах. Более того, они активно применяются в приложениях, где, казалось бы, вполне возможно обойтись современными технологиями. Некоторые распространенные устройства вполне активно применяют СКБ, такие как источники бесперебойного питания (ИБП), гольфкары или вилочные погрузчики. Удивительно, но рынок свинцово-кислотных аккумуляторов по-прежнему растет для определенных ниш и проектов.

    Первое, довольно ощутимое нововведение в свинцово-кислотную технологию пришло в 1970-е годы, когда были изобретены герметичные СКБ или необслуживаемые СКБ. Данная модернизация состояла в появлении специальных клапанов для стравливания газов при зарядке/разрядке аккумуляторов. Кроме того, применение увлажнённого сепаратора сделало возможным эксплуатировать аккумулятор в наклонном положении без протеканий электролита.

    СКБ, или англ. SLA, часто классифицируют по типу или применению. В настоящее время наиболее распространенными являются два типа: гель, известный также как свинцово-кислотная батарея с регулируемым клапаном (valve-regulated lead acid (VRLA)) и абсорбирующий стеклянный мат (absorbent glass mat AGM). Аккумуляторы AGM используются для небольших ИБП, аварийного освещения и инвалидных колясок, в то время как VRLA предназначается для приложений более крупного формата, таких как резервное питание для сотовых ретрансляционных мачт, интернет-центров и вилочных погрузчиков. Свинцово-кислотные аккумуляторы также можно классифицировать по следующим признакам: автомобильные (стартер или SLI — запуск, освещение, зажигание); тяговые (тяга или глубокий цикл); стационарные (источники бесперебойного питания). Основным недостатком SLA во всех этих приложениях является жизненный цикл — если они многократно разряжаются, они сильно повреждаются.

    Удивительно, но свинцово-кислотные аккумуляторы были бесспорными лидерами рынка аккумуляторных батарей в течении многих десятилетий, вплоть до появления литий-ионных батарей в 1980-х годах. Литий-ионная батарея представляет собой перезаряжаемую ячейку, в которой ионы лития движутся от отрицательного электрода к положительному во время разряда, и наоборот во время заряда. Литий-ионные аккумуляторы используют интеркалированные литиевые соединения, но не содержат металлического лития, который используется в одноразовых батареях.

    Литий-ионный аккумулятор впервые был изобретен в 1970-х годах. В 1980-х на рынок была выпущена первая коммерческая версия батареи с катодом на основе оксида кобальта. Данный тип устройств имел значительно большие возможности по весу и емкости, по сравнению с системами на никелевой основе. Новые литий-ионные аккумуляторы способствовали огромному росту рынка мобильных телефонов и ноутбуков. Первоначально, из-за соображений безопасности, вводились более безопасные варианты, которые включали добавки на основе никеля и марганца в кобальт-оксидный материал катода, в дополнение к инновациям в строительстве клеток.

    Первые литий-ионные элементы, представленные на рынке, были в жестких алюминиевых или стальных банках, и, как правило, имели только несколько форм-факторов цилиндрической или призматической (форма кирпича) формы. Однако, с расширением спектра применения литий-ионной технологии начали изменяться и их габаритные размеры.

    Например, менее дорогие версии более старой технологии применяются в ноутбуках и сотовых телефонах. Современные тонкие литий-полимерные элементы используются в смартфонах, планшетах и носимых устройствах. В настоящее время литий-ионные аккумуляторы используются в электроинструментах, электрических велосипедах и других устройствах. Такая вариация предвещает полную замену свинцово-кислотных устройств во все новых и новых приложениях, направленных на улучшение габаритных и силовых показателей.

    Химические особенности

    Фундаментальные основы химических процессов в ячейках придают свинцово-кислотным и литий-ионным устройствам определенные свойства и различные степени функциональных возможностей. Ниже приведены некоторые преимущества свинцово-кислотных аккумуляторов, которые сделали его основным в течении десятилетий и недостатки, которые теперь приводят к его замене, а также подобные аспекты для литий-ионных устройств.

    Свинцово-кислотная батарея

    • СКБ проста, надежна и недорога. Ее можно использовать в широком диапазоне температур.
    • Батареи должны хранится в постоянно заряженном состоянии (SoC) и они не поддаются быстрой зарядке.
    • СКБ имеют большой вес. Их гравиметрическая плотность энергии очень мала.
    • Жизненный цикл обычно составляет от 200 до 300 разрядов/зарядов, что очень мало.
    • Кривая заряда/разряда позволяет измерять SOC с простым контролем напряжения.

    Литий-ионная батарея

    • Имеют максимальную плотность энергии по размеру и весу.
    • Жизненный цикл обычно составляет от 300 до 500, но может измеряться и тысячами для литий-фосфатных ячеек;
    • Очень мал диапазон рабочих температур;
    • Доступны различные размеры ячеек, формы и другие возможности;
    • Нет необходимости в техническом обслуживании. Уровень саморазряда очень мал.
    • Требуется реализация схем по безопасности эксплуатации. Сложный алгоритм зарядки.
    • Измерения SoC требует непростых решений из-за нелинейности кривой напряжения.

    Электроника

    Важно понимать различие между батарейным блоком и аккумулятором. Ячейка – основной составной элемент пакета. Помимо этого, в пакет еще входит электроника, разъемы и корпус. На рисунке выше показаны примеры данных устройств. Литий-ионная аккумуляторная батарея должна иметь, как минимум, реализованные схемы защиты и управления ячейкой, а зарядное устройство и система измерения напряжения гораздо сложнее, чем в свинцово-кислотных устройствах.

    При использовании литий-ионных и свинцово-кислотных аккумуляторов, основные отличия в электронике будут заключаться в следующем:

    Зарядка

    Зарядка свинцово-кислотного аккумулятора довольно проста при соблюдении определенных порогов напряжений. В литий-ионных батареях используют более сложный алгоритм, за исключением пакетов на основе фосфата железа. Стандартный метод заряда для таких устройств – метод постоянного тока / постоянного напряжения (CC / CV). Он включает в себя двухэтапный процесс зарядки. На первом этапе происходит заряд с постоянным током. Длится это до тех пор, пока напряжение на ячейке не достигнет определенного порога, после чего напряжение остается постоянным, а ток снижается по экспоненциальному закону, пока не достигнет значения отсечки.

    Подсчет заряда и связь

    Как упоминалось ранее, заряд СКБ можно измерять простыми средствами измерения напряжения. При использовании литий-ионных аккумуляторов необходим контроль уровня заряда ячеек, для чего необходима реализация сложных алгоритмов и циклов обучения.

    I 2 C является наиболее распространенным и экономичным протоколом связи, используемым в литий-ионных аккумуляторах, но он имеет ограничения в отношении помехоустойчивости, целостности сигнала на расстоянии и общей полосы пропускания. SMBus (шина управления системой), производная от I 2 C, очень распространена в батареях меньшего размера, но в настоящее время не имеет какой-либо эффективной поддержки для мощных или более крупных пакетов. CAN прекрасно подходит для сред с высоким уровнем шума или там, где требуются длительные прогоны, например во многих СКБ-приложениях, но это стоит довольно дорого.

    Прямые замены

    Следует подчеркнуть, что ныне существует несколько стандартных форматов свинцово-кислотных батарей. Например - U1, стандартный форм-фактор, используемый в приложениях резервного питания медицинского оборудования. Литий-железо-фосфатный аккумулятор оказался вполне достойной заменой свинцово-кислотным. Фосфат железа обладает замечательным жизненным циклом, хорошей проводимостью зарядов, улучшенной безопасностью и низким импедансом. Напряжения литий-железо-фосфатных аккумуляторов также хорошо согласуются с напряжениями свинцово-кислотных (12 В и 24 В), что позволяет использовать одни и те же зарядные устройства. Программные пакеты для обслуживания и контроля батарей включают в себя интеллектуальные функции, такие как отслеживание заряда, счетчик циклов заряда/разряда и другие.

    Литий-железо-фосфатные батареи сохраняют 100% емкости при хранении, в отличие от СКБ батарей, которые теряют емкость в течение нескольких месяцев хранения. На рисунке выше сравниваются два продукта и типы достижений, достигнутых при переходе от СКБ к Li-ion.

    Выводы

    Очень мало существует батарей, которые способны хранить столько же энергии, как свинцово-кислотные, что делает данный вид аккумуляторов экономически выгодным для многих мощных устройств. Литий-ионная технология постоянно снижается в цене, а также постоянные совершенствование их химических структур и систем безопасности делает их достойным конкурентом свинцово-кислотной технологии. Устройства для их применения могут быть самые различные, начиная от устройств бесперебойного питания, до электромобилей и беспилотников.

    Рост потребительского интереса к мобильным гаджетам и технологичной портативной технике в целом заставляет производителей совершенствовать свою продукцию в самых разных направлениях. При этом существует целый ряд общих параметров, работа над которыми ведется в одном русле. К таким можно отнести способ энергообеспечения. Всего несколько лет назад активные участники рынка могли наблюдать процесс вытеснения более совершенными элементами никель-металлгидридного происхождения NiMH. Сегодня же соперничество ведут между собой уже новые генерации батарей. Широко распространенную литий-ионную технологию в некоторых сегментах успешно вытесняет литий-полимерный аккумулятор. Отличие от ионного в новом блоке не так заметно для рядового пользователя, но в некоторых аспектах оно существенно. При этом, как и в случае конкуренции элементов NiCd и NiMH, замещающая технология далеко не безупречна и по некоторых показателям уступает аналогу.

    Устройство аккумулятора Li-ion

    Первые модели серийных аккумуляторов на основе лития стали появляться еще в начале 1990 годов. Однако в качестве активного электролита тогда использовался кобальт и марганец. В современных же важно не столько вещество, сколько конфигурация его размещения в блоке. Такие аккумуляторы состоят из электродов, которые разделяются сепаратором с порами. Масса сепаратора, в свою очередь, как раз и пропитывается электролитом. Что касается электродов, то их представляет катодная основа на алюминиевой фольге и медный анод. Внутри блока соединяются между собой клеммами-токосъемникам. Обслуживание заряда выполняет положительный заряд ион лития. Этот материал выгоден тем, что располагает способностью легко проникать в кристаллические решетки других веществ, формируя химические связи. Впрочем, положительных качеств таких батарей все чаще оказывается недостаточно для современных задач, что и обусловило появление элементов Li-pol, которые имеют немало особенностей. В целом же стоит отметить и сходство литий-ионных источников питания с гелиевыми полноформатными АКБ для автомобилей. В обоих случаях батареи разрабатываются с расчетом на физическую практичность в использовании. Отчасти это направление развития продолжили и полимерные элементы.

    Устройство литий-полимерного аккумулятора

    Толчком для совершенствования литиевых аккумуляторов стала необходимость борьбы с двумя недостатками существующих батарей Li-ion. Во-первых, они небезопасны в эксплуатации, а во-вторых, довольно дорого обходятся по цене. Избавляться от данных минусов технологи решили путем смены электролита. В итоге на смену пропитанному пористому сепаратору пришел полимерный электролит. Надо отметить, что полимер и раньше использовался в электротехнических нуждах в качестве пластиковой пленки, проводящей ток. В современной же батарее толщина элемента Li-pol достигает 1 мм, что также снимает с разработчиков ограничения по использованию различных форм и размеров. Но главное заключается в отсутствии жидкого электролита, благодаря чему исключается риск воспламенения. Теперь стоит подробнее рассмотреть отличия от литий-ионных элементов.

    В чем главное отличие от ионной батареи?

    Принципиальное отличие заключается в отказе от гелиевых и жидкостных электролитов. Для более полного понимания этой разницы стоит обратиться к современным моделям автомобильных аккумуляторов. Потребность в замене жидкого электролита была обусловлена, опять же, интересами безопасности. Но если в случае с автомобильными АКБ прогресс остановился на тех же пористых электролитах с пропиткой, то литиевые модели получили полноценную твердую основу. Чем же так хорош твердотельный литий-полимерный аккумулятор? Отличие от ионного заключается в том, что активное вещество в виде пластины в зоне контакта с литием препятствует формированию дендритов при циклировании. Как раз этот фактор исключает вероятность взрывов и возгораний таких батарей. Это лишь то, что касается достоинств, но также есть и слабые места у новых элементов питания.

    Срок службы литий-полимерного аккумулятора

    В среднем такие аккумуляторы выдерживают порядка 800-900 циклов зарядки. Данный показатель является скромным на фоне современных аналогов, но даже не этот фактор можно рассматривать как определяющий ресурс элемента. Дело в том, что такие аккумуляторы подвержены интенсивному старению независимо от характера эксплуатации. То есть даже если батарея вовсе не используется, ее ресурс будет сокращаться. Причем не имеет значения, это литий-ионный аккумулятор или литий-полимерный элемент. Все источники питания, базирующиеся на литиевой основе, характеризуются данным процессом. Существенную утрату в объеме можно заметить уже через год после приобретения. Спустя 2-3 года некоторые батареи и вовсе выходят из строя. Но многое зависит от производителя, поскольку внутри сегмента тоже есть различия в качестве исполнения аккумулятора. Аналогичные проблемы свойственны и элементам NiMH, которые подвергаются старению при резких температурных колебаниях.

    Недостатки

    Кроме проблем с быстрым устареванием, такие аккумуляторы нуждаются в дополнительной системе защиты. Связано это с тем, что внутреннее напряжение на разных участках может привести к перегоранию. Поэтому используется особая схема стабилизации, предотвращающая перегревы и перезаряды. Эта же система влечет и другие недостатки. Главным из них является ограничение тока. Но, с другой стороны, дополнительные защитные схемы делают безопаснее литий-полимерный аккумулятор. Отличие от ионного в плане стоимости тоже имеет место. Полимерные батареи стоят дешевле, но ненамного. Их ценник также повышается из-за внедрения электронных защитных схем.

    Эксплуатационные особенности гелеобразных модификаций

    С целью повышения электропроводности в полимерные элементы технологи все же добавляют гелеобразный электролит. О полном переходе на такие вещества речи не идет, поскольку это противоречит концепции данной технологии. Но в портативной технике часто используют именно гибридные элементы питания. Их особенность заключается в чувствительности к температуре. Производители рекомендуют использовать такие модели батарей в условиях от 60 °C до 100 °C. Это требование определило и особую нишу применения. Использовать гелеобразные модели можно только в местах с жарким климатом, не говоря о необходимости погружения в теплоизолированный корпус. Тем не менее вопрос о том, какой аккумулятор выбрать - Li-pol или Li-ion, - не так остро стоит на предприятиях. Там, где особое влияние имеет температура, часто применяются комбинированные решения. Полимерные элементы в таких случаях обычно используют в качестве резервных.

    Оптимальный метод зарядки

    Обычное время восполнения заряда у литиевых аккумуляторов составляет в среднем 3 ч. Причем в процессе зарядки блок остается холодным. Наполнение происходит в два этапа. На первом напряжение достигает пиковых величин, и такой режим поддерживается до набора 70%. Остальные 30% набираются уже в условиях нормального напряжения. Интересен и другой вопрос - как заряжать литий-полимерный аккумулятор, если нужно в постоянном режиме поддерживать его полный объем? В таком случае следует соблюдать график подзарядок. Эту процедуру рекомендуется производить примерно каждые 500 ч эксплуатации с полной разрядкой.

    Меры предосторожности

    В процессе эксплуатации следует применять только соответствующий по характеристикам зарядный прибор, подключая его к сети со стабильным напряжением. Также необходимо проверять состояние разъемов, чтобы не произошло размыкания аккумулятора. Важно учитывать, что, несмотря на высокую степень безопасности, это все же чувствительный к перегрузкам тип аккумулятора. Литий-полимерный элемент не терпит превышения показателей тока, чрезмерного охлаждения внешней среды и механических ударов. Впрочем, по всем этим показателя полимерные блоки все же более надежны, чем литий-ионные. И все-таки главный аспект безопасности заключается в безвредности твердотельных источников питания - разумеется, при условии поддержания их герметичности.

    Какой аккумулятор лучше - Li-pol или Li-ion?

    Данный вопрос в большей степени определяется условиями эксплуатации и целевым объектом энергоснабжения. Основные преимущества полимерных устройств скорее ощутимы для самих производителей, которые могут свободнее использовать новые технологии. Для пользователя разница будет малозаметна. Например, в вопросе о том, как заряжать литий-полимерный аккумулятор, владельцу придется больше внимания уделять качеству источника энергоснабжения. По времени же заряда это идентичные элементы. Что касается долговечности, то в этом параметре тоже ситуация неоднозначная. Эффект старения в большей степени характеризует полимерные элементы, но практика показывает разные примеры. К примеру, есть отзывы о литий-ионных элементах, которые становятся непригодными уже через год пользования. А полимерные в некоторых аппаратах эксплуатируются по 6-7 лет.

    Заключение

    Вокруг аккумуляторов по-прежнему сохраняется множество мифов и ложных суждений, которые касаются разных нюансов эксплуатации. И напротив, некоторые особенности батарей замалчиваются производителями. Что касается мифов, то один из них опровергает литий-полимерный аккумулятор. Отличие от ионного аналога заключается в том, что полимерные модели испытывают меньше внутренних нагрузок. По этой причине сеансы зарядки еще не севших аккумуляторов не оказывают вредного воздействия на характеристики электродов. Если же говорить о скрываемых производителями фактах, то один из них касается долговечности. Как уже говорилось, ресурс аккумуляторов характеризуется не только скромным показателем циклов зарядки, но и неизбежной утратой полезного объема элемента питания.