• Команды arduino на русском. Программирование Arduino

    После ознакомления с основными элементами Arduino, а также написания программы «Hello World!» пришло время для знакомства с языком программирования.

    Структура языка основана главным образом на C/C++, поэтому те, кто ранее программировал на этом языке, не будут испытывать затруднений при освоении программирования Arduino. Остальные должны освоить основную информацию о командах управления, типах данных и функциях.

    Большая часть информации, содержащейся здесь, будет совместима с любым курсом C/C++, с учетом различий в типах данных, а также несколько конкретных инструкций, касающихся программирования портов ввода/вывода.

    Основы основ

    Несколько формальных вещей, то есть таких, о которых все знают, но иногда забывают…

    В Arduino IDE, как в C/C++, необходимо помнить о регистрах символов. Ключевые слова, такие как if, for всегда записываются в нижнем регистре. Каждая инструкция заканчивается на «;». Точка с запятой сообщает компилятору, какую часть интерпретировать как инструкцию.

    Скобки {..} используются для обозначения программных блоков. Мы используем их для ограничения тела функции (см. ниже), циклов и условных операторов.

    Хорошей практикой является добавление комментариев к содержимому программы, это помогает легко понять код. Однострочные комментарии начинаются с // (двойная косая черта). Многострочные комментарии начинаются с /* и заканчиваются на */

    Если мы хотим подключить в нашу программу какую-либо библиотеку, мы используем команду include. Вот примеры подключения библиотек:

    #include // стандартная библиотека #include «svoya_biblioteka.h» // библиотека в каталоге проекта

    Функции в Arduino

    Функция (подпрограмма) является отдельной частью программы, выполняющая некоторые операции. Функции используются для упрощения основной программы и улучшения читаемости кода. Полезно использовать функции, поскольку мы можем легко использовать их во многих своих проектах.

    Стандартный курс программирования содержит информацию о функциях, которые приведем в следующих статьях. В случае с Arduino функции будут обсуждаться в начале, потому что даже простейшая программа должна иметь две специальные функции. Это уже упоминалось в предыдущих статьях, но здесь мы систематизируем эту информацию.

    Объявление функции

    Схема объявления функции выглядит следующим образом:

    Тип имя_функции(параметр) { // инструкции для выполнения (тело функции) return (/* возвращение значения*/); }

    тип — это имя любого доступного типа данных на данном языке программирования. Список типов, доступных при программировании Arduino приведем в отдельной статье.

    После исполнения, функция вернет значение объявленного типа. В случае, если функция не принимает никакого возвращаемого значения, то тип данных будет «void».

    имя_функции позволяет ее однозначно идентифицировать. Для того чтобы вызвать (запустить) функцию, мы даем ей имя.

    параметр — параметр вызова функции. Параметры не обязательны, но зачастую они бывают полезны. Если мы напишем функцию, у которой нет аргументов, мы оставляем круглые скобки пустыми.

    Внутри скобок «{…}» содержится собственно тело функции или инструкция, которые мы хотим выполнить. Описание конкретных инструкций укажем в отдельной статье.

    Все функции, возвращающие значение, заканчиваются оператором return, за которым следует возвращаемое значение. Только функции, объявленные нулевым указателем («void»), не содержат оператор return. Необходимо знать, что оператор return завершает выполнение функции независимо от местоположения.

    Ниже приведены некоторые примеры деклараций функций.

    Void f1() { //тело функции } —————————————— int minus() { //тело функции return (0); } —————————————— int plus(int a, int b) { return (a+b); }

    Как вы можете видеть на примерах, объявление функции может принимать различные формы в зависимости от ваших потребностей.

    Настоятельно рекомендуем вам изучить и применять функции при написании собственных программ. Со временем, у каждого программиста набирается собственная библиотека функций «на все случаи жизни», которая позволяет облегчить и ускорить процесс написания новых программ.

    Теперь, когда мы знаем, как можно написать свою собственную функцию, необходимо научиться ее использовать.

    Вызов функции

    Все функции мы записываем в один файл/программу. Существует конечно более элегантное решение, но мы постараемся описать его в следующий раз.

    Объявив функцию, мы можем использовать ее в других функциях с соответствующим именем и любыми требуемыми параметрами. Ниже приведены примеры вызова функций, которые мы привели выше:

    F1(); plus(2,2); y=plus(1,5);

    Как вы можете видеть в примерах, вызов функции выполняется путем указания его имени и требуемого количества параметров. Важно всегда вызывать функцию в соответствии с ее объявлением.

    Если функция f1() объявлена без параметров, то при ее вызове нельзя указывать никакие параметры, т.е. вызов функции f1(0) будет неверным.

    Функция plus(int a, int b) требует ровно двух параметров, поэтому вызов с одним или тремя параметрами невозможно.

    Вызов y=plus(1,5) приведет к выполнению функции «plus» с параметрами «1» и «5» и сохранить возвращаемое значение в переменную «y».

    Функции setup() и loop().

    Обладая знаниями об объявлении и вызове функций, мы можем перейти к системным функциям Arduino: setup() и loop() . Arduino IDE в обязательном порядке необходимо объявлять эти две функции.

    setup () — это функция, которая вызывается автоматически при включении питания или нажатии кнопки RESET.

    В соответствии с ее именем она используется для установки начальных значений переменных, деклараций входов и выходов системы, которые обычно задаются в начальных параметрах. Благодаря своей специфике эта функция не возвращает значения и не вызывается с параметрами. Правильная декларация функции setup() представлена ниже:

    Void setup () { // тело функции — инициализация системы }

    loop () — это функция, которая вызывается в бесконечном цикле. Данная функция также не возвращает значения и не вызывается с параметрами. Ниже показано правильное объявление функции loop():

    Void loop () { // тело функции — программный код }

    Как вы видите, объявление функции loop () идентично объявлению функции setup (). Различие состоит в выполнении этих функций микроконтроллером.

    Теперь мы проанализируем следующий псевдокод:

    Void setup () { on_led1 (); //включаем светодиод led1 off_led1 (); //выключаем светодиод led1 } void loop () { on_led2 (); //включаем светодиод led2 off_led2 (); //выключаем светодиод led2 }

    В функции setup () есть две инструкции: первая включает светодиод led1, подключенный к плате (например, контакт 13), а вторая выключает светодиод led1.

    Функция loop () имеет идентичные инструкции для включения и выключения светодиода led2, подключенного к плате (например, контакт 12).

    В результате запуска программы светодиод led1 мигнет один раз, в то время как led2 будет загораться и гаснуть до тех пор, пока включено питание Arduino.

    Нажатие кнопки RESET приведет к тому, что led1 снова мигнет один раз, а led2 снова начнет постоянно мигать.

    Подведем итог:

    • Функции setup () и loop () — это системные функции, которые должны быть определены в каждом проекте. Даже в ситуации, когда в одном из них мы не пропишем какой-либо код, мы все равно должны объявить эти две функции;
    • Функция setup () выполняется один раз, loop() выполняется непрерывно;
    • Мы создаем собственные функции в одном файле;
    • Мы можем вызвать свои функции как из setup () и loop (), так и из других функций;
    • Наши собственные функции можно вызывать с параметрами и возвращать значение;
    • Вызов функции должен быть совершен в соответствии с ее декларацией.

    Введение

    Freeduino/Arduino программируется на специальном языке программирования – он основан на C/C ++, и позволяет использовать любые его функции. Строго говоря, отдельного языка Arduino не существует, как и не существует компилятора Arduino – написанные программы преобразуются (с минимальными изменениям) в программу на языке C/C++, и затем компилируются компилятором AVR-GCC. Так что фактически, используется специализированный для микроконтроллеров AVR вариант C/C++.

    Разница заключается в том, что Вы получаете простую среду разработки, и набор базовых библиотек, упрощающих доступ к находящейся «на борту» микроконтроллера периферии.

    Согласитесь, очень удобно начать работу с последовательным портом на скорости 9600 бит в секунду, сделав вызов одной строчкой:

    Serial.begin(9600);

    А при использовании «голого» C/C++ Вам бы пришлось разбираться с документацией на микроконтроллер, и вызывать нечто подобное:

    UBRR0H = ((F_CPU / 16 + 9600 / 2) / 9600 - 1) >> 8;
    UBRR0L = ((F_CPU / 16 + 9600 / 2) / 9600 - 1);
    sbi(UCSR0B, RXEN0);
    sbi(UCSR0B, TXEN0);
    sbi(UCSR0B, RXCIE0);

    Здесь кратко рассмотрены основные функции и особенности программирования Arduino. Если Вы не знакомы с синтаксисом языков C/C++, советуем обратиться к любой литературе по данному вопросу, либо Internet-источникам.

    С другой стороны, все представленные примеры очень просты, и скорее всего у Вас не возникнет трудностей с пониманием исходных текстов и написанием собственных программ даже без чтения дополнительной литературы.

    Более полная документация (на английском языке) представлена на официальном сайте проекта – http://www.arduino.cc . Там же есть форум, ссылки на дополнительные библиотеки и их описание.

    По аналогии с описанием на официальном сайте проекта Arduino, под «портом» понимается контакт микроконтроллера, выведенный на разъем под соответствующим номером. Кроме того, существует порт последовательной передачи данных (COM-порт).

    Структура программы

    В своей программе Вы должны объявить две основных функции: setup() и loop().

    Функция setup() вызывается один раз, после каждого включения питания или сброса платы Freeduino. Используйте её, чтобы инициализировать переменные, установить режимы работы цифровых портов и т.д.

    Функция loop() последовательно раз за разом исполняет команды, которые описаны в ее теле. Т.е. после завершения функции снова произойдет ее вызов.

    Разберем простой пример:

    void setup() // начальные установки
    {
    beginSerial(9600); // установка скорости работы серийного порта на 9600 бит/сек
    pinMode(3, INPUT); // установка 3-его порта на ввод данных
    }

    // Программа проверяет 3-ий порт на наличие на нём сигнала и посылает ответ в
    // виде текстового сообщения на последовательный порт компьютера
    void loop() // тело программы
    {
    if (digitalRead(3) == HIGH) // условие на опрос 3го порта
    serialWrite("H"); // отправка сообщения в виде буквы «Н» на COM-порт
    else
    serialWrite("L"); // отправка сообщения в виде буквы «L» на COM-порт
    delay(1000); // задержка 1 сек.
    }

    pinMode (порт, режим);

    Описание:

    Конфигурирует указанный порт на ввод или вывод сигнала.

    Параметры:

    порт – номер порта, режим которого Вы желает установить (значение целого типа от 0 до 13).

    режим – либо INPUT (ввод) либо OUTPUT (вывод).

    pinMode(13, OUTPUT); //13й вывод будет выходом
    pinMode(12, INPUT); //а 12й – входом

    Примечание:

    Аналоговые входы могут использоваться как цифровые входы/выходы, при обращении к ним по номерам с 14 (аналоговый вход 0) по 19 (аналоговый вход 5)

    digitalWrite(порт, значение);

    Описание:

    Устанавливает высокий (HIGH) или низкий (LOW) уровень напряжения на указанном порте.

    Параметры:

    порт: номер порта

    значение: HIGH или LOW

    digitalWrite(13, HIGH); // выставляем 13й вывод в «высокое» состояние

    value = digitalRead (порт);

    Описание:

    Считывает значение на указанном порту

    Параметры:

    порт: номер опрашиваемого порта

    Возвращаемое значение: возвращает текущее значение на порту (HIGH или LOW) типа int

    int val;
    val = digitalRead(12); // опрашиваем 12й вывод

    Примечание:

    Если к считываемому порту ничего не подключено, то функция digitalRead () может беспорядочно возвращать значения HIGH или LOW.

    Аналоговый ввод/вывод сигнала

    value = analogRead(порт);

    Описание:

    Считывает значение с указанного аналогового порта. Freeduino содержит 6 каналов, аналого-цифрового преобразователя на 10 битов каждый. Это означает, что входное напряжения от 0 до 5В преобразовывается в целочисленное значение от 0 до 1023. Разрешающая способность считывания составляет: 5 В/1024 значений = 0,004883 В/значение (4,883 мВ). Требуется приблизительно 100 нС (0.0001 С), чтобы считать значение аналогового ввода, так что максимальная скорость считывания - приблизительно 10000 раз в секунду.

    Параметры:

    Возвращаемое значение: возвращает число типа int в диапазоне от 0 до 1023, считанное с указанного порта.

    int val;
    val = analogRead(0); // считываем значение на 0м аналоговом входе

    Примечание:

    Аналоговые порты по умолчанию определенны на ввод сигнала и в отличие от цифровых портов их не требуется конфигурировать с помощью вызова функции pinMode.

    analogWrite(порт, значение);

    Описание:

    Выводит на порт аналоговое значение. Эта функция работает на: 3, 5, 6, 9, 10, и 11 цифровых портах Freeduino.

    Может применяться для изменения яркости светодиода, для управления двигателем и т.д. После вызова функции analogWrite, соответствующий порт начинает работать в режиме широтно-импульсного модулирования напряжения до тех пор, пока не будет следующего вызова функции analogWrite (или функций digitalRead / digitalWrite на том же самом порте).

    Параметры:

    порт: номер опрашиваемого аналогового входа

    значение: целочисленное между 0 и 255. Значение 0 генерирует 0 В на указанном порте; значение 255 генерирует +5 В на указанном порте. Для значений между 0 и 255, порт начинает быстро чередовать уровень напряжения 0 и +5 В - чем выше значение, тем, более часто порт генерирует уровень HIGH (5 В).

    analogWrite(9, 128);// устанавливаем на 9 контакте значение эквивалентное 2,5В

    Примечание:

    Нет необходимости вызвать функцию pinMode, чтобы установить порт на вывод сигналов перед вызовом функции analogWrite.

    Частота генерирования сигнала – приблизительно 490 Гц.

    time = millis();

    Описание:

    Возвращает число миллисекунд, с момента исполнения Freeduino текущей программы. Счетчик переполнится и обнулится приблизительно через 9 часов.

    Возвращаемое значение: возвращает значение типа unsigned long

    unsigned long time; // объявление переменной time типа unsigned long
    time = millis(); // передача количества миллисекунд

    delay(время_мс);

    Описание:

    Приостанавливает программу на заданное число миллисекунд.

    Параметры:

    время_мс – время задержки программы в миллисекундах

    delay(1000); //пауза 1 секунда

    delayMicroseconds

    delayMicroseconds(время_мкс);

    Описание:

    Приостанавливает программу на заданное число микросекунд.

    Параметры:

    время_мкс – время задержки программы в микросекундах

    delayMicroseconds(500); //пауза 500 микросекунд

    pulseIn(порт, значение);

    Описание:

    Считывает импульс (высокий или низкий) c цифрового порта и возвращает продолжительность импульса в микросекундах.

    Например, если параметр «значение» при вызове функции установлен в HIGH, то pulseIn() ожидает, когда на порт поступит высокий уровень сигнала. С момента его поступления начинается отсчет времени до тех пор, пока на порт не поступит низкий уровень сигнала. Функция возвращает длину импульса (высокого уровня) в микросекундах. Работает с импульсами от 10 микросекунд до 3 минут. Обратите внимание, что эта функция не будет возвращать результат, пока импульс не будет обнаружен.

    Параметры:

    порт: номер порта, с которого считываем импульс

    значение: тип импульса HIGH или LOW

    Возвращаемое значение: возвращает длительность импульса в микросекундах (тип int)

    int duration; // объявление переменной duration типа int
    duration = pulseIn(pin, HIGH); // измеряем длительность импульса

    Последовательная передача данных

    Freeduino имеет встроенный контроллер для последовательной передачи данных, который может использоваться как для связи между Freeduino/Arduino устройствами, так и для связи с компьютером. На компьютере соответствующее соединение представлено USB COM-портом.

    Связь происходит по цифровым портам 0 и 1, и поэтому Вы не сможете использовать их для цифрового ввода/вывода если используете функции последовательной передачи данных.

    Serial.begin(скорость_передачи);

    Описание:

    Устанавливает скорость передачи информации COM порта битах в секунду для последовательной передачи данных. Для того чтобы поддерживать связь с компьютером, используйте одну из этих нормированных скоростей: 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, или 115200. Также Вы можете определить другие скорости при связи с другим микроконтроллером по портам 0 и 1.

    Параметры:

    скорость_передачи: скорость потока данных в битах в секунду.

    Serial.begin(9600); //устанавливаем скорость 9600 бит/сек

    Serial.available

    count = Serial.available();

    Описание:

    Принимаемые по последовательному порту байты попадают в буфер микроконтроллера, откуда Ваша программа может их считать. Функция возвращает количество накопленных в буфере байт. Последовательный буфер может хранить до 128 байт.

    Возвращаемое значение:

    Возвращает значение типа int – количество байт, доступных для чтения, в последовательном буфере, или 0, если ничего не доступно.

    if (Serial.available() > 0) { // Если в буфере есть данные
    // здесь должен быть прием и обработка данных
    }

    char = Serial.read();

    Описание:

    Считывает следующий байт из буфера последовательного порта.

    Возвращаемое значение:

    Первый доступный байт входящих данных с последовательного порта, или -1 если нет входящих данных.

    incomingByte = Serial.read(); // читаем байт

    Описание:

    Очищает входной буфер последовательного порта. Находящиеся в буфере данные теряются, и дальнейшие вызовы Serial.read() или Serial.available() будут иметь смысл для данных, полученных после вызова Serial.flush().

    Serial.flush(); // Очищаем буфер – начинаем прием данных «с чистого листа»

    Описание:

    Вывод данных на последовательный порт.

    Параметры:

    Функция имеет несколько форм вызова в зависимости от типа и формата выводимых данных.

    Serial.print(b, DEC) выводит ASCII-строку - десятичное представление числа b.

    int b = 79;

    Serial.print(b, HEX) выводит ASCII-строку - шестнадцатиричное представление числа b.

    int b = 79;

    Serial.print(b, OCT) выводит ASCII-строку - восьмеричное представление числа b.

    int b = 79;
    Serial.print(b, OCT); //выдаст в порт строку «117»

    Serial.print(b, BIN) выводит ASCII-строку - двоичное представление числа b.

    int b = 79;
    Serial.print(b, BIN); //выдаст в порт строку «1001111»

    Serial.print(b, BYTE) выводит младший байт числа b.

    int b = 79;
    Serial.print(b, BYTE); //выведет число 79 (один байт). В мониторе
    //последовательного порта получим символ «O» - его
    //код равен 79

    Serial.print(str) если str – строка или массив символов, побайтно передает str на COM-порт.

    char bytes = {79, 80, 81}; //массив из 3 байт со значениями 79,80,81
    Serial.print("Here our bytes:"); //выводит строку «Here our bytes:»
    Serial.print(bytes); //выводит 3 символа с кодами 79,80,81 –
    //это символы «OPQ»

    Serial.print(b) если b имеет тип byte или char, выводит в порт само число b.

    char b = 79;
    Serial.print(b); //выдаст в порт символ «O»

    Serial.print(b) если b имеет целый тип, выводит в порт десятичное представление числа b.

    int b = 79;
    Serial.print(b); //выдаст в порт строку «79»

    Описание:

    Функция Serial.println аналогична функции Serial.print, и имеет такие же варианты вызова. Единственное отличие заключается в том, что после данных дополнительно выводятся два символа – символ возврата каретки (ASCII 13, или "\r") и символ новой линии (ASCII 10, или "\n").

    Пример 1 и пример 2 выведут в порт одно и то же:

    int b = 79;
    Serial.print(b, DEC); //выдаст в порт строку «79»
    Serial.print("\r\n"); //выведет символы "\r\n" – перевод строки
    Serial.print(b, HEX); //выдаст в порт строку «4F»
    Serial.print("\r\n");//выведет символы "\r\n" – перевод строки

    int b = 79;
    Serial.println(b, DEC); //выдаст в порт строку «79\r\n»
    Serial.println(b, HEX); //выдаст в порт строку «4F\r\n»

    В мониторе последовательного порта получим.

    Данный раздел посвящен книгам из мира Arduino. Для новичков и профессионалов.

    Все книги и материалы представлены исключительно в ознакомительных целях, после ознакомления просим вас приобрести цифровую или бумажную копию.

    Программы для чтения книг:

    • Книги формата PDF: Adobe Acrobat Reader или PDF Reader .
    • Книги формата DJVU: или Djvu Reader .

    Практическая энциклопедия Arduino

    В книге обобщаются данные по основным компонентам конструкций на основе платформы Arduino, которую представляет самая массовая на сегодняшний день версия ArduinoUNO или аналогичные ей многочисленные клоны. Книга представляет собой набор из 33 глав-экспериментов. В каждом эксперименте рассмотрена работа платы Arduino c определенным электронным компонентом или модулем, начиная с самых простых и заканчивая сложными, представляющими собой самостоятельные специализированные устройства. В каждой главе представлен список деталей, необходимых для практического проведения эксперимента. Для каждого эксперимента приведена визуальная схема соединения деталей в формате интегрированной среды разработки Fritzing. Она дает наглядное и точное представление - как должна выглядеть собранная схема. Далее даются теоретические сведения об используемом компоненте или модуле. Каждая глава содержит код скетча (программы) на встроенном языке Arduino с комментариями.

    Электроника. Твой первый квадрокоптер. Теория и практика

    Детально изложены практические аспекты самостоятельного изготовления и эксплуатации квадрокоптеров. Рассмотрены все этапы: от выбора конструкционных материалов и подбора компонентов с минимизацией финансовых затрат до настройки программного обеспечения и ремонта после аварии. Уделено внимание ошибкам, которые часто совершают начинающие авиамоделисты. В доступной форме даны теоретические основы полета мультироторных систем и базовые понятия работы со средой Arduino IDE. Приведено краткое описание устройства и принципа работы систем GPS и Глонасс, а также современных импульсных источников бортового питания и литий-полимерных батарей. Подробно изложен принцип работы и процесс настройки систем OSD, телеметрии, беспроводного канала Bluetooth и популярных навигационных модулей GPS Ublox. Рассказано об устройстве и принципах работы интегральных сенсоров и полетного контроллера. Даны рекомендации по подбору оборудования FPV начального уровня, приведен обзор программ для компьютеров и смартфонов, применяемых при настройке оборудования квадрокоптера.

    Проекты с использованием контроллера Arduino (2-е изд.)

    В книге рассмотрены основные платы Arduino и платы расширения (шилды), добавляющие функциональность основной плате. Подробно описан язык и среда программирования Arduino IDE. Тщательно разобраны проекты с использованием контроллеров семейства Arduino. Это проекты в области робототехники, создания погодных метеостанций, "умного дома", вендинга, телевидения, Интернета, беспроводной связи (bluetooth, радиоуправление).

    Во втором издании добавлены проекты голосового управления с помощью Arduino, работа с адресуемыми RGB-лентами, управление iRobot Create на Arduino. Рассмотрены проекты с использованием платы Arduino Leonardo. Приведены пошаговые уроки для начинающих разработчиков.

    Изучаем Arduino: инструменты и методы технического волшебства

    Книга посвящена проектированию электронных устройств на основе микроконтроллерной платформы Arduino. Приведены основные сведения об аппаратном и программном обеспечении Arduino. Изложены принципы программирования в интегрированной среде Arduino IDE. Показано, как анализировать электрические схемы, читать технические описания, выбирать подходящие детали для собственных проектов. Приведены примеры использования и описание различных датчиков, электродвигателей, сервоприводов, индикаторов, проводных и беспроводных интерфейсов передачи данных. В каждой главе перечислены используемые комплектующие, приведены монтажные схемы, подробно описаны листинги программ. Имеются ссылки на сайт информационной поддержки книги. Материал ориентирован на применение несложных и недорогих комплектующих для экспериментов в домашних условиях.

    Быстрый старт. Первые шаги по освоению Arduino

    Книга ARDUINO Быстрый старт. Первые шаги по освоению ARDUINO содержит всю информацию для ознакомления с платой Arduino,а также 14 практических экспериментов с применением различных электронных компонентов и модулей.

    Быстрый старт с набором Arduinо. Полученные знания, в дальнейшем, дадут возможность создавать свои собственные проекты и с легкостью воплощать их в жизнь.

    Arduino, датчики и сети для связи устройств (2-е изд.)

    Рассмотрены 33 проекта на основе микроконтроллерной платы Arduino, в которых показано, как сделать, чтобы электронные устройства могли обмениваться между собой данными и реагировать на команды. Показано, как изменить настройки домашнего кондиционера, «позвонив ему» со своего смартфона; как создавать собственные игровые контроллеры, взаимодействующие по сети; как использовать устройства ZigBee, Bluetooth, инфракрасное излучение и обычное радио для беспроводного получения информации от различных датчиков и др. Рассмотрены языки программирования Arduino, Processing и PHP.

    Прочитав книгу — «Arduino, датчики и сети для связи устройств», Вы научитесь создавать сети интеллектуальных устройств, которые обмениваются данными и реагируют на команды. Книга идеально подходит для людей, которые стремятся воплотить на практике свои творческие идеи. Вам не надо обладать специальными техническими знаниями и навыками в области электроники, Для начала реализации проектов необходимы только книга, идеи и недорогой набор с контроллером Arduino и некоторыми сетевыми модулями и датчиками.

    Arduino Essentials

    The Arduino is an open source microcontroller built on a single circuit board that is capable of receiving sensory input from its environment and controlling interactive physical objects. It is also a development environment that allows you to write software to the board, and is programmed in the Arduino programming language. The Arduino has become the most popular microcontroller platform and thus hundreds of projects are being developed using it, from basic to advanced levels.

    This book will first introduce you to the most important board models of the Arduino family. You will then learn to set up the Arduino software environment. Next, you will work with digital and analog inputs and outputs, manage the time precisely, establish serial communications with other devices in your projects, and even control interrupts to make your project more responsive. Finally, you will be presented with a complete real-world example by utilizing all the concepts learned so far in the book. This will enable you to develop your own microcontroller projects.

    Arduino Development Cookbook

    If you want to build programming and electronics projects that interact with the environment, this book will offer you dozens of recipes to guide you through all the major applications of the Arduino platform. It is intended for programming or electronics enthusiasts who want to combine the best of both worlds to build interactive projects.

    The single-chip computer board Arduino is small in size but vast in scope, capable of being used for electronic projects from robotics through to home automation. The most popular embedded platform in the world, Arduino users range from school children to industry experts, all incorporating it into their designs.

    Arduino Development Cookbook comprises clear and step-by-step recipes that give you the toolbox of techniques to construct any Arduino project, from the simple to the advanced. Each chapter gives you more essential building blocks for Arduino development, from learning about programming buttons through to operating motors, managing sensors, and controlling displays. Throughout, you’ll find tips and tricks to help you troubleshoot your development problems and push your Arduino project to the next level!

    Arduino Sketches: Tools and Techniques for Programming Wizardry

    Master programming Arduino with this hands-on guide Arduino Sketches is a practical guide to programming the increasingly popular microcontroller that brings gadgets to life. Accessible to tech-lovers at any level, this book provides expert instruction on Arduino programming and hands-on practice to test your skills. You’ll find coverage of the various Arduino boards, detailed explanations of each standard library, and guidance on creating libraries from scratch plus practical examples that demonstrate the everyday use of the skills you’re learning.

    Work on increasingly advanced programming projects, and gain more control as you learn about hardware-specific libraries and how to build your own. Take full advantage of the Arduino API, and learn the tips and tricks that will broaden your skillset. The Arduino development board comes with an embedded processor and sockets that allow you to quickly attach peripherals without tools or solders. It’s easy to build, easy to program, and requires no specialized hardware. For the hobbyist, it’s a dream come true especially as the popularity of this open-source project inspires even the major tech companies to develop compatible products.

    Arduino and LEGO Projects

    We all know how awesome LEGO is, and more and more people are discovering how many amazing things you can do with Arduino. In Arduino and LEGO Projects, Jon Lazar shows you how to combine two of the coolest things on the planet to make fun gadgets like a Magic Lantern RF reader, a sensor-enabled LEGO music box, and even an Arduino-controlled LEGO train set.

    * Learn that SNOT is actually cool (it means Studs Not on Top)
    * See detailed explanations and images of how everything fits together
    * Learn how Arduino fits into each project, including code and explanations

    Whether you want to impress your friends, annoy the cat, or just kick back and bask in the awesomeness of your creations, Arduino and LEGO Projects shows you just what you need and how to put it all together.

    Arduino Workshop

    The Arduino is a cheap, flexible, open source microcontroller platform designed to make it easy for hobbyists to use electronics in homemade projects. With an almost unlimited range of input and output add-ons, sensors, indicators, displays, motors, and more, the Arduino offers you countless ways to create devices that interact with the world around you.

    In Arduino Workshop, you’ll learn how these add-ons work and how to integrate them into your own projects. You’ll start off with an overview of the Arduino system but quickly move on to coverage of various electronic components and concepts. Hands-on projects throughout the book reinforce what you’ve learned and show you how to apply that knowledge. As your understanding grows, the projects increase in complexity and sophistication.

    C Programming for Arduino

    Building your own electronic devices is fascinating fun and this book helps you enter the world of autonomous but connected devices. After an introduction to the Arduino board, you’ll end up learning some skills to surprise yourself.

    Physical computing allows us to build interactive physical systems by using software & hardware in order to sense and respond to the real world. C Programming for Arduino will show you how to harness powerful capabilities like sensing, feedbacks, programming and even wiring and developing your own autonomous systems.

    C Programming for Arduino contains everything you need to directly start wiring and coding your own electronic project. You’ll learn C and how to code several types of firmware for your Arduino, and then move on to design small typical systems to understand how handling buttons, leds, LCD, network modules and much more.

    Arduino для начинающих волшебников

    Эта книга о платформе Arduino, которая день ото дня становится все популярнее, и целая армия экспериментаторов-надомников, конструкторов-любителей и хакеров начинает использовать ее для воплощения в жизнь как прекрасных, так и совершенно сумасшедших проектов. С помощью Arduino любой гуманитарий может познакомиться с основами электроники и программирования и быстро начать разработку собственных моделей, не тратя на это значительных материальных и интеллектуальных ресурсов. Arduino объединяет игру и обучение, позволяет создать что-то стоящее и интересное под влиянием внезапного порыва, воображения и любопытства. Эта платформа расширяет возможности креативного человека в сфере электроники, даже если он в ней ничего не смыслит! Экспериментируйте и получайте удовольствие!

    Программирование микроконтроллерных плат Arduino/Freeduino

    Рассмотрено программирования микроконтроллерных плат Arduino/Freduino. Описана структура и функционирование микроконтроллеров, среда программирования Arduino, необходимые инструменты и комплектующие для проведения экспериментов. Подробно рассмотрены основы программирования плат Arduino: структура программы, команды, операторы и функции, аналоговый и цифровой ввод/вывод данных. Изложение материала сопровождается более 80 примерами по разработке различных устройств: реле температуры, школьных часов, цифрового вольтметра, сигнализации с датчиком перемещения, выключателя уличного освещения и др. Для каждого проекта приведен перечень необходимых компонентов, монтажная схема и листинги программ. На FTP-сервере издательства выложены исходные коды примеров из книги, технические описания, справочные данные, среда разработки, утилиты и драйверы.

    Arduino and Kinect Projects

    If you’ve done some Arduino tinkering and wondered how you could incorporate the Kinect—or the other way around—then this book is for you. The authors of Arduino and Kinect Projects will show you how to create 10 amazing, creative projects, from simple to complex. You’ll also find out how to incorporate Processing in your project design—a language very similar to the Arduino language.

    The ten projects are carefully designed to build on your skills at every step. Starting with the Arduino and Kinect equivalent of «Hello, World,» the authors will take you through a diverse range of projects that showcase the huge range of possibilities that open up when Kinect and Arduino are combined.

    Atmospheric Monitoring with Arduino

    Makers around the globe are building low-cost devices to monitor the environment, and with this hands-on guide, so can you. Through succinct tutorials, illustrations, and clear step-by-step instructions, you’ll learn how to create gadgets for examining the quality of our atmosphere, using Arduino and several inexpensive sensors.

    Detect harmful gases, dust particles such as smoke and smog, and upper atmospheric haze—substances and conditions that are often invisible to your senses. You’ll also discover how to use the scientific method to help you learn even more from your atmospheric tests.

    * Get up to speed on Arduino with a quick electronics primer
    * Build a tropospheric gas sensor to detect carbon monoxide, LPG, butane, methane, benzene, and many other gases
    * Create an LED Photometer to measure how much of the sun’s blue, green, and red light waves are penetrating the atmosphere
    * Build an LED sensitivity detector—and discover which light wavelengths each LED in your Photometer is receptive to
    * Learn how measuring light wavelengths lets you determine the amount of water vapor, ozone, and other substances in the atmosphere

    Руководство по освоению Arduino

    Издание представляет собой русскоязычный перевод одного из документов по работе с набором ARDX (Starter Kit for Arduino), предназначенного для экспериментов с Arduino. В документации описано 12 простейших проектов, ориентированных на начальное знакомство с модулем Arduino.

    Основная цель этого набора - интересно и с пользой провести время. А помимо этого — освоить разнообразные электронные компоненты путем сборки небольших простых и интересных устройств. Вы получаете работающее устройство и инструмент, позволяющий понять принцип действия.

    Большая Энциклопедия Электрика

    Самая полная на сегодняшний день книга, в которой вы найдете массу полезной информации, начиная с азов. В книге раскрыты все основные проблемы, с которыми можно столкнуться при работе с электричеством и электрооборудованием. Описание видов кабелей, проводов и шнуров, монтаж и ремонт электропроводки и многое другое.

    В книге «Большая энциклопедия электрика» раскрыты все основные проблемы, с которыми можно столкнуться при работе с электричеством и электрооборудованием. Описание видов кабелей, проводов и шнуров, монтаж и ремонт электропроводки и многое другое. Эта книга станет полезным справочником и для электрика-специалиста, и для домашнего умельца.

    Эта книга станет полезным справочником и для электрика-специалиста, и для домашнего умельца.

    Arduino блокнот программиста

    Этот блокнот следует рассматривать, как удобное, лёгкое в использовании руководство по структуре команд и синтаксису языка программирования контроллера Arduino. Для сохранения простоты, были сделаны некоторые исключения, что улучшает руководство при использовании начинающими в качестве дополнительного источника информации — наряду с другими web-сайтами, книгами, семинарами и классами. Подобное решение, призвано акцентировать внимание на использовании Arduino для автономных задач и, например, исключает более сложное использование массивов или использование последовательного соединения.

    Начиная с описания структуры программы для Arduino на языке C, этот блокнот содержит описание синтаксиса наиболее общих элементов языка и иллюстрирует их использование в примерах и фрагментах кода. Блокнот содержит примеры функций ядра библиотеки Arduino, а в приложении приводятся примеры схем и начальных программ.

    Аналоговые интерфейсы микроконтроллеров

    Данное издание является практическим пособием по применению различных интерфейсов для подключения аналоговых периферийных устройств к компьютерам, микропроцессорам и микроконтроллерам.

    Раскрывается специфика применения таких интерфейсов, как I2C, SPI/Microware, SMBus, RS-232/485/422, токовая петля 4-20 мА и др. Дается обзор большого количества современных датчиков: температурных, оптических, ПЗС, магнитных, тензодатчиков и т. д. Подробно описываются контроллеры, АЦП и ЦАПы, их элементы — УВХ, ИОН, кодеки, энкодеры.

    Рассмотрены исполнительные устройства — двигатели, терморегуляторы — и вопросы их управления в составе систем автоматического управления различного типа (релейного, пропорционального и ПИД). Книга снабжена иллюстрациями, наглядно представляющими аппаратные и программные особенности применения элементов аналоговой и цифровой техники. Заинтересует не только начинающих радиолюбителей, но и специалистов, имеющих стаж работы с аналоговой и цифровой техникой, а также студентов технических колледжей и вузов.

    Руководство по использованию АТ-команд для GSM/GPRS модемов

    В этом пособии изложено детальное описание полного набора АТ команд для работы с модемами компании Wavecom. Приведены специальные АТ команды для работы с протоколами стека IP, программно реализованными в модемах Wavecom.

    Книга ориентирована на разработчиков, создающих программные и программно-аппаратные приложения на базе продукции Wavecom. Руководство так же рекомендуется инженерам, отвечающим за эксплуатацию систем различного назначения, применяющим в качестве канала передачи данных сети GSM. Отличный справочник для студентов, которые используют в своей курсовой или дипломной работе тематику передачи данных в GSM сетях.

    Расскажи о нас

    Сообщение

    Если у Вас есть опыт в работе с Arduino и собственно есть время для творчества, мы приглашаем всех желающих стать авторами статей публикуемых на нашем портале. Это могут быть как уроки, так и рассказы о ваших экспериментах с Arduino. Описание различных датчиков и модулей. Советы и наставления начинающим. Пишите и размещайте свои статьи в .

    Эта вводная статья для тех, кто уже успел распаковать со своим ребенком десяток-другой цветных коробок от конструкторов, построил сотни разнообразных конструкций и заполнил деталями от Лего все доступные емкости в чулане. Если вы готовы перейти на следующий уровень: с электроникой, микроконтроллерами, датчиками и умными устройствами – значит, пришло время для экспериментов с Ардуино!

    В этой серии статей мы соберем самое главное, что нужно узнать об Ардуино, чтобы начать заниматься с детьми самостоятельно. Даже если вы никогда не брали в руки паяльник и слова «контроллер» и «контроллёр» для вас имеют примерно схожий смысл, можете быть уверенными – у вас все равно все получится! Мир электроники и робототехники сегодня полон простых и очень удобных решений, позволяющих практически с нуля создавать очень интересные проекты. Наш учебник поможет вам быстро сориентироваться и сделать первые шаги.

    Говоря бытовым языком, Ардуино – это , в которую можно воткнуть множество разных устройств и заставить их работать вместе с помощью программы, написанной на языке Ардуино в специальной среде программирования.

    Чаще всего плата выглядит вот так:

    На рисунке показана одна из плат Ардуино – Arduino Uno. Мы изучим ее подробнее на следующих уроках.

    В плату можно втыкать провода и подключать множество разных элементов. Чаще всего, для соединения используется макетная плата для монтажа без пайки. Можно добавлять светодиоды, датчики, кнопки, двигатели, модули связи, реле и создавать сотни вариантов интересных проектов умных устройств. Плата Ардуино – это умная розетка, которая будет включать и выключать все присоединенное в зависимости от того, как ее запрограммировали.




    Вся работа над проектом разбивается на следующие этапы:

    1. Придумываем идею и проектируем.
    2. Собираем электрическую схему. Тут нам пригодится макетная плата, упрощающая монтаж элементов. Безусловно, понадобятся навыки работы с электронными приборами и умение .
    3. Подключаем к компьютеру через USB.
    4. и записываем ее в плату буквально нажатием одной кнопки на экране в .
    5. Отсоединяем от компьютера. Теперь устройство будет работать автономно – при включении питания оно будет управляться той программой, которую мы в него записали.

    Программа и среда программирования выглядят вот так:

    На экране показана программа (на сленге ардуинщиков текст программы называется “скетч”), которая будет мигать лампочкой, подсоединенной к 13 входу на плате Ардуино UNO. Как видим, программа вполне проста и состоит из понятных для знающих английский язык инструкций. В языке программирования Arduino используется свой диалект языка C++, но все возможности C++ поддерживаются.

    Есть и другой вариант написания кода – визуальный редактор. Тут не нужно ничего писать – можно просто перемещать блоки и складывать из них нужный алгоритм. Программа загрузится в подключенную плату одним нажатием кнопки мыши!

    В целом все выглядит довольно понятно, не так ли? Осталось разобраться в деталях.

    Быстрый старт с Arduino

    Для начала давайте поймем, с чем же и чем же мы собираемся заниматься. Что такое Ардуино и как его использовать? Если вы уже знакомы с темой – можете смело перескочить дальше. Если нет – давайте вместе выполним короткое погружение.

    Ардуино – это…

    Ардуино – это не бренд и не название поставщика конструкторов. Это общее название для целого семейства различных технологий и открытой платформы, в которую входят как аппаратные устройства (платы контроллеров и совместимое оборудование), так и софт, предназначенный для управления железками. По сути своей, Ардуино – это инфраструктура и среда, в которой можно собирать совместимые между собой электронные и механические компоненты в единое устройство, а потом через обычный компьютер за две минуты запрограммировать поведение этих самых железок так, как нам нужно.

    Ардуино – это мостик из виртуального компьютерного мира в мир реальных вещей и устройств. Написав программу на обычном компьютере, мы управляем с ее помощью не виртуальными объектами, а вполне себе реальными датчиками, двигателями, экранами. Мы меняем мир вокруг себя – просто программируя на компьютере, используя бесплатный софт и множество уже готовых примеров библиотек.

    Свое название технология получила, как это часто бывает, довольно случайно. Источником вдохновения послужил бар, в котором будущие создатели Ардуино любили выпить по кружечке чая. Называлось заведение именно так – Arduino, по имени главной исторической личности города Ивреа, короля Ардуино. Король какого-то яркого следа в истории не оставил и прослыл неудачником, но благодаря команде разработчиков новой платформы обрел новую популярность и сейчас известен миллионам людей по всему земному шару.

    Почему Ардуино?

    Вся прелесть Ардуино заключается в следующих простых преимуществах:

    1. Простота. Да, да – именно простота (хотя Лего и другие игрушки, без сомнения, привычнее, но мы сравниваем не с ними). Для юных разработчиков электроники Ардуино «прячет» огромное количество разнообразных технических вопросов. Многие достаточно сложные проекты можно создавать очень быстро, без длительного погружения в детали. А это ведь очень важно для ребенка – не утратить интерес до первого полученного своими руками результата.
    2. Популярность. Ардуино крайне популярна, вы сможете без труда найти ответы на любые вопросы на многочисленных форумах или сайтах. Сообщество Ардуино обширно и дружелюбно – там относительно мало прожженных жизнью снобов-инженеров и полно любителей и начинающих, с удовольствием делящихся своей радостью от найденного и узнанного. Это, конечно, откладывает отпечаток на качество советов, но как правило, даже самые сложные вопросы могут быть быстро решены с помощью форумов и сайтов.
    3. Доступность. И сама технология, и практически весь софт выпускаются под открытыми лицензиями и вы можете свободно использовать чужие наработки, схемы, причем во многих случаях даже для коммерческого использования. Это экономит много времени и позволяет двигаться большими шагами, опираясь на опыт предыдущих исследователей.
    4. Дешевизна. Комплект для первых занятий электроникой и программированием можно купить менее чем за 500 рублей. Полноценные курсы робототехники возможны при . Никакая другая технология не позволит вам так быстро и так эффективно войти в мир реальной учебной робототехники.

    С чего начать?

    Если вы хотите заниматься робототехникой с использованием Ардуино, то вам понадобится такой вот джентельменский набор:

    1. с USB кабелем для подключения к компьютеру.
    2. и провода.
    3. Комплект базовых электронных компонентов и переходник для батарейки типа крона.
    4. Установленная на компьютер среда

    Все оборудование продается в наборах, называемых стартовыми –

    В дальнейшем, если занятия действительно увлекут и будет желание продолжить эксперименты, то список оборудования будет расширяться:

    1. Экраны и индикаторы.
    2. Двигатели и , реле и .
    3. Модули связи.
    4. Разнообразные дополнительные модули и (шилды)

    Если первые шаги дадут результат, со временем вы будете узнавать половину людей, стоящих в очереди на почте (если до сих пор вы их еще не знаете), а почтальоны при встрече будут узнавать вас в лицо и нервно перебегать на другую сторону дороги.

    Как купить Ардуино?

    Прежде чем узнать что-то полезное, надо сначала купить что-то полезное. Для экспериментов с электроникой вам понадобится та сама электроника в виде конструктора или отдельных плат. Рекомендуется купить не очень дорогой отечественный набор с основными компонентами и затем уже заказать себе с Алиэкспресса датчики, двигатели, контроллеры и другие сокровища. можно найти в инернете (не только на нашем сайте). Если вы живете в большом городе, то покупка всего необходимого займет максимум два дня. Найти нужный магазин легко в интернете.

    Пару слов о . Сегодня их на совершенно легальных условиях может делать любой производитель: как крупный, такой как Intel, так и мелкие noname поставщики из Китая. Надежность и удобство «китайских» и «официальных» платы Ардуино в большинстве случаев одинаковые. Поэтому незачем переплачивать – для своих учебных проектов можете смело покупать аналоги, которые легко найти в интернете.

    Как отличить «оригинал» от «совместимой платы»:

    1. «Китайские» платы не имеют права ставить логотип Ардуино.
    2. «Китайские» платы стоят гораздо дешевле.
    3. «Китайские» часто используют другой чип для обслуживания соединения с компьютером, на который нужны специальные драйвера. Драйвера устанавливаются за секунду и практически никогда не вызывают каких-либо проблем.

    Еще раз подчеркнем, использование не оригинальных плат совершенно легально. Ардуино – открытая архитектура и разработчики дают возможность собрать свою версию платы всем желающим.

    Нет возможности купить?

    Если вы живете в Антарктиде или у вас действительно не хватает средств даже на самые простые наборы, то не отчаивайтесь – можно начать изучение Ардуино на виртуальных тренажерах. Самый мощный, простой и популярный сегодня вариант – это онлайн сервис Tinkercad от известной компании Autodesk. Вы сможете создавать электронные схемы, подключая множество разнообразных компонентов, а затем «включать» питание и измерять все электрические показатели. В библиотеке устройств есть и плата Ардуино, и даже встроенный редактор для программирования (включая визуальный!). Вы можете найти на нашем сайте отдельную статью

    » представляет учебный курс «Arduino для начинающих». Серия представлена 10 уроками, а также дополнительным материалом. Уроки включают текстовые инструкции, фотографии и обучающие видео. В каждом уроке вы найдете список необходимых компонентов, листинг программы и схему подключения. Изучив эти 10 базовых уроков, вы сможете приступить к более интересным моделям и сборке роботов на основе Arduino. Курс ориентирован на новичков, чтобы к нему приступить, не нужны никакие дополнительные сведения из электротехники или робототехники.

    Краткие сведения об Arduino

    Что такое Arduino?

    Arduino (Ардуино) — аппаратная вычислительная платформа, основными компонентами которой являются плата ввода-вывода и среда разработки. Arduino может использоваться как для создания автономных интерактивных объектов, так и подключаться к программному обеспечению, выполняемому на компьютере. Arduino как и относится к одноплатным компьютерам.

    Как связаны Arduino и роботы?

    Ответ очень прост — Arduino часто используется как мозг робота.

    Преимущество плат Arduino перед аналогичными платформами — относительно невысокая цена и практически массовое распространение среди любителей и профессионалов робототехники и электротехники. Занявшись Arduino, вы найдете поддержку на любом языке и единомышленников, которые ответят на вопросы и с которым можно обсудить ваши разработки.

    Урок 1. Мигающий светодиод на Arduino

    На первом уроке вы научитесь подключать светодиод к Arduino и управлять его мигать. Это самая простая и базовая модель.

    Светодиод — полупроводниковый прибор, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

    Урок 2. Подключение кнопки на Arduino

    На этом уроке вы научитесь подключать кнопку и светодиод к Arduino.

    При нажатой кнопке светодиод будет гореть, при отжатой – не гореть. Это также базовая модель.

    Урок 3. Подключение потенциометра на Arduino

    В этом уроке вы научитесь подключать потенциометр к Arduino.

    Потенциометр — это резистор с регулируемым сопротивлением. Потенциометры используются как регуляторы различных параметров – громкости звука, мощности, напряжения и т.п. Это также одна из базовых схем. В нашей модели от поворота ручки потенциометра будет зависеть яркость светодиода.

    Урок 4. Управление сервоприводом на Arduino

    На этом уроке вы научитесь подключать сервопривод к Arduino.

    Сервопривод – это мотор, положением вала которого можно управлять, задавая угол поворота.

    Сервоприводы используются для моделирования различных механических движений роботов.

    Урок 5. Трехцветный светодиод на Arduino

    На этом уроке вы научитесь подключать трехцветный светодиод к Arduino.

    Трехцветный светодиод (rgb led) — это три светодиода разных цветов в одном корпусе. Они бывают как с небольшой печатной платой, на которой расположены резисторы, так и без встроенных резисторов. В уроке рассмотрены оба варианта.

    Урок 6. Пьезоэлемент на Arduino

    На этом уроке вы научитесь подключать пьезоэлемент к Arduino.

    Пьезоэлемент — электромеханический преобразователь, который переводит электричеcкое напряжение в колебание мембраны. Эти колебания и создают звук.

    В нашей модели частоту звука можно регулировать, задавая соответствующие параметры в программе.

    Урок 7. Фоторезистор на Arduino

    На этом уроке нашего курса вы научитесь подключать фоторезистор к Arduino.

    Фоторезистор — резистор, сопротивление которого зависит от яркости света, падающего на него.

    В нашей модели светодиод горит только если яркость света над фоторезистором меньше определенной, эту яркость можно регулировать в программе.

    Урок 8. Датчик движения (PIR) на Arduino. Автоматическая отправка E-mail

    На этом уроке нашего курса вы научитесь подключать датчик движения (PIR) к Arduino, а также организовывать автоматическую отправку e-mail.

    Датчик движения (PIR) — инфракрасный датчик для обнаружения движения или присутствия людей или животных.

    В нашей модели при получении с PIR-датчика сигнала о движении человека Arduino посылает компьютеру команду отправить E-mail и отправка письма происходит автоматически.

    Урок 9. Подключение датчика температуры и влажности DHT11 или DHT22

    На этом уроке нашего вы научитесь подключать датчик температуры и влажности DHT11 или DHT22 к Arduino, а также познакомитесь с различиями в их характеристиках.

    Датчик температуры и влажности — это составной цифровой датчик, состоящий из емкостного датчика влажности и термистора для измерения температуры.

    В нашей модели Arduino считывает показания датчика и осуществляется вывод показаний на экран компьютера.

    Урок 10. Подключение матричной клавиатуры

    На этом уроке нашего курса вы научитесь подключать матричную клавиатуру к плате Arduino, а также познакомитесь с различными интересными схемами.

    Матричная клавиатура придумана, чтобы упростить подключение большого числа кнопок. Такие устройства встречаются везде - в клавиатурах компьютеров, калькуляторах и так далее.

    Урок 11. Подключение модуля часов реального времени DS3231

    На последнем уроке нашего курса вы научитесь подключать модуль часов реального времени из семейства
    DS к плате Arduino, а также познакомитесь с различными интересными схемами.

    Модуль часов реального времени - это электронная схема, предназначенная для учета хронометрических данных (текущее время, дата, день недели и др.), представляет собой систему из автономного источника питания и учитывающего устройства.

    Приложение. Готовые каркасы и роботы Arduino


    Начинать изучать Arduino можно не только с самой платы, но и с покупки готового полноценного робота на базе этой платы — робота-паука, робота-машинки, робота-черепахи и т.п. Такой способ подойдет и для тех, кого электрические схемы не особо привлекают.

    Приобретая работающую модель робота, т.е. фактически готовую высокотехнологичную игрушку, можно разбудить интерес к самостоятельному проектированию и робототехнике. Открытость платформы Arduino позволяет из одних и тех же составных частей мастерить себе новые игрушки.

    Еще один вариант — покупка каркаса или корпуса робота: платформы на колесиках или гусенице, гуманоида, паука и т.п. В этом случае начинку робота придется делать самостоятельно.

    Приложение. Мобильный справочник


    – помощник для разработчиков алгоритмов под платформу Arduino, цель которого дать конечному пользователю возможность иметь при себе мобильный набор команд (справочник).

    Приложение состоит из 3-х основных разделов:

    • Операторы;
    • Данные;
    • Функции.

    Где купить Arduino


    Наборы Arduino

    Курс будет пополняться дополнительными уроками. Подпишитесь на нас