• Методы шифрования данных - блог веб-программиста. Назначение и структура алгоритмов шифрования

    Почта любого владельца ПК может быть перехвачена, а коллегам ничто не мешает ознакомиться с вашими документами. Шифрование - кодирование информации, после которого ее нельзя прочесть без специального ключа, - сумеет защитить ваши данные от любопытных глаз. Когда-то к шифрованию прибегали одни шпионы, но сейчас оно быстро становится мерой разумной предосторожности для всех тех, кто дома или на работе использует компьютер: это лучшее средство сохранить служебную и личную тайну.

    Независимо от того, применяется ли автономная утилита или встроенная функция почтовой программы, процесс шифрования происходит одинаково: данные обрабатываются по определенному алгоритму, в результате чего образуется зашифрованный текст. Алгоритму для работы необходимо получить от вас одну переменную - ключ, и из-за этого постороннему сложно, если не невозможно, раскрыть шифр.

    Различается шифрование двух типов: симметричное и асимметричное (иначе называемое шифрованием с открытым ключом). При симметричном вы создаете ключ, пропускаете с ним файл через программу и пересылаете результат адресату, а ключ (пароль или другой файл данных) передаете отдельно. Запустив ту же самую шифровальную программу с полученным ключом, адресат сможет прочитать сообщение. Симметричное шифрование не так надежно, как асимметричное, поскольку ключ может быть перехвачен, но из-за высокой скорости оно широко используется в операциях электронной торговли.

    Асимметричное шифрование сложнее - и надежнее. Для него нужны два взаимосвязанных ключа: открытый и закрытый. Свой открытый ключ вы сообщаете всем желающим. Он позволяет кодировать данные, но не раскодировать их. Закрытый ключ есть только у вас. Когда кому-то нужно послать вам зашифрованное сообщение, он выполняет шифрование, используя ваш открытый ключ. Получив сообщение, вы расшифровываете его с помощью своего закрытого ключа. За повышенную надежность асимметричного шифрования приходится платить: поскольку вычисления в этом случае сложнее, процедура отнимает больше времени.

    Алгоритмы, применяемые для симметричного и асимметричного шифрования, основаны на различных принципах. При симметричном шифровании алгоритм разделяет данные на небольшие блоки, представляет каждый некоторым числом, преобразует эти числа по сложной математической формуле, в которую входит ключ, а затем повторяет преобразование; в некоторых случаях оно выполняется несколько десятков раз.

    Алгоритм же асимметричного шифрования рассматривает текст как одно очень большое число. Он возводит это число в степень, которая также является очень большим числом, делит результат на еще одно очень большое число и вычисляет остаток, после чего преобразует этот остаток обратно в текст. Шифровальные программы могут по-разному использовать один и тот же алгоритм, поэтому чтобы получатель мог прочесть сообщение, у него должна быть такая же программа, как и у отправителя.

    И наконец, последний фрагмент головоломки - это ключи. Они различаются по длине и, следовательно, по силе: ведь чем длиннее ключ, тем больше число возможных комбинаций. Скажем, если программа шифрования использует 128-битовые ключи, то ваш конкретный ключ будет одной из 3,4 триллиона миллиардов миллиардов миллиардов, или 2128 возможных комбинаций нулей и единиц. Хакер с большей вероятностью выиграет в лотерею, чем взломает такой уровень шифрования методом «грубой силы» (т. е. планомерно пробуя ключи, пока не встретится нужный). Для сравнения: чтобы подобрать на стандартном ПК симметричный 40-битовый ключ, специалисту по шифрованию потребуется около 6 часов. Однако даже шифры со 128-битовым ключом до некоторой степени уязвимы; у профессионалов имеются изощренные методы, которые позволяют взламывать даже самые сложные коды.

    Незримые защитники

    Шифрование применялось в военных целях с 479 г. до н. э.: как сообщает древнегреческий историк Геродот, секретные донесения на деревянных табличках, покрытых воском, предупредили спартанских вождей о надвигающемся вторжении персов. В информационных системах предприятий шифрование также используется уже много лет. А домашние пользователи начинают приобщаться к нему только сейчас, причем иногда они об этом и не знают.

    Так, Microsoft Internet Explorer и Netscape Communicator содержат встроенные средства шифрования для операций электронной торговли. Без каких бы то ни было указаний со стороны пользователя номера кредитных карточек передаются с компьютера пользователя на Web-сервер зашифрованными по симметричному протоколу SSL (Secure Sockets Layer). По умолчанию используются 40-битовые ключи, но для обоих браузеров доступна также версия со 128-битовыми ключами.

    Можно сыграть в защите своих данных и более активную роль. Популярные почтовые программы, в том числе Microsoft Outlook и Lotus Notes, в настоящее время позволяют шифровать письма. Многие «почтальоны» поддерживают протокол асимметричного шифрования S/MIME (Secure MIME, защищенный MIME), хотя лишь немногие пользователи его применяют. Для работы с S/MIME требуется цифровой идентификатор - «сертификат», который нужно покупать у компаний, таких как VeriSign, за 15 долл. в год.

    Дополнительную защиту могут обеспечить автономные утилиты, которые шифруют не только почтовые сообщения, но и файлы с изображениями, документы, папки на жестком диске и т. д. Наиболее популярной из них является PGP. Ее бесплатную версию для некоммерческого использования можно получить по адресу web.mit.edu/network/pgp.html.

    Аналитики предполагают, что применение систем сильного шифрования расширится благодаря недавним изменениям в регулировании экспорта криптографических систем Министерством торговли США. До 13 января большинство программ шифрования проходили по категории вооружений и подпадали под те же экспортные ограничения, что ручные гранаты или ракеты. Экспорт шифровальных программ с ключами длиннее 40 бит запрещался под страхом высокого штрафа или тюрьмы. Новые правила разрешают вывоз из США некоторых систем шифрования. По словам аналитиков, поначалу это не будет иметь серьезного эффекта, поскольку большинство шифровальных программ созданы за пределами Штатов, а импорт ПО этого типа уже был разрешен. Выгоду из изменений в законодательстве должны извлечь производители ПО, которым больше не нужно будет разрабатывать криптографические средства за границей.

    Эндрю Брандт, Александра Красне

    Об авторах

    Эндрю Брандт - внештатный редактор PC World, Александра Красне - редактор и корреспондент PC World.

    Симметричное шифрование

    1 Чтобы послать зашифрованное сообщение, отправитель сочиняет его и придумывает шифровальный ключ. 2 Он пересылает ключ получателю по каналу, отличному от того, которым пойдет сообщение. 3 Программа шифрования превращает открытый текст в зашифрованный. 4 Зашифрованный текст пересылается получателю. 5 Получатель прочитывает его, используя имеющийся у него ключ.

    Асимметричное шифрование

    У отправителя и получателя одна и та же программа шифрования. 1 Чтобы кто-либо мог послать вам зашифрованное сообщение, вы заранее генерируете с помощью своей шифровальной программы открытый и закрытый ключи, после чего посылаете соответствующему человеку открытый. 2 Используя алгоритм шифрования и ваш открытый ключ, он получает зашифрованное сообщение. 3 Сообщение пересылается вам. 4 Вы расшифровываете сообщение, используя алгоритм расшифровки и свой закрытый ключ. Чтобы послать ответ, вам понадобится открытый ключ адресата.

    По меткому определению аналитиков CNews, год 2005-й в России прошел под девизом «защищаемся от внутренних угроз». Те же тенденции отчетливо наблюдались и в прошедшем году. Учитывая недавние инциденты, связанные с кражей баз данных и их последующей свободной продажей, многие компании стали серьезнее задумываться о проблеме безопасности своих информационных ресурсов и разграничении доступа к конфиденциальным данным. Как известно, 100%-ная гарантия сохранности ценной информации практически невозможна, но технологически свести такие риски к минимуму можно и нужно. Для этих целей большинство разработчиков средств информационной безопасности предлагают комплексные решения, сочетающие шифрование данных с контролем сетевого доступа. Попробуем рассмотреть такие системы более детально.

    На рынке средств защиты от несанкционированного доступа представлено достаточно много разработчиков программно-аппаратных комплексов шифрования для серверов, хранящих и обрабатывающих конфиденциальную информацию (Aladdin, SecurIT, "Физтехсофт" и т. д.). Разобраться в тонкостях каждого предлагаемого решения и выбрать наиболее подходящее подчас непросто. К сожалению, зачастую авторы сравнительных статей, посвященных шифросредствам, не учитывая специфики этой категории продуктов, проводят сравнение по удобству использования, богатству настроек, дружелюбности интерфейса и т. п. Такое сравнение оправдано, когда речь идет о тестировании Интернет-пейджеров или менеджеров закачек, но вряд ли приемлемо при выборе решения для защиты конфиденциальной информации.

    Наверное, с этим утверждением мы не откроем Америку, но такие характеристики, как производительность, стоимость и многие другие не критичны при выборе системы шифрования. Та же производительность важна не для всех систем и не всегда. Скажем, если в организации пропускная способность локальной сети небольшая, но доступ к зашифрованной информации будут иметь только два сотрудника, пользователи вряд ли вообще заметят систему шифрования, даже самую «неторопливую».

    Многие другие особенности и параметры таких программно-аппаратных комплексов также носят избирательный характер: для кого-то они критичны, а кому-то безразличны. Поэтому мы попробуем предложить альтернативный вариант сравнения средств защиты от несанкционированного доступа и утечки конфиденциальной информации - по наиболее важным и действительно ключевым параметрам.

    Штирлиц, вам шифровка!

    При выборе системы для защиты данных прежде всего стоит обратить внимание на то, какие алгоритмы шифрования в них используются. Теоретически, приложив достаточно усилий, злоумышленник может взломать любую криптографическую систему. Вопрос заключается лишь в том, сколько работы ему потребуется для этого проделать. В принципе фактически любая задача взлома криптографической системы количественно сравнима с поиском, выполняемым путем полного перебора всех возможных вариантов.

    По мнению специалистов, любой современной криптографической системе вполне достаточно 128-битового уровня безопасности. Это означает, что для успешной атаки на такую систему потребуется как минимум 2128 шагов. Согласно закону Мура, адаптированному к криптографии, достаточно даже 110 или 100 бит, однако криптографических алгоритмов, рассчитанных на такие ключи, не существует.

    Сам алгоритм должен быть максимально широко распространен. Никому не известные «самописные» алгоритмы не проанализированы специалистами в области криптографии и могут содержать опасные уязвимости. С учетом этого достаточно надежными могут быть признаны алгоритмы ГОСТ, AES, Twofish, Serpent с длиной ключа 128, 192 или 256 бит.

    Отдельного рассмотрения заслуживают асимметричные алгоритмы шифрования. В них для шифрования и расшифрования используются разные ключи (отсюда и название). Эти ключи образуют пару и генерируются, как правило, самим пользователем. Для шифрования информации используется так называемый открытый ключ. Этот ключ общеизвестен, и любой желающий может зашифровать адресуемое пользователю сообщение с его помощью. Закрытый ключ используется для расшифрования сообщения и известен только самому пользователю, который хранит его в секрете.

    Общепринятый способ распространения и хранения открытых ключей пользователей - цифровые сертификаты формата X.509. В простейшем случае цифровой сертификат - это своего рода электронный паспорт, который содержит информацию о пользователе (имя, идентификатор, адрес электронной почты и т. п.), об открытом ключе клиента, об Удостоверяющем центре, изготовившем сертификат, а также серийный номер сертификата, срок действия и т. д.

    Удостоверяющий центр (УЦ) - это третья доверительная сторона, которая наделена высоким уровнем доверия пользователей и обеспечивает комплекс мероприятий для использования сертификатов доверяющими сторонами. По сути это компонент системы управления сертификатами, предназначенный для формирования электронных сертификатов подчиненных центров и пользователей, удостоверенных электронно-цифровой подписью УЦ. В простейшем случае используются так называемые самоподписанные сертификаты, когда пользователь сам выступает в роли своего удостоверяющего центра.

    Общепризнано, что при использовании асимметричных алгоритмов шифрования стойкость, эквивалентная 128-битному симметричному алгоритму, достигается при использовании ключей длиной не менее 1024 бит. Это связано с особенностями математической реализации таких алгоритмов.

    Помимо непосредственно алгоритмов шифрования стоит обратить внимание и на способ их реализации. Программно-аппаратный комплекс может иметь встроенные алгоритмы шифрования или использовать внешние подключаемые модули. Второй вариант предпочтительнее по трем причинам. Во-первых, можно повышать уровень безопасности в соответствии с растущими потребностями компании, используя более стойкие алгоритмы. Опять-таки, в случае изменения требований политики безопасности (например, если компании потребуется переход на сертифицированные криптопровайдеры) можно будет оперативно заменить имеющиеся алгоритмы шифрования без существенных задержек или сбоев в работе. Понятно, что в случае встроенного алгоритма это гораздо сложнее.

    Второй плюс внешней реализации заключается в том, что такое шифросредство не подпадает под соответствующие законодательные ограничения на его распространение, в том числе экспортно-импортные, и не требует наличия соответствующих лицензий ФСБ у партнеров компании, занимающихся его распространением и внедрением.

    В-третьих, не стоит забывать о том, что реализация алгоритма шифрования - далеко не тривиальная задача. Правильная реализация требует большого опыта. Скажем, ключ шифрования никогда не должен находиться в оперативной памяти компьютера в явном виде. В серьезных продуктах этот ключ разделяется на несколько частей, при этом на каждую из них накладывается случайная маска. Все операции с ключом шифрования выполняются по частям, а на итоговый результат накладывается обратная маска. Уверенности в том, что разработчик учел все эти тонкости при самостоятельной реализации алгоритма шифрования, к сожалению, нет.

    Ключ от квартиры, где деньги лежат

    Еще один фактор, влияющий на степень защищенности данных, - принцип организации работы с ключами шифрования. Здесь есть несколько вариантов, и перед выбором конкретной системы шифрования настоятельно рекомендуется поинтересоваться, как она устроена: где хранятся ключи шифрования, как они защищены и т. д. К сожалению, зачастую сотрудники компании-разработчика не в состоянии объяснить даже базовых принципов работы их продукта. Особенно это замечание относится к менеджерам по продажам: простейшие вопросы нередко ставят их в тупик. Пользователю же, решившему защитить свою конфиденциальную информацию, желательно разобраться во всех тонкостях.

    Для определенности будем называть ключ, используемый для шифрования данных, мастер-ключом. Для их генерации на сегодняшний день чаще всего используются следующие подходы.

    Первый подход - мастер-ключ генерируется на основе некоторых входных данных и используется при шифровании данных. В дальнейшем для получения доступа к зашифрованной информации пользователь вновь предоставляет системе те же самые входные данные для генерации мастер-ключа. Сам мастер-ключ, таким образом, нигде не хранится. В качестве входных данных могут выступать пароль, какой-либо файл, сохраненный на внешнем носителе, и т. п. Основной недостаток этого способа - невозможность создать резервную копию мастер-ключа. Утрата любого компонента входных данных ведет к утрате доступа к информации.

    Второй подход - мастер-ключ генерируется с использованием генератора случайных чисел. Затем он шифруется каким-либо алгоритмом и после этого сохраняется вместе с данными или же на внешнем носителе. Для получения доступа сначала расшифровывается мастер-ключ, а потом - сами данные. Для шифрования мастер-ключа целесообразно использовать алгоритм той же стойкости, что и для шифрования самих данных. Менее стойкие алгоритмы снижают безопасность системы, а использовать более стойкий бессмысленно, так как безопасность это не повышает. Такой подход позволяет создавать резервные копии мастер-ключа, которые можно в дальнейшем использовать для восстановления доступа к данным в случае форс-мажорных обстоятельств.

    Как известно, надежность криптографической системы в целом определяется надежностью самого слабого ее звена. Злоумышленник всегда может атаковать наименее стойкий алгоритм из двух: шифрования данных или шифрования мастер-ключа. Рассмотрим эту проблему более подробно, имея в виду, что ключ, на котором происходит шифрование мастер-ключа, также получают на основе некоторых входных данных.

    Вариант первый: парольный

    Пользователь вводит некоторый пароль, на основе которого (с использованием, например, хэш-функции) генерируется ключ шифрования (рис. 1). Фактически надежность системы в этом случае определяется только сложностью и длиной пароля. Но надежные пароли неудобны: запомнить бессмысленный набор из 10-15 символов и вводить его каждый для получения доступа к данным не так просто, а если таких паролей несколько (допустим, для доступа к разным приложениям), то и вовсе нереально. Парольная защита также подвержена атакам методом прямого перебора, а установленный клавиатурный шпион легко позволит злоумышленнику получить доступ к данным.

    Рис. 1. Шифрование мастер-ключа с использованием пароля.

    Вариант второй: внешнее хранение

    На внешнем носителе размещаются некоторые данные, используемые для генерации ключа шифрования (рис. 2). Простейший вариант - использовать файл (так называемый ключевой файл), находящийся на дискете (компакт-диске, USB-флэш-устройстве и т. п.) Этот способ надежнее варианта с паролем. Для генерации ключа служит не десяток символов пароля, а значительное количество данных, например, 64 или даже 128 байт.

    Рис. 2. Шифрование мастер-ключа с использованием данных с внешнего носителя.

    В принципе ключевой файл можно разместить и на жестком диске компьютера, но значительно безопасней хранить его отдельно от данных. Не рекомендуется в качестве ключевых файлов использовать файлы, создаваемые какими-либо общеизвестными приложениями (*.doc, *xls, *.pdf и т. д.) Их внутренняя структурированность может дать злоумышленнику дополнительную информацию. Например, все файлы, созданные архиватором WinRAR, начинаются с символов «Rar!» - это целых четыре байта.

    Недостаток данного способа - возможность для злоумышленника легко скопировать файл и создать дубликат внешнего носителя. Таким образом, пользователь, даже на короткое время утративший контроль над этим носителем, фактически уже не может быть на 100% уверен в конфиденциальности своих данных. В качестве внешнего носителя иногда применяются электронные USB-ключи или смарт-карты, но при этом данные, используемые для генерации ключа шифрования, просто сохраняются в памяти этих носителей и так же легко доступны для считывания.

    Вариант третий: защищенное внешнее хранение

    Данный способ во многом схож с предыдущим. Важное его отличие в том, что для получения доступа к данным на внешнем носителе пользователь обязательно должен ввести PIN-код. В качестве внешнего носителя используются токены (электронные USB-ключи или смарт-карты). Данные, используемые для генерации ключа шифрования, размещаются в защищенной памяти токена и не могут быть прочитаны злоумышленником без знания соответствующего PIN-кода (рис. 3).

    Рис. 3. Шифрование мастер-ключа с использованием защищенного внешнего носителя.

    Утрата токена еще не означает раскрытия самой информации. Для защиты от прямого подбора PIN-кода ставится аппаратная временная задержка между двумя последовательными попытками или аппаратное же ограничение на количество неправильных попыток ввода PIN-кода (например, 15), после чего токен просто блокируется.

    Поскольку токен может использоваться в разных приложениях, а PIN-код один и тот же, можно обманным путем вынудить пользователя ввести свой PIN-код в подложной программе, после чего считать необходимые данные из закрытой области памяти токена. Некоторые приложения кэшируют значение PIN-кода в рамках одного сеанса работы, что также несет в себе определенный риск.

    Вариант четвертый: смешанный

    Возможен вариант, когда для генерации ключа шифрования одновременно используются пароль, ключевой файл на внешнем носителе и данные в защищенной памяти токена (рис. 4). Такой способ довольно сложен в повседневном использовании, поскольку требует от пользователя дополнительных действий.

    Рис. 4. Шифрование мастер-ключа с использованием нескольких компонентов.

    Многокомпонентная система также значительно сильнее подвержена рискам утраты доступа: достаточно потерять один из компонентов, и доступ без использования заранее созданной резервной копии становится невозможен.

    Вариант пятый: с асимметричным шифрованием

    Отдельного рассмотрения заслуживает один подход к организации безопасного хранения мастер-ключа, лишенный основных недостатков описанных выше вариантов. Именно этот способ представляется нам оптимальным.

    Дело в том, что современные токены (рис. 5) позволяют не только хранить в закрытой памяти данные, но выполняют аппаратно целый ряд криптографических преобразований. Например, смарт-карты, а также USB-ключи, представляющие собой полнофункциональные смарт-карты, а не их аналоги, реализуют асимметричные алгоритмы шифрования. Примечательно, что при этом пара открытый - закрытый ключ генерируется также аппаратно. Важно, что закрытый ключ на смарт-картах хранится как write-only, т. е. он используется операционной системой смарт-карты для криптографических преобразований, но не может быть прочитан или скопирован пользователем. Фактически пользователь сам не знает свой закрытый ключ - он только им обладает.

    Данные, которые необходимо расшифровать, передаются операционной системе смарт-карты, аппаратно ею расшифровываются с помощью закрытого ключа и передаются обратно в расшифрованном виде (рис. 6). Все операции с закрытым ключом возможны только после ввода пользователем PIN-кода смарт-карты. Такой подход успешно используется во многих современных информационных системах для аутентификации пользователя. Применим он и для аутентификации при доступе к зашифрованной информации.

    Рис. 6. Шифрование мастер-ключа с использованием асимметричного алгоритма шифрования.

    Мастер-ключ шифруется с помощью открытого ключа пользователя. Для получения доступа к данным пользователь предъявляет свою смарт-карту (или USB-ключ, являющийся полнофункциональной смарт-картой) и вводит ее PIN-код. Затем мастер-ключ аппаратно расшифровывается с помощью закрытого ключа, хранящегося на смарт-карте, и пользователь получает доступ к данным. Такой подход сочетает в себе безопасность и удобство использования.

    В первых четырех вариантах очень важен выбор способа генерации ключа шифрования на основе пароля и/или данных с внешнего носителя. Уровень безопасности (в криптографическом смысле), обеспечиваемый этим способом, должен быть не ниже, чем уровень безопасности остальных компонентов системы. Скажем, вариант, когда мастер-ключ просто хранится на внешнем носителе в инвертированном виде, крайне уязвим и небезопасен.

    Современные токены поддерживают асимметричные алгоритмы с длиной ключа 1024 или 2048 бит, обеспечивая тем самым соответствие надежности алгоритма шифрования мастер-ключа и алгоритма шифрования самих данных. Аппаратное ограничение на количество неправильных попыток ввода PIN-кода нивелирует риск его подбора и позволяет применять достаточно простой для запоминания PIN-код. Использование одного устройства с несложным PIN-кодом повышает удобство без ущерба для безопасности.

    Создать дубликат смарт-карты не может даже сам пользователь, так как невозможно скопировать закрытый ключ. Это также позволяет без опасения использовать смарт-карту совместно с любыми другими программами.

    Техподдержку вызывали?

    Есть еще один критерий выбора, который зачастую остается без внимания, но при этом относится к разряду критических. Речь идет о качестве технической поддержки.

    Не вызывает сомнения, что защищаемая информация имеет высокую ценность. Быть может, ее утрата принесет меньший вред, чем публичное раскрытие, но определенное неудобство будет иметь место в любом случае. Оплачивая продукт, вы в числе прочего платите и за то, что он будет нормально функционировать, а в случае сбоя вам оперативно помогут разобраться в проблеме и устранить ее.

    Основная сложность заключается в том, что заранее оценить качество техподдержки довольно сложно. Ведь существенную роль служба техподдержки начинает играть на поздних стадиях внедрения, на этапе опытной эксплуатации и по завершении внедрения, в процессе сопровождения системы. Критериями качества технической поддержки можно считать время реакции на запрос, полноту ответов и компетентность специалистов. Рассмотрим их более подробно.

    Зачастую эквивалентом качества работы службы технической поддержки считается скорость реакции на запрос. Тем не менее оперативные, но неправильные рекомендации могут принести значительно больший вред, чем простое их отсутствие.

    Представляется разумным отдавать предпочтение российским разработкам или по крайней мере зарубежным фирмам, имеющим представительство в России. Разговаривая со специалистом на родном языке, вы скорее поймете друг друга. Если продукт иностранный, будьте готовы к возможным временным задержкам. Это может происходить потому, что ваши вопросы будут переводиться на, скажем, английский, а ответы разработчика - обратно на русский. Качество перевода оставим на совести специалистов техподдержки. Нужно учитывать и то, что у зарубежного поставщика может не быть круглосуточной поддержки, а в результате из-за разницы во времени у вас будет, например, всего один час в день, чтобы задать вопрос.

    Списки частых вопросов (FAQ) могут стать источником дополнительной информации не только о самом продукте, но и о компетентности специалистов, работающих в компании. Например, отсутствие такого раздела наводит на мысль о непопулярности данного продукта или об отсутствии в организации специалистов, занимающихся техподдержкой и способных написать базу знаний по обращениям пользователей. Забавно, но на некоторых сайтах в ответах на частые вопросы встречаются ошибки, в том числе и в названии самого продукта.

    Выхожу один я на дорогу...

    Как видно, в процессе выбора можно зайти достаточно далеко. Наверняка у каждого найдутся свои собственные, важные именно для него критерии сравнения. В конце концов никто не запрещает сравнивать длительность гарантийных сроков, качество упаковки и соответствие цветовой гаммы брэнда компании-производителя корпоративному стилю вашей организации. Главное - правильно расставить весовые коэффициенты.

    В любом случае прежде всего нужно трезво оценивать угрозы и критичность данных, а средства обеспечения безопасности желательно выбирать, руководствуясь тем, насколько успешно они справляются со своей основной задачей - обеспечением защиты от несанкционированного доступа. В противном случае деньги лучше потратить на менеджер закачек из Интернета или на "пасьянсы".

    шифрование можно интерпретировать и как аутентификацию.

    Все звучит довольно красиво, и, как правило, оправдывается на деле при использовании шифрования. Шифрование , несомненно, является важнейшим средством обеспечения безопасности. Механизмы шифрования помогают защитить конфиденциальность и целостность информации. Механизмы шифрования помогают идентифицировать источник информации. Тем не менее, само по себе шифрование не является решением всех проблем. Механизмы шифрования могут и должны являться составной частью полнофункциональной программы по обеспечению безопасности. Действительно, механизмы шифрования, являются широко используемыми механизмами безопасности лишь потому, что они помогают обеспечивать конфиденциальность , целостность и возможность идентификации.

    Тем не менее, шифрование является только задерживающим действием. Известно, что любая система шифрования может быть взломана. Речь идет о том, что для получения доступа к защищенной шифрованием информации может потребоваться очень много времени и большое количество ресурсов. Принимая во внимание этот факт, злоумышленник может попытаться найти и использовать другие слабые места во всей системе в целом.

    В данной лекции будет рассказываться об основных понятиях, связанных с шифрованием, и о том, как использовать шифрование в целях обеспечения безопасности информации. Мы не будем подробно рассматривать математическую основу шифрования, поэтому от читателя не потребуется больших знаний в этой области. Тем не менее, мы рассмотрим несколько примеров, чтобы разобраться в том, как различные алгоритмы шифрования используются в хорошей программе безопасности .

    Основные концепции шифрования

    Шифрование представляет собой сокрытие информации от неавторизованных лиц с предоставлением в это же время авторизованным пользователям доступа к ней. Пользователи называются авторизованными, если у них есть соответствующий ключ для дешифрования информации. Это очень простой принцип. Вся сложность заключается в том, как реализуется весь этот процесс.

    Еще одной важной концепцией, о которой необходимо знать, является то, что целью любой системы шифрования является максимальное усложнение получения доступа к информации неавторизованными лицами, даже если у них есть зашифрованный текст и известен алгоритм , использованный для шифрования. Пока неавторизованный пользователь не обладает ключом, секретность и целостность информации не нарушается.

    С помощью шифрования обеспечиваются три состояния безопасности информации.

    • Конфиденциальность. Шифрование используется для сокрытия информации от неавторизованных пользователей при передаче или при хранении.
    • Целостность. Шифрование используется для предотвращения изменения информации при передаче или хранении.
    • Идентифицируемость. Шифрование используется для аутентификации источника информации и предотвращения отказа отправителя информации от того факта, что данные были отправлены именно им.

    Термины, связанные с шифрованием

    Перед тем как начать детальный рассказ о шифровании, приведем определения некоторых терминов, которые будут использоваться в обсуждении. Во-первых, мы будем иметь дело с терминами, обозначающими компоненты, участвующие в шифровании и дешифровании. На рисунке 12.1 показан общий принцип, согласно которому осуществляется шифрование .

    Существуют также четыре термина, которые необходимо знать:

    • Криптография. Наука о сокрытии информации с помощью шифрования.
    • Криптограф. Лицо, занимающееся криптографией.
    • Криптоанализ . Искусство анализа криптографических алгоритмов на предмет наличия уязвимостей.
    • Криптоаналитик. Лицо, использующее криптоанализ для определения и использования уязвимостей в криптографических алгоритмах.

    Атаки на систему шифрования

    Системы шифрования могут подвергнуться атакам тремя следующими способами:

    • Через слабые места в алгоритме.
    • Посредством атаки "грубой силы" по отношению к ключу.
    • Через уязвимости в окружающей системе.

    При проведении атаки на алгоритм криптоаналитик ищет уязвимости в методе преобразования открытого текста в шифр , чтобы раскрыть открытый текст без использования ключа. Алгоритмы, имеющие такие уязвимости, нельзя назвать достаточно мощными. Причина в том, что известная уязвимость может использоваться для быстрого восстановления исходного текста. Злоумышленнику в этом случае не придется использовать какие-либо дополнительные ресурсы.

    Атаки "грубой силы" являются попытками подбора любого возможного ключа для преобразования шифра в открытый текст . В среднем аналитик с использованием этого метода должен проверить действие 50 процентов всех ключей, прежде чем добьется успеха. Таким образом, мощность алгоритма определяется только числом ключей, которые необходимо перепробовать аналитику. Следовательно, чем длиннее ключ , тем больше общее число ключей, и тем больше ключей должен перепробовать злоумышленник до того, как найдет корректный ключ . Атаки с использованием грубой силы теоретически всегда должны заканчиваться успешно при наличии необходимого количества времени и ресурсов. Следовательно, алгоритмы нужно оценивать по периоду времени, в течение которого информация остается защищенной при проведении атаки с использованием "грубой силы".

    В этот день свой профессиональный праздник отмечает Криптографическая служба России.

    «Криптография» с древнегреческого означает «тайнопись».

    Как раньше прятали слова?

    Своеобразный метод передачи тайного письма существовал во времена правления династии египетских фараонов:

    выбирали раба. Брили его голову наголо и наносили на неё текст сообщения водостойкой растительной краской. Когда волосы отрастали, его отправляли к адресату.

    Шифр — это какая-либо система преобразования текста с секретом (ключом) для обеспечения секретности передаваемой информации.

    АиФ.ru сделал подборку интересных фактов из истории шифрования.

    Все тайнописи имеют системы

    1. Акростих — осмысленный текст (слово, словосочетание или предложение), сложенный из начальных букв каждой строки стихотворения.

    Вот, например, стихотворение-загадка с разгадкой в первых буквах:

    Д овольно именем известна я своим;
    Р авно клянётся плут и непорочный им,
    У техой в бедствиях всего бываю боле,
    Ж изнь сладостней при мне и в самой лучшей доле.
    Б лаженству чистых душ могу служить одна,
    А меж злодеями — не быть я создана.
    Юрий Нелединский-Мелецкий
    Сергей Есенин, Анна Ахматова, Валентин Загорянский часто пользовались акростихами.

    2. Литорея — род шифрованного письма, употреблявшегося в древнерусской рукописной литературе. Бывает простая и мудрая. Простую называют тарабарской грамотой, она заключается в следующем: поставив согласные буквы в два ряда в порядке:

    употребляют в письме верхние буквы вместо нижних и наоборот, причём гласные остаются без перемены; так, например, токепот = котёнок и т. п.

    Мудрая литорея предполагает более сложные правила подстановки.

    3. «ROT1» — шифр для детишек?

    Возможно, в детстве вы тоже его использовали. Ключ к шифру очень прост: каждая буква алфавита заменяется на последующую букву.

    А заменяется на Б, Б заменяется на В и так далее. «ROT1» буквально означает «вращать на 1 букву вперёд по алфавиту». Фраза «Я люблю борщ» превратится в секретную фразу «А мявмя впсъ» . Этот шифр предназначен для развлечения, его легко понять и расшифровать, даже если ключ используется в обратном направлении.

    4. От перестановки слагаемых...

    Во время Первой мировой войны конфиденциальные сообщения отправляли с помощью так называемых перестановочных шрифтов. В них буквы переставляются с использованием некоторых заданных правил или ключей.

    Например, слова могут быть записаны в обратном направлении, так что фраза «мама мыла раму» превращается во фразу «амам алым умар» . Другой перестановочный ключ заключается в перестановке каждой пары букв, так что предыдущее сообщение становится «ам ам ым ал ар ум» .

    Возможно, покажется, что сложные правила перестановки могут сделать эти шифры очень трудными. Однако многие зашифрованные сообщения могут быть расшифрованы с использованием анаграмм или современных компьютерных алгоритмов.

    5. Сдвижной шифр Цезаря

    Он состоит из 33 различных шифров, по одному на каждую букву алфавита (количество шифров меняется в зависимости от алфавита используемого языка). Человек должен был знать, какой шифр Юлия Цезаря использовать для того, чтобы расшифровать сообщение. Например, если используется шифр Ё, то А становится Ё, Б становится Ж, В становится З и так далее по алфавиту. Если используется шифр Ю, то А становится Ю, Б становится Я, В становится А и так далее. Данный алгоритм является основой для многих более сложных шифров, но сам по себе не обеспечивает надёжную защиту тайны сообщений, поскольку проверка 33-х различных ключей шифра займёт относительно небольшое время.

    Никто не смог. Попробуйте вы

    Зашифрованные публичные послания дразнят нас своей интригой. Некоторые из них до сих пор остаются неразгаданными. Вот они:

    Криптос . Скульптура, созданная художником Джимом Санборном, которая расположена перед штаб-квартирой Центрального разведывательного управления в Лэнгли, Вирджиния. Скульптура содержит в себе четыре шифровки, вскрыть код четвёртой не удаётся до сих пор. В 2010 году было раскрыто, что символы 64-69 NYPVTT в четвёртой части означают слово БЕРЛИН.

    Теперь, когда вы прочитали статью, то наверняка сможете разгадать три простых шифра.

    Свои варианты оставляйте в комментариях к этой статье. Ответ появится в 13:00 13 мая 2014 года.

    Ответ:

    1) Блюдечко

    2) Слоненку все надоело

    3) Хорошая погода