• На что влияет скорость памяти. Так ли важна частота оперативной памяти

    В данном исследовании мы попробуем найти ответ на следующий вопрос - что важнее для достижения максимальной производительности компьютера, высокая частота оперативной памяти или же ее низкие тайминги. А помогут нам в этом два комплекта оперативной памяти производства Super Talent. Давайте посмотрим, как выглядят модули памяти внешне, и какими характеристиками обладают.

    ⇡ Super Talent X58

    Данный комплект производитель "посвятил" платформе Intel X58, о чем свидетельствует надпись на наклейке. Однако здесь сразу же возникает несколько вопросов. Как всем хорошо известно, для достижения максимальной производительности на платформе Intel X58 настоятельно рекомендуется использовать трехканальный режим работы оперативной памяти. Несмотря на это, данный комплект памяти Super Talent состоит лишь из двух модулей. Конечно, у ортодоксальных сборщиков систем такой подход может вызвать недоумение, однако рациональное зерно в этом все же есть. Дело в том, что сегмент топовых платформ относительно невелик, и большинство персональных компьютеров используют оперативную память в двухканальном режиме. В этой связи покупка комплекта из трех модулей памяти обычному пользователю может показаться неоправданной, а если необходимо действительно много оперативной памяти, можно приобрести три комплекта по два модуля в каждом. Производитель указывает, что память Super Talent WA1600UB2G6 может работать на частоте 1600 МГц DDR при таймингах 6-7-6-18. Теперь давайте посмотрим, какая информация зашита в SPD профиле этих модулей.

    И опять наблюдается некоторое несоответствие реальных и заявленных характеристик. Максимальный профиль JEDEC предполагает работу модулей на частоте 1333 МГц DDR при таймингах 9-9-9-24. Впрочем, присутствует расширенный профиль XMP, частота которого совпадает с заявленной - 800 МГц (1600 МГц DDR), но тайминги несколько отличаются, причем в худшую сторону - 6-8-6-20, вместо 6-7-6-18, которые указаны на наклейке. Тем не менее, данный комплект оперативной памяти без проблем работал в заявленном режиме - 1600 МГц DDR при таймингах 6-7-6-18 и напряжении 1,65 В. Что касается разгона, то более высокие частоты модулям не покорились, несмотря на установку повышенных таймингов и увеличение напряжения питания. Более того, при увеличении напряжения Vmem до уровня 1,9 В наблюдалась нестабильность работы и в исходном режиме. К сожалению, радиаторы очень прочно приклеены к чипам памяти, поэтому мы не рискнули их снимать, опасаясь повредить модули памяти. А жаль, тип используемых микросхем мог бы пролить свет на такое поведение модулей.

    ⇡ Super Talent P55

    Второй комплект оперативной памяти, который мы рассмотрим сегодня, производитель позиционирует как решение для платформы Intel P55. Модули оснащены низкопрофильными радиаторами черного цвета. Максимальный заявленный режим предполагает работу данных модулей на частоте 2000 МГц DDR при таймингах 9-9-9-24 и напряжении 1,65 В. Теперь посмотрим на зашитые в SPD профили.

    Наиболее производительный профиль JEDEC предполагает работу модулей на частоте 800 МГц (1600 МГц DDR) при таймингах 9-9-9-24 и напряжении 1,5 В, а профили XMP в данном случае отсутствуют. Что касается разгона, то при небольшом повышении таймингов данные модули памяти оказались способны работать на частоте 2400 МГц DDR, о чем свидетельствует скриншот ниже.

    Более того, система загружалась и при частоте модулей 2600 МГц DDR, однако запуск тестовых приложений приводил к зависанию или перезагрузке. Как и в случае с предыдущим комплектом памяти Super Talent, данные модули никак не реагировали на повышение напряжения питания. Как оказалось, лучшему разгону памяти и стабильности работы системы более способствовало увеличение напряжения контроллера памяти, встроенного в процессор. Впрочем, поиск максимально возможных частот и параметров, при которых достигается стабильность работы в таких экстремальных режимах, оставим энтузиастам. Далее мы сосредоточимся на изучении следующего вопроса - в какой степени частота работы оперативной памяти и ее тайминги влияют на общую производительность компьютера. В частности, мы попробуем выяснить, что лучше - установить скоростную оперативную память, работающую с высокими таймингами, или же предпочтительнее использовать как можно более низкие тайминги, пусть и не при максимальных рабочих частотах.

    ⇡ Условия тестирования

    Тестирование проводилось на стенде следующей конфигурации. Во всех тестах процессор работал на частоте 3,2 ГГц, причины этого будут объяснены ниже, а мощная видеокарта была необходима для тестов в игре Crysis.

    Как уже говорилось выше, мы попробуем выяснить, как частота работы оперативной памяти и ее тайминги влияют на общую производительность компьютера. Конечно, данные параметры можно просто задать в BIOS и провести тесты. Но, как оказалось, при частоте Bclk равной 133 МГц, диапазон рабочих частот оперативной памяти в использованной нами материнской плате составляет 800 - 1600 МГЦ DDR. Этого оказывается недостаточно, ведь один из рассматриваемых сегодня комплектов памяти Super Talent поддерживает режим DDR3-2000. Да и вообще, скоростных модулей памяти выпускается все больше, производители уверяют нас в их небывалой производительности, так что выяснить их реальную производительность определенно не помешает. Для того, чтобы установить частоту памяти, скажем, 2000 МГц DDR, необходимо увеличить частоту шины Bclk. Однако при этом изменятся частоты как ядра процессора, так и его кэш-памяти третьего уровня, которая работает с той же частотой, что и шина QPI. Разумеется, сравнивать результаты, полученные в таких разных условиях, некорректно. Кроме того, степень влияния частоты CPU на результаты тестирования может оказаться куда значительнее таймингов и частоты оперативной памяти. Возникает вопрос - нельзя ли как-то обойти эту проблему? Что касается частоты процессора, то в некоторых пределах ее можно изменять с помощью множителя. Однако при этом желательно выбирать такое значение частоты bclk, чтобы итоговая частота оперативной памяти была равна одному из стандартных значений 1333, 1600 или 2000. Как известно, в настоящее время базовая частота bclk в процессорах Intel Nehalem равна 133.3 МГц. Давайте посмотрим, какова будет частота оперативной памяти при разных значениях частоты шины bclk с учетом множителей, которые может выставить используемая нами материнская плата. Результаты приведены в таблице ниже.

    Частота bclk, МГц
    133.(3) 150 166.(6) 183.(3) 200
    Множитель памяти Частота оперативной памяти, МГц DDR
    6 800 900 1000 1100 1200
    8 1066 1200 1333 1466 1600
    10 1333 1500 1667 1833 2000
    12 1600 1800 2000 2200 2400

    Как видно из таблицы, при частоте bclk равной 166 МГц, для оперативной памяти можно получить частоты 1333 и 2000 МГц. Если частота bclk равна 200 МГц, то получаем совпадение частот оперативки при 1600 МГц, а также требуемые 2000 МГц. В остальных случаях совпадений со стандартными частотами памяти не наблюдается. Так какую же частоту bclk в итоге предпочесть - 166 или 200 МГц? Ответ на этот вопрос подскажет следующая таблица. Здесь приведены значения частоты CPU, в зависимости от множителя и частоты bclk. Для оценки влияния таймингов нам необходимы не только одинаковые частоты памяти, но и CPU, чтобы это не влияло на получаемые результаты.

    Частота bclk, МГц
    Множитель CPU 133.(3) 150.0 166.(6) 183.(3) 200.0
    9 1200 1350 1500 1647 1800
    10 1333 1500 1667 1830 2000
    11 1467 1650 1833 2013 2200
    12 1600 1800 2000 2196 2400
    13 1733 1950 2167 2379 2600
    14 1867 2100 2333 2562 2800
    15 2000 2250 2500 2745 3000
    16 2133 2400 2667 2928 3200
    17 2267 2550 2833 3111 3400
    18 2400 2700 3000 3294 3600
    19 2533 2850 3167 3477 3800
    20 2667 3000 3333 3660 4000
    21 2800 3150 3500 3843 4200
    22 2933 3300 3667 4026 4400
    23 3067 3450 3833 4209 4600
    24 3200 3600 4000 4392 4800

    В качестве отправной точки мы брали максимальную частоту процессора (3200 МГц), которую он может показать при базовой частоте bclk равной 133 МГц. Из таблицы видно, что в данных условиях только при частоте bclk=200 МГц можно получить точно такую же частоту CPU. Остальные частоты хоть и близки к 3200 МГц, но не точно равны ей. Конечно, в качестве исходной можно было взять частоту CPU и поменьше, скажем - 2000 МГц, тогда можно было бы получить корректные результаты при всех трех значениях шины bclk - 133, 166 и 200 МГц. Тем не менее, мы отказались от этого варианта. И вот почему. Во-первых, настольных процессоров Intel c архитектурой Nehalem с такой частотой нет, и вряд ли они появятся. Во-вторых, снижение частоты CPU более чем в 1,5 раза может привести к тому, что он станет ограничивающим фактором, и разница в результатах практически не будет зависеть от режима работы оперативной памяти. Собственно, первые прикидки именно это и показывали. В-третьих, вряд ли тот пользователь, который покупает заведомо слабый и дешевый процессор, будет сильно озабочен вопросом выбора дорогой скоростной оперативной памяти. Итак, мы будем тестировать при значениях базовой частоты bclk - 133 и 200 МГц. Частота CPU в обоих случаях одинакова и равна 3200 МГц. Ниже приведены скриншоты утилиты CPU-Z в данных режимах.

    Если вы обратили внимание, частота QPI-Link зависит от частоты bclk и, соответственно, они отличаются в 1,5 раза. Это, кстати, позволит выяснить, как влияет частота кэш-памяти третьего уровня в процессорах Nehalem на общую производительность. Итак, приступим к тестированию.

    Ответить на вопрос, на что оказывает влияние оперативная память, даже легче, чем объяснить принцип её действия.

    В первую очередь, вид, частота и объём ОЗУ оказывают влияние на скорость передачи данных – а, значит, и на то, насколько быстро будет работать приложение и, особенно, игра.

    Недостаточный объём оперативной памяти может привести к невозможности работы программы, к зависанию компьютера и даже перезагрузке операционной системы.

    Cодержание:

    Влияние объёма ОЗУ

    Операционная память (или ОЗУ, или RAM) представляет собой энергозависимую микросхему, с помощью которой совершается обмен данными.

    При отключении питания вся хранящаяся в ней информация исчезает.

    Передача данных между ОЗУ и процессором может осуществляться непосредственно и через так называемую память нулевого уровня или кэш.

    Скорость обмена зависит от параметров оперативной – частоты и даже типа (от DDR до DDR4). Но одной из главных характеристик, на которые следует обратить внимание, является её объём.

    На современных компьютерах он составляет, минимум, 2 гигабайта – вполне достаточно для запуска большинства приложений и даже не слишком новых игр (в основном, выпущенных в 2000-х годах).

    Встретить меньшее значение объёма – например, 1 ГБ, 512 Мб – можно только на старых компьютерах.

    Размер 4 Гб – вполне подходящий вариант для бюджетного домашнего компьютера , предназначенного для интернет-серфинга, просмотра видео с приличным качеством (хотя для этого понадобится ещё и соответствующая видеокарта) и прослушивания музыки. На компьютере с ней не получится поиграть в современные игры даже на средних настройках. Однако некоторые из них запустятся с минимальными параметрами.

    Объёма 8 и 16 гигабайт более чем достаточно для любых задач, возлагаемых на свой компьютер средним пользователем. Особенно, если она идёт в комплекте с 4–8 Гб графической памяти GDDR5.

    А 32 Гб вполне достаточно для того чтобы не беспокоиться о работе самых современных приложений на протяжении ещё нескольких лет.

    Важно: Не стоит рассчитывать на резкое повышение скорости работы ПК после замены на вдвое больший по объёму вариант. Вместе с ней требуется модернизировать ещё и видео, и центральный процессор. А 32-битные операционные системы и вовсе поддерживают не больше 3 Гб RAM.

    Влияние типа памяти

    Скорость работы с приложениями и передачи данных также зависит и от типа. В компьютерах, собранный за последние несколько лет, можно найти три варианта:

    • DDR2 (с частотой до 1200 МГц) – использовалась на новых ПК несколько лет назад, но была практически полностью вытеснена новым поколением;
    • DDR3 (частота до 2400 МГц) – относительно новый вариант, устанавливаемый на большинстве современных компьютерах бюджетного и среднего уровня);
    • DDR4 (частота до 3200 МГц) – которая могла бы заменить DDR3, однако поддерживается далеко не всеми материнским платами и процессорами.

    Установив на своём компьютере планку DDR4, можно повысить скорость передачи информации примерно в 1,5–2 раза. Однако для её установки придётся менять и материнскую плату, и процессор.

    Такой вариант подходит далеко не всем пользователям, собирающимся частично модернизировать свой ПК.

    И для них гораздо выгоднее будет поставить ОЗУ большего объёма или с лучшими показателями частоты.

    Покупателю же нового (и, главное, игрового) компьютера, по возможности, следует выбрать DDR4 – и, желательно, предусмотреть возможность добавления новых планок.

    Значение частоты

    Показатель частоты имеет значение для . И современные модели практически не выпускается с величиной этого параметра меньше 1600 МГц.

    Однако, решив заменить на своём ПК или ноутбуке планку, стоит обратить внимание ещё и на возможности материнской платы.

    Если «материнка» поддерживает не больше 1333 МГц, а установленное имеет частоту 1833 МГц, скорость передачи данных будет ограничена меньшим значением.

    Повышение эффективность работы

    Иногда владелец компьютера с достаточно большим объёмом ОЗУ может столкнуться с замедлением работы приложений.

    И может даже задуматься о необходимости добавить новую оперативную – или даже полностью модернизировать ПК. Однако устранить проблему можно и более простым способом:

    • проверив, насколько загружена она на данный момент (через «Диспетчер задач» );

    Интересный факт: скорее всего, если Вас спросят о том, на что влияет частота оперативной памяти, Вы подумаете о тактовой частоте. Соответственно, Вы ответите, что она влияет на количество тактов и на скорость.

    Это правильно лишь отчасти и сейчас мы во всем разберемся.

    1. Страничка теории

    Сразу стоит уточнить, что когда говорят о частоте оперативной памяти, а не процессора, то имеется в виду частота передачи данных. Она соответствует определенным значениям тактовой частоты.

    Всего существует четыре типа частоты ОП:

    • DDR. Бывает 200, 266, 333 и 400 МГц (МТ/с). Соответствует значениям тактовой частоты 100, 133, 166 и 200 МГц соответственно.
    • DDR2. Бывает 400, 533, 667, 800 и 1066 МГц (МТ/с). Соответствует 200, 266, 333, 400 и 533 МГц тактовой частоты.
    • DDR3. Бывает 800, 1066, 1333, 1600, 1800, 2000, 2133, 2200 и 2400 МГц (МТ/с). Соответствует 400, 533, 667, 800, 1800, 1000, 1066, 1100 и 1200 МГц тактовой частоты.
    • DDR4. Бывает 2133, 2400, 2666, 2800, 3000, 3200 и 3333 МГц (МТ/с). Соответствует 1062, 1200, 1333, 1400, 1500, 1600 и 2666 МГц.

    Несложно догадаться, что такое деление связано с поколениями. То есть выходили новые, более мощные модули оперативной памяти с более высокой частотой, причем как самой памяти, так и тактовой. В связи с этим придумывали новые поколения.

    Это интересно: DDR3 нередко оказывается менее мощным, нежели DDR2. Связано это с высокими значениями задержек. Они в языке программистов называются таймингами.

    А теперь переходим к самому главному.

    2. Значение частоты оперативной памяти

    Если сказать просто, чем выше частота ОП, тем быстрее будет передаваться информация. Соответственно, рассматриваемое нами понятие влияет, в первую очередь, на скорость работы.

    Именно поэтому частоту оперативной памяти называют Data rate или скоростью передачи данных. Это важно запомнить!

    Вот другое определение, которое дает более широкое понимание: Частота передачи данных – это число операций, связанных с передачей данных, за единицу времени. В качестве единицы времени чаще всего выбирается секунда.

    Поэтому вышеупомянутые цифры в МГц выражают еще и количество операций по передаче данных в секунду.

    Например, если мы говорим о DDR4-2133, это означает, что такой модуль может выполнять 2133 операции каждую секунду. Обычно эти цифры пишутся на самих модулях.

    Это количество выражается в так называемых трансферах (с английского это слово означает «переход»). Как и в случае с битами, здесь есть Мегатрансферы, Гигатрансферы и так далее.

    Причем деление то же самое – 1024 Мегатрансфера равны одному Гигатрансферу. Поэтому в списке, приведенном выше, рядом с обозначением «МГц» стоит «МТ/с» в скобках. Это и означает «Мегатрансфер в секунду».

    Да и вообще, правильнее будет выражать данное значение именно в МТ/с или же ГТ/с (Гигатрансфер в секунду).

    Если у Вас возникают вопросы, пишите их в комментариях ниже.

    Существует очень простой метод перевода количества операций в секунду в тактовую частоту, то есть из МТ/с в МГц. Необходимо первое поделить на два, чтобы получилось второе.

    То есть если мы, например, имеем дело с модулем DDR4-2400, то, чтобы получить тактовую частоту, необходимо 2400 поделить на 2. Получится 1200 МГц. Это, кстати, тоже можно было достаточно легко понять, если внимательно смотреть на тот список.

    Запомните: Частота оперативной памяти – это количество выполняемых ею операций в секунду. Ее значение равно значению тактовой умноженной на 2. Этот параметр влияет на скорость работы ОП. Это главное.

    3. Что еще важно понимать

    Существует достаточно много заблуждений, связанных с рассматриваемым нами понятием.

    Сейчас мы постараемся развеять некоторые их них. Вот список заблуждений:

    • Если поставить два модуля оперативной памяти, скорость работы компьютера увеличится. Это не так по той простой причине, что операционная система будет работать с тем модулем, который менее мощный. Почему это так, толком непонятно, но факт остается фактом. Поэтому лучше ставить один модуль, но мощный, а слабый убирать до лучших времен.
    • Даже если будет два модуля, система сможет с ними справиться. На самом деле, использование двух ОП очень опасно, так как влечет за собой ошибки в системе и даже критические прекращения работы компьютера. Так что лучше вообще отказаться от такой идеи.
    • Частота материнской платы никак не влияет на частоту оперативной памяти. Это вовсе не так, если частота материнки меньше того, что может выдавать ОП, память будет работать не на максимуме своих возможностей. То есть в ее мощности попросту не будет никакого смысла. Поэтому очень важно покупать оперативную память с такой частотой, которая не будет превышать максимальную в материнской платы.

    Также при покупке обращайте внимание на значение таймингов.

    Помните: чем меньше тайминг, тем быстрее работает компьютер.

    Сравните несколько вариантов и выберете лучший в этом отношении.

    Успехов в покупках и использовании оперативной памяти!

    ВКонтакте Facebook Одноклассники

    Сложность осмысленного выбора подходящей памяти заключается прежде всего в «размытости» влияния ее параметров на итоговую производительность всего ПК

    При самостоятельной сборке или модернизации компьютера всегда встает вопрос выбора комплектующих. И если с процессорами и «видюхами» все более-менее ясно (по крайней мере понятно, на какие параметры надо смотреть и какой эффект от их изменения можно ожидать), то с памятью все не так просто.

    Сложность осмысленного выбора подходящей памяти заключается прежде всего в «размытости» влияния ее параметров на итоговую производительность всего ПК. Например, замена процессора с частотой 2,5 ГГц на кристалл того же семейства с аналогичными параметрами, но частотой 3,2 ГГц однозначно приведет к приличному росту производительности если не во всех, то в большинстве приложений. В то же время увеличение частоты ОЗУ с мизерных по нынешним временам 1066 до 2133 МГц более-менее ощутимо скажется лишь на немногих задачах, да и то заметить разницу «невооруженным глазом», то есть по субъективным ощущениям, без проведения точных замеров, скорее всего, не получится.

    Особняком стоит оверклокерская память. Стоят такие модули намного дороже, чем обычные той же емкости, но при этом часто ведут себя разочаровывающе, не «заводясь» на заявленной производителем частоте. Прежде чем попытаться разобраться, в чем здесь дело и для чего вообще такая память нужна, посмотрим, как себя проявили на нашем тестовом стенде несколько реальных ее образцов. Характеристики протестированных модулей и режимы тестирования указаны в таблице.

    Тестирование проводилось на материнской плате Intel DP67BG с процессором Intel Core i7-2600K, жестким диском Western Digital WD1002FAEX и видеоконтроллером KFA GeForce 460. Все модули памяти работали на максимальных частотах и таймингах, которые нам удалось «выжать» без превышения заявленных производителями напряжений питания и без повышения напряжения на других компонентах. Производительность оценивалась по методике, аналогичной тестированию процессоров, но с несколько меньшим набором испытаний. Результаты представлены в таблице.

    Как видим, из четырех попавших к нам оверклокерских комплектов ровно половина - два набора - заработала лишь на 1600 МГц, хотя для них была указана частота 2400 МГц. Вторая пара успешно «завелась» на 2133 МГц (максимальная частота для нашего стенда). Из этого можно сделать скоропалительный вывод, что первые - «плохие», а вторые - «хорошие» (собственно, из-за такого вот «поведения» покупка скоростных модулей нередко вызывает чувство напрасно выброшенных денег). Однако остается вопрос, почему такое происходит.

    Когда речь идет об обычной памяти, предназначенной для работы на частотах, определенных стандартами JEDEC, производитель, указывая то или иное значение, обязан гарантировать, что его модули заработают на этой частоте в «стандартном» же окружении, то есть с контроллером памяти и на материнской плате, которые сами соответствуют требованиям стандарта (все современные «железяки» им удовлетворяют).

    Однако оверклокерские модули предназначены для частот, далеко выходящих за пределы стандартов. Понятно, что для успешной работы в этом случае необходимо, чтобы все компоненты вычислительной системы поддерживали данный оверклокерский, то есть нестандартный режим. Например, совершенно очевидно, что если контроллер памяти (он уже довольно давно является частью многих процессоров) не поддерживает частоты выше 1600 МГц, то никакая память на большей частоте работать не будет.

    Однако даже формальное соответствие каждого из компонентов предъявляемым требованиям еще не означает, что все вместе будет работать, поскольку на столь высоких частотах заметным образом проявляются индивидуальные особенности каждого компонента. Так, степень согласованности линий связи на данной «маме» может оказаться приемлемой для одного процессора и модулей памяти, но стать препятствием для использования других формально таких же экземпляров: ведь по-настоящему идентичных сложных изделий в природе не существует. Для пояснения этого приведем следующий упрощенный пример.

    Как известно, электрический сигнал распространяется не мгновенно. Для низких частот временем его распространения вдоль проводника можно пренебречь и считать, что напряжение на одном конце проводника будет равно напряжению на другом. Однако для высокочастотных цепей это уже не так: в один и тот же момент времени напряжения в разных точках проводника (в нашем случае - дорожки на печатной плате) будут различными. Так как все сигналы должны проходить весь путь от одного электронного компонента до другого (от контроллера памяти до самого ОЗУ или обратно) за одинаковое время, требуется выравнивать длины дорожек. Однако идеально это сделать невозможно, и на практике допускаются небольшие отклонения.

    А теперь вспомним, что проводники располагаются не только на «маме», но и на самих модулях памяти, а также внутри микросхем (от ножек к кристаллам) и непосредственно на самих кристаллах. В результате может получиться, что для одной комбинации «процессор + материнская плата + модуль памяти» отклонения в длинах дорожек в каждом из компонентов взаимно компенсируются, а для другой, наоборот, еще более увеличиваются. Именно благодаря подобным вещам и возникает ситуация, когда вроде бы одинаковые изделия в одних случаях великолепно работают друг с другом, а в других - упорно не желают. А ведь неравные длины проводников - лишь самая очевидная и простая вещь, сказывающаяся на работоспособности высокочастотных электронных схем; на практике все намного сложнее.

    По этой причине для оверклокерской памяти заявленные производителем цифры означают лишь работоспособность на данной частоте самих модулей памяти в некоторых идеальных именно для них условиях. В реальной же эксплуатации возможность достигнуть той или иной частоты определяется индивидуальными особенностями всех относящихся к делу компонентов. Таким образом, невозможность разогнать (во всяком случае, малой кровью) протестированные оверклокерские наборы от Kingmax и Transcend свыше 1600 МГц означает лишь то, что именно эти конкретные экземпляры плохо подходят для нашего стенда. Естественно, и 2133 МГц, показанные наборами ADATA и Kingston, относятся именно к тем модулям, что попали к нам, и именно к нашим «маме» и процессору.

    Возвращаясь к итоговым цифрам, легко заметить, что особых отличий в результатах разных модулей нет. Наиболее заметна разница лишь на «чистой синтетике» - в тестовом пакете AIDA64, причем в ряде тестов модули с большей частотой показывают худшие результаты, чем модули с меньшей. Такое поведение отчасти объясняется тем, что сами тесты не дают стопроцентной повторяемости: всегда существуют случайные отклонения в ту или иную сторону. Однако куда более важной является другая причина: «производительность» памяти зависит не только от частоты, но и от таймингов, причем их влияние на итоговый результат зависит от характера решаемой задачи.

    Рамки небольшой журнальной статьи не позволяют подробно рассмотреть влияние каждого параметра на работу памяти, а тем более проследить их взаимодействие друг с другом и влияние на общую производительность. Поэтому ограничимся парой кратких замечаний.

    Частота прямо влияет на теоретическую скорость обмена информацией между памятью и ее контроллером, а значит, и процессором, то есть на пропускную способность памяти. В тех случаях, когда требуется последовательная передача больших массивов информации, именно частота является важнейшей характеристикой. Именно по этой причине в «видюхах» применяют память GDDR5 с очень высокой частотой: «графические» задачи характеризуются как раз последовательным «проходом» по большим массивам информации.

    Тайминги определяют интервалы между различными этапами работы памяти. Они характеризуются количеством тактов, проходящих между теми или иными событиями (например, между выдачей одного за другим двух сигналов). Длительность каждого такта является неизменной и определяется частотой памяти. Поэтому, например, тайминги 5-5-5-15 на частоте 1066 МГц по абсолютной величине будут равны таймингам 10-10-10-30 на частоте 2133 МГц. В отличие от частоты, влияние таймингов на поведение памяти довольно сложное и нелинейное. Как правило, в первую очередь они сказываются на латентности, то есть времени, проходящем между началом операции чтения или записи памяти и реальной передачей первой порции данных. Для большинства задач, решаемых центральным процессором, эта характеристика более важна, чем пропускная способность, поскольку характер доступа к памяти здесь «хаотический», требующий частой передачи небольших порций информации из совершенно различных ячеек памяти.

    Чтобы добиться наивысшей производительности на тех или иных задачах, нужно кропотливо подбирать параметры, причем не всегда стремиться минимизировать каждый из них. Например, небольшое понижение частоты (а значит, и пропускной способности) может в некоторых случаях позволить сильно снизить тайминги, что уменьшит латентность: в результате основная масса программ станет выполняться несколько быстрее. Однако процесс такого подбора весьма долог и мучителен, особенно с учетом того, что надо добиться не просто успешного запуска компьютера, а его стабильной работы. Например, среди наших тестов самым капризным (и, кстати, самым длительным по времени) оказался Java: бывало, что все остальное успешно проходило, а этот тест постоянно «падал», и заставить его работать удавалось лишь после увеличения таймингов.

    Если не проводить после каждого изменения параметров памяти достаточно серьезного тестирования стабильности, может оказаться, что вроде бы все работает, но время от времени что-то начинает глючить, причем причина далеко не всегда является очевидной: ведь обычно разгоняют не только память, но и как минимум процессор.

    Основываясь на результатах тестов и памятуя о сложности подбора оптимальных параметров памяти, очевидным является вывод, что пользователям, выполняющим в основном нересурсоемкие задачи, заниматься разгоном ОЗУ смысла нет. Однако в случае работы с «тяжелыми» приложениями это не так. Например, если некоторая «долгоиграющая» задача, такая как конвертация видео или рендеринг трехмерной анимации, выполняется многократно изо дня в день, то даже однопроцентный выигрыш во времени ее выполнения может в итоге привести к ощутимой экономии времени.

    Однако у разгона есть и другая, формально совершенно «непрактичная» составляющая. О рекордах на Олимпиадах благодаря телевидению и Интернету знает весь мир, но ведь оверклокинг - это тоже, по сути, спорт, пускай и совершенно не олимпийский. Есть весьма обширная категория людей, для которых выжать все возможное и даже невозможное из своего компьютера является чуть ли не главным делом жизни, а иногда и приносит материальные плоды. Именно для таких энтузиастов в первую очередь и предназначаются высокопроизводительные - оверклокерские - модули памяти. Ну а тем, кому разгон ради разгона неинтересен, лучше ограничиться обычной, намного более дешевой памятью и потратить лишние деньги на что-то другое, приносящее ежедневный и более ощутимый эффект, чем удовлетворение от покорения очередной вершины.

    Для того, чтобы описать как работает оперативная память, нужно написать целую диссертацию, в то время как разобраться в вопросе влияния скорости ОЗУ на игры и программы достаточно просто.

    В первую очередь нужно отметить, что вид, объем, и частота оперативной памяти оказывают влияние на скорость передачи данных. Это значит, что насколько быстро будет работать программа и игра зависит от модулей ОЗУ. Чем больше памяти, чем выше рабочая частота, тем быстрее передаются данные и пользователь мгновенно получает ответ от софта на свой запрос. Именно на эти параметры нужно обращать внимание при покупке модулей оперативной памяти.

    Какой оптимальный объем ОЗУ выбрать для ПК?

    Операционная память – это энергозависимая микросхема, с помощью которой совершается обмен данными. При этом эти данные не сохраняются на ПК, я только обрабатываются и хранятся некоторое время, а точнее до выключения компьютера.

    Передача данных между ОЗУ и процессором может осуществляться двумя способами:

    • Через память нулевого уровня;
    • Через кэш.

    А вот скорость этой передачи зависит от объема ОЗУ. И если 32-битные системы не поддерживают больше 4 Гб, то более мощные 64-битные сборки могут поддерживать до 64 Гб оперативной памяти. Редко можно встретить ПК с 512 Мб и 1 Гб памяти. Это зачастую старые устройства с Windows XP.

    Для функционирования системы и запуска большинства приложений нужно 2 Гб памяти. Однако скорость запуска программ будет не высокой и время отклика на действия пользователя составит от нескольких секунд до минуты.

    Размера в 4 Гб памяти хватит для просмотра видео на YouTube, загрузки красочных интернет-страниц, просмотра фильмов, запуска игр на минимальных и средних настройках.

    Объема 8 и 16 гигабайт более чем достаточно для любых задач, которые пользователь возлагает на свою операционную систему. В том числе, хорошо будет работать Windows 10, системные требования которой достаточно приличные.

    32 Гб хватит для того, чтобы не беспокоиться о работе самых современных игр и мощных приложений. При этом запаса ОЗУ хватит на нескольких лет вперед.

    ВАЖНО! Если у вас старый ПК, покупка дополнительных модулей ОЗУ не ускорит работы системы. Скорость ОЗУ будет заметна при модернизации процессора и видеокарты.

    Влияние типа ОЗУ на скорость работы системы

    Скорость работы приложений и передачи данных зависит не только от объема оперативной памяти, но и от её типа. В компьютерах, собранный за последние несколько лет, можно найти четыре варианта модулей ОЗУ:

    • DDR (DDR1) – рабочая частота до 400 МГц. Используется на ПК старых образцов.
    • DDR2 – рабочая частота до 1200 МГц. Использовалась на новых ПК несколько лет назад, но была практически полностью вытеснена новым поколением.
    • DDR3 – рабочая частота до 2400 МГц. Это сравнительно новый вариант, который устанавливается на большинстве компьютерах бюджетного и среднего уровня.
    • DDR4 – рабочая частота до 3200 МГц. Поддерживается только современными материнскими платами, и то не всеми. Имеет высокие показатели передачи данных.

    Важно отметить, что чем выше рабочая частота оперативной памяти, тем быстрее работают приложения, в том числе запущенные одновременно на одном ПК. Поэтому, установив на своём компьютере планку DDR4, можно повысить скорость передачи информации практически в 2 раза. Однако с её заменой придётся менять и материнскую плату, и процессор. А это очень дорого и не всем по карману. Иногда гораздо выгоднее поставить ОЗУ большего объёма или с лучшими показателями частоты, нежели менять всю начинку системного блока.

    Значение частоты для материнской платы

    Показатели частоты важны для скорости работы компьютера. И практически все современные модели материнских плат выпускаются с величиной этого параметра для ОЗУ не меньше 1600 МГц. Однако, решив заменить на своём ПК или ноутбуке планку, стоит обратить внимание на возможности самой платы. Если мамка не поддерживает больше, к примеру, 1663 МГц, а установленная планка имеет частоту 1833 МГц, то скорость передачи информации будет ограничена меньшим значением, то есть 1663 МГц и модернизация не даст результатов.

    Посмотреть допустимое значение для материнской платы можно в инструкции, которая поставляется вместе с продуктом.