• Нахождение обратной матрицы. Решение матриц. Объясняем, как решать матрицы

    Инструкция

    Число столбцов и строк задают размерность матрицы . К примеру, размерность ю 5×6 имеет 5 строк и 6 столбцов. В общем случае, размерность матрицы записывается в виде m×n, где число m указывает на количество строк, n – столбцов.

    Если массив имеет размерность m×n, его можно умножить на массив n×l. Число столбцов первой матрицы должно равняться числу строк второй, иначе операция умножения не будет определена.

    Размерность матрицы указывает на число уравнений в системе и количество переменных. Число строк совпадает с количеством уравнений, а за каждым столбцом закреплена своя переменная. Решение системы линейных уравнений «записано» в действиях над матрицами. Благодаря матричной системе записи возможным системы высоких порядков.

    Если число строк равно числу столбцов, матрица квадратной. В ней можно выделить главную и побочную диагонали. Главная идет от левого верхнего угла к правому нижнему, побочная – от правого верхнего к левому нижнему.

    Массивы размерность ю m×1 или 1×n являются векторами. Также в виде вектора можно представить любую строку и любой столбец произвольной таблицы. Для таких матриц определены все операции над векторами.

    В программировании для прямоугольной таблицы задается два индекса, один из которых пробегает всей строки, другой – длину столбца. При этом цикл для одного индекса помещен внутрь цикла для другого, за счет чего последовательное прохождение всей размерности матрицы .

    Матрицы - это эффективный способ представления числовой информации. Решение любой системы линейных уравнений можно записать в виде матрицы (прямоугольника, составленного из чисел). Умение перемножать матрицы - один из самых важных навыков, которым обучают на курсе "Линейной алгебры" в высших учебных заведениях.

    Вам понадобится

    • Калькулятор

    Инструкция

    Для проверки этого условия проще всего воспользоваться следующим алгоритмом - запишите размерность первой матрицы как (a*b). Дальше размерность второй - (c*d). Если b=c - матрицы соразмерны, их можно перемножать.

    Дальше произведите само перемножение. Помните - при перемножении двух матриц получается матрица. То есть, задача перемножения сводится к задаче нахождения новой, с размерностью (a*d). На СИ задачи перемножения матрицы выглядит следующим образом:
    void matrixmult(int m1[n], int m1_row, int m1_col, int m2[n], int m2_row, int m2_col, int m3[n], int m3_row, int m3_col)
    { for (int i = 0; i < m3_row; i++)
    for (int j = 0; j < m3_col; j++)
    m3[i][j]=0;
    for (int k = 0; k < m2_col; k++)
    for (int i = 0; i < m1_row; i++)
    for (int j = 0; j < m1_col; j++)
    m3[i][k] += m1[i][j] * m2[j][k];
    }

    Проще говоря, новой матрицы - это сумма произведений элементов строки первой матрицы на элементы столбца второй матрицы. Если вы элемент третьей матрицы с номером (1;2), то вы должны просто умножить первую строку первой матрицы на второй столбец второй. Для этого считаете начальную сумму равной нулю. Дальше умножаете первый элемент первой строки на первый элемент второго столбца, значение добавляете в сумму. Делаете так: умножаете i-тый элемент первой строки на i-тый элемент второго столбца и добавляете результаты к сумме, пока не кончится строка. Итоговая сумма и будет искомым элементом.

    После того, как вы нашли все элементы третьей матрицы, записываете ее. Вы нашли произведение матриц.

    Источники:

    • Главный математический портал России в 2019
    • как находить произведение матриц в 2019

    Математическая матрица представляет собой упорядоченную таблицу элементов. Размерность матрицы определяется числом ее строк m и столбцов n. Под решением матриц понимается множество обобщающих операций, производимых над матрицами. Различают несколько типов матриц, к некоторым из них не применим ряд операций. Существует операция сложения для матриц с одинаковой размерностью. Произведение двух матриц находится, только если они согласованны. Для любой матрицы определяется детерминант. Также матрицу можно транспонировать и определить минор ее элементов.

    Инструкция

    Запишите заданные . Определите их размерность. Для этого посчитайте количество столбцов n и строк m. Если для одной матрицы m = n, матрица считается квадратной. Если все элементы матрицы равны нулю – матрица нулевая. Определите главную диагональ матриц. Ее элементы располагаются с левого верхнего угла матрицы до правого нижнего. Вторая, обратная диагональ матрицы является побочной.

    Проведите транспонирование матриц. Для этого замените в каждой элементы строк на элементы столбцов относительно главной диагонали. Элемент а21 станет элементом а12 матрицы и наоборот. В итоге из каждой исходной матрицы получится новая транспонированная матрица.

    Сложите заданные матрицы , если они имеют одинаковую размерность m х n. Для этого возьмите первый матрицы а11 и сложите его с аналогичным элементом b11 второй матрицы . Результат сложения запишите в новую на ту же позицию. Затем сложите элементы а12 и b12 обоих матриц. Таким образом заполните все строки и столбцы суммирующей матрицы .

    Определите, являются ли заданные матрицы согласованными. Для этого сравните число строк n в первой матрицы и число столбцов m второй матрицы . Если они равны, выполните произведение матриц. Для этого попарно умножьте каждый элемент строки первой матрицы на соответствующий элемент столбца второй матрицы . После чего найдите сумму этих произведений. Таким образом, первый элемент результирующей матрицы g11 = а11* b11 + а12*b21 + а13*b31 + … + а1m*bn1. Выполните умножение и сложение всех произведений и заполните результирующую матрицу G.

    Найдите определитель или детерминант для каждой заданной матрицы . Для матриц второго - размерностью 2 на 2 – определитель находится, как произведений элементов главной и побочной диагоналей матрицы . Для трехмерной матрицы определителя: D = а11* а22*а33 + а13* а21*а32 + а12* а23*а31 - а21* а12*а33 - а13* а22*а31 - а11* а32*а23.

    Источники:

    • матрица как решать

    Матрицы представляют собой совокупность строк и столбцов, на пересечении которых находятся элементы матрицы. Матрицы широко применяются для решения различных уравнений. Одной из базовых алгебраических операций над матрицами является сложение матриц. Как складывать матрицы?

    Инструкция

    Складывать можно только одноразмерные матрицы. Если одна имеет m строк и n столбцов, то и другая матрица должна иметь m строк и n столбцов. Убедитесь, что складываемые матрицы являются одноразмерными.

    Если представленные матрицы один и тот же размер, то есть допускают алгебраическую операцию сложения, то при матрица того же размера. Чтобы её , необходимо попарно сложить все элементы двух , стоящие на одних и тех же местах.Возьмите первой матрицы, находящийся в первой строке и первом столбце. Сложите его с элементом второй матрицы, находящемся на том же месте. Полученное занесите в элемент первой строки столбца суммарной матрицы. Проделайте эту операцию со всеми элементами.

    Сложение трех и более матриц сводится к сложению двух матриц. Например, чтобы найти сумму матриц A+B+C, найдите сначала сумму матриц A и B, затем полученную сложите с матрицей C.

    Видео по теме

    Непонятные на первый взгляд матрицы, на самом деле не так сложны. Они находят широкое практическое применение в экономике и бухгалтерии. Выглядят матрицы как таблицы, в каждом столбце и строке содержащие число, функцию или любую другую величину. Существует несколько видов матриц.

    Инструкция

    Для того чтобы научиться матрицы, познакомьтесь с ее основными понятиями. Определяющими элементами матрицы являются ее диагонали - и побочная. Главная начинается с элемента в первом ряду, первом столбце и продолжается до элемента последнего столбца, последнего ряда (то есть идет слева направо). Побочная же диагональ начинается наоборот в первом ряду, но последнем столбце и продолжается до элемента, имеющего координаты первого столбца и последнего ряда (идет справа налево).

    Для того чтобы перейти к следующим определениям и алгебраическим операциям с матрицами, изучите виды матриц. Самые простые из них - это квадратная, единичная, нулевая и обратная. В совпадает число столбцов и строк. Транспонированная матрица, назовем ее В, получается из матрицы А, путем замены столбцов на строки. В единичной все элементы главной диагонали - единицы, а другие - нули. А в нулевой даже элементы диагоналей нулевые. Обратная матрица - это та, на которую исходная матрица приходит к единичному виду.

    Также матрица может быть симметрична относительно главной или побочной осей. То есть элемент, имеющий координаты а(1;2), где 1 - это номер строки, а 2 - столбца, равен а(2;1). А(3;1)=А(1;3) и так далее. Матрицы согласованными - это те, где количество столбцов одной равно количеству строк другой (такие матрицы можно перемножать).

    Главные действия, которые можно совершить с матрицами - это сложение, умножение и нахождение определителя. Если матрицы одинакового размера, то есть имеют равное количество строк и столбцов, то их можно сложить. Складывать необходимо элементы, стоящие на одинаковых местах в матрицах, то есть а (m;n) сложите с в (m;n), где m и n - это соответствующие координаты столбца и строки. При сложении матриц действует главное правило обычного арифметического сложения - при перемене мест слагаемых сумма не меняется. Таким образом, если вместо простого элемента а

    Математическая матрица – это таблица упорядоченных элементов. Размеры этой таблицы определяются по количеству строк и столбцов в ней. Что касается решения матриц, то им называют огромное количество операций, которые производятся над этими самыми матрицами. Математики различают несколько видов матриц. Для некоторых из них действуют общие правила по решению, а для других не действуют. Например, если матрицы имеют одинаковую размерность, то их можно сложить, а если они согласовываются между собой, то их можно перемножить. Обязательно для решения любой матрицы необходимо найти детерминант. Кроме того, матрицы подвергаются транспонированию и нахождению в них миноров. Итак, давайте рассмотрим, как решать матрицы.

    Порядок решения матриц

    Сначала записываем заданные матрицы. Считаем сколько в них строк и столбцов. Если количество строк и столбцов одинаковое, то такая матрица называется квадратной. Если каждый элемент матрицы оказался равен нулю, то такая матрица нулевая. Следующее, что мы делаем, это находим главную диагональ матрицы. Элементы такой матрицы находятся от правого нижнего угла до левого верхнего. Вторая же диагональ в матрице является побочной. Теперь необходимо произвести транспонирование матрицы. Чтобы это сделать, необходимо заменить в каждой из двух матриц элементы строк на соответствующие элементы столбцов. Например, элемент под а21 окажется элементом а12 или же наоборот. Таким образом, после этой процедуры должна появиться совершенно иная матрица.

    Если матрицы имеют совершенно одинаковую размерность, то их можно запросто сложить. Чтобы это сделать, мы берем первый элемент первой матрицы а11 и складываем его с подобным элементом второй матрица b11. То, что получится в результате, записываем на ту же позицию, только уже в новую матрицу. Теперь аналогичным образом складываем все остальные элементы матрицы, пока не получится новая совершенно иная матрица. Посмотрим еще несколько способов, как решать матрицы.

    Варианты действий с матрицами

    Также мы можем определить, являются ли согласованными матрицы. Для этого нам нужно сравнить количество строк в первой матрице с количеством столбцов второй матрицы. В случае если они оказываются равными, можно их перемножить. Чтобы это сделать, мы попарно умножаем элемент строки одной матрицы на аналогичный элемент столбца другой матрицы. Только после этого можно будет посчитать сумму получившихся произведений. Исходя из этого, начальный элемент той матрицы, которая должна получиться в результате будет равен g11 = а11* b11 + а12*b21 + а13*b31 + … + а1m*bn1. После того как будет выполнено сложение и умножение всех произведений, вы сможете заполнить итоговую матрицу.

    Также можно при решении матриц найти их детерминант и определитель для каждой. Если матрица квадратная и имеет размерность 2 на 2, то определитель можно найти как разницу всех произведений элементов главной и побочной диагоналей. Если матрица уже трехмерная, то определитель можно будет найти, применив следующую формулу. D = а11* а22*а33 + а13* а21*а32 + а12* а23*а31 - а21* а12*а33 - а13* а22*а31 - а11* а32*а23.

    Чтобы найти минор заданного элемента, нужно вычеркнуть столбец и строку, там, где находится этот элемент. После этого найдите детерминант данной матрицы. Он и будет соответствующим минором. Подобный метод решающих матриц был разработан еще несколько десятилетий тому назад для того, чтобы повысить достоверность результата путем разделения проблемы на подпроблемы. Таким образом, решать матрицы не так уж сложно, если вы знаете основные математические действия.

    Назначение сервиса . Матричный калькулятор предназначен для решения матричных выражений, например, таких как, 3A-CB 2 или A -1 +B T .

    Инструкция . Для онлайн решения необходимо задать матричное выражение. На втором этапе необходимо будет уточнить размерность матриц.

    Действия над матрицами

    Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).

    Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).
    Для выполнения списка операций используйте разделитель точка с запятой (;). Например, для выполнения трех операций:
    а) 3А+4В
    б) АВ-ВА
    в) (А-В) -1
    необходимо будет записать так: 3*A+4*B;A*B-B*A;(A-B)^(-1)

    Матрица - прямоугольная числовая таблица, имеющая m строк и n столбцов, поэтому схематически матрицу можно изображать в виде прямоугольника.
    Нулевой матрицей (нуль-матрицей) называют матрицу, все элементы которой равны нулю и обозначают 0.
    Единичной матрицей называется квадратная матрица вида


    Две матрицы A и B равны , если они одинакового размера и их соответствующие элементы равны.
    Вырожденной матрицей называется матрица, определитель которой равен нулю (Δ = 0).

    Определим основные операции над матрицами .

    Сложение матриц

    Определение . Суммой двух матриц и одинакового размера называется матрица тех же размеров, элементы которой находятся по формуле . Обозначается C = A+B.

    Пример 6 . .
    Операция сложения матриц распространяется на случай любого числа слагаемых. Очевидно, что A+0=A .
    Еще раз подчеркнем, что складывать можно только матрицы одинакового размера; для матриц разных размеров операция сложения не определена.

    Вычитание матриц

    Определение . Разностью B-A матриц B и A одинакового размера называется такая матрица C, что A+ C = B.

    Умножение матриц

    Определение . Произведением матрицы на число α называется матрица , получающаяся из A умножением всех ее элементов на α, .
    Определение . Пусть даны две матрицы и , причем число столбцов A равно числу строк B. Произведением A на B называется матрица , элементы которой находятся по формуле .
    Обозначается C = A·B.
    Схематически операцию умножения матриц можно изобразить так:

    а правило вычисления элемента в произведении:

    Подчеркнем еще раз, что произведение A·B имеет смысл тогда и только тогда, когда число столбцов первого сомножителя равно числу строк второго, при этом в произведении получается матрица, число строк которой равно числу строк первого сомножителя, а число столбцов равно числу столбцов второго. Проверить результат умножения можно через специальный онлайн-калькулятор .

    Пример 7 . Даны матрицы и . Найти матрицы C = A·B и D = B·A.
    Решение. Прежде всего заметим, что произведение A·B существует, так как число столбцов A равно числу строк B.


    Заметим, что в общем случае A·B≠B·A , т.е. произведение матриц антикоммутативно.
    Найдем B·A (умножение возможно).

    Пример 8 . Дана матрица . Найти 3A 2 – 2A.
    Решение.

    .
    ; .
    .
    Отметим следующий любопытный факт.
    Как известно, произведение двух отличных от нуля чисел не равно нулю. Для матриц подобное обстоятельство может и не иметь места, то есть произведение ненулевых матриц может оказаться равным нуль-матрице.

    Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц.

    Матрицы (и соответственно математический раздел - матричная алгебра) имеют важное значение в прикладной математике, так как позволяют записать в достаточно простой форме значительную часть математических моделей объектов и процессов. Термин "матрица" появился в 1850 году. Впервые упоминались матрицы еще в древнем Китае, позднее у арабских математиков.

    Матрицей A=A mn порядка m*n называется прямоугольная таблица чисел, содержащая m - строк и n - столбцов .

    Элементы матрицы a ij , у которых i=j, называются диагональными и образуют главную диагональ .

    Для квадратной матрицы (m=n) главную диагональ образуют элементы a 11 , a 22 ,..., a nn .

    Равенство матриц.

    A=B , если порядки матриц A и B одинаковы и a ij =b ij (i=1,2,...,m; j=1,2,...,n)

    Действия над матрицами.

    1. Сложение матриц - поэлементная операция

    2. Вычитание матриц - поэлементная операция

    3. Произведение матрицы на число - поэлементная операция

    4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)

    A mk *B kn =C mn причем каждый элемент с ij матрицы C mn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B , т.е.

    Покажем операцию умножения матриц на примере

    5. Возведение в степень

    m>1 целое положительное число. А - квадратная матрица (m=n) т.е. актуально только для квадратных матриц

    6. Транспонирование матрицы А. Транспонированную матрицу обозначают A T или A"

    Строки и столбцы поменялись местами

    Пример

    Свойства опрераций над матрицами

    (A+B)+C=A+(B+C)

    λ(A+B)=λA+λB

    A(B+C)=AB+AC

    (A+B)C=AC+BC

    λ(AB)=(λA)B=A(λB)

    A(BC)=(AB)C

    (λA)"=λ(A)"

    (A+B)"=A"+B"

    (AB)"=B"A"

    Виды матриц

    1. Прямоугольные: m и n - произвольные положительные целые числа

    2. Квадратные: m=n

    3. Матрица строка: m=1 . Например, (1 3 5 7) - во многих практических задачах такая матрица называется вектором

    4. Матрица столбец: n=1 . Например

    5. Диагональная матрица: m=n и a ij =0 , если i≠j . Например

    6. Единичная матрица: m=n и

    7. Нулевая матрица: a ij =0, i=1,2,...,m

    j=1,2,...,n

    8. Треугольная матрица: все элементы ниже главной диагонали равны 0.

    9. Симметрическая матрица: m=n и a ij =a ji (т.е. на симметричных относительно главной диагонали местах стоят равные элементы), а следовательно A"=A

    Например,

    10. Кососимметрическая матрица: m=n и a ij =-a ji (т.е. на симметричных относительно главной диагонали местах стоят противоположные элементы). Следовательно, на главной диагонали стоят нули (т.к. при i=j имеем a ii =-a ii )

    Ясно, A"=-A

    11. Эрмитова матрица: m=n и a ii =-ã ii (ã ji - комплексно - сопряженное к a ji , т.е. если A=3+2i , то комплексно - сопряженное Ã=3-2i )

    Матрицы, познакомьтесь с ее основными понятиями. Определяющими элементами матрицы являются ее диагонали - и побочная. Главная начинается с элемента в первом ряду, первом столбце и продолжается до элемента последнего столбца, последнего ряда (то есть идет слева направо). Побочная же диагональ начинается наоборот в первом ряду, но последнем столбце и продолжается до элемента, имеющего координаты первого столбца и последнего ряда (идет справа налево).

    Для того чтобы перейти к следующим определениям и алгебраическим операциям с матрицами, изучите виды матриц. Самые простые из них - это квадратная, единичная, нулевая и обратная. В совпадает число столбцов и строк. Транспонированная матрица, назовем ее В, получается из матрицы А, путем замены столбцов на строки. В единичной все элементы главной диагонали - единицы, а другие - нули. А в нулевой даже элементы диагоналей нулевые. Обратная матрица - это та, на которую исходная матрица приходит к единичному виду.

    Также матрица может быть симметрична относительно главной или побочной осей. То есть элемент, имеющий координаты а(1;2), где 1 - это номер строки, а 2 - столбца, равен а(2;1). А(3;1)=А(1;3) и так далее. Матрицы согласованными - это те, где количество столбцов одной равно количеству строк другой (такие матрицы можно перемножать).

    Главные действия, которые можно совершить с матрицами - это сложение, умножение и нахождение определителя. Если матрицы одинакового размера, то есть имеют равное количество строк и столбцов, то их можно сложить. Складывать необходимо элементы, стоящие на одинаковых местах в матрицах, то есть а (m;n) сложите с в (m;n), где m и n - это соответствующие координаты столбца и строки. При сложении матриц действует главное правило обычного арифметического сложения - при перемене мест слагаемых сумма не меняется. Таким образом, если вместо простого элемента а стоит выражение а+в, то его можно сложить в элементом с другой соразмерной матрицы по правилам а+(в+с)= (а+в)+с.

    Умножать можно согласованные матрицы, которым дано выше. При этом получается матрица, где каждый элемент - это сумма попарно перемноженных элементов строки матрицы А и столбца матрицы В. При перемножении очень важен порядок действий. m*n не равно n*m.

    Также одно из главных действий - это нахождение . Еще его называют детерминантом и обозначают так: det. Эта величина определяется по модулю, то есть никогда не бывает отрицательной. Легче всего найти детерминант у квадратной матрицы 2х2. Для этого необходимо перемножить элементы главной диагонали и вычесть из них перемноженные элементы побочной диагонали.