• Обзор шикарного робота LEGO, который можно программировать. Программирование и управление промышленными роботами

    Роботы-конструкторы – идеальная возможность, чтобы совместить игру и обучение простейшим навыкам программирования. Именно поэтому они пользуются столь большой популярностью в мире.

    Различаются они не только производителями, но и способами и возможностями программирования, типами крепежей, а также материалами.

    Большинство упрощенных (для новичков) и роботов имеют в комплекте специальное программное обеспечение, которое позволяет без труда задать команды своему творению. В более совершенных моделях придется для начала изучить, основанные на С, языки.

    LEGO Mindstorms

    Конструктор выпускается в двух типах:

    • детский;
    • продвинутый.

    В детском вложено всего лишь несколько моторов, лампочек, а также инструкция с возможными вариантами сборки. Но с LEGO часто инструкция оказывается уже не нужна после первой сборки, и в дело вступает фантазия.

    Стоит заметить, хоть программирование этих роботов возможно, блоков управления в этом наборе не предусмотрено, это означает, что робот будет всегда соединен с компьютером при помощи кабеля USB.

    Продвинутый же набор открывает намного больший простор для фантазии. Он существует в нескольких вариантах и поколениях (на данный момент поколений три). Они отличаются количеством деталей, наличием дополнительных микрокомпьютеров, а также различными датчиками и другими приборами. Микрокомпьютеры этой серии оснащены операционной системой Linux. Эти схемы поддерживают не только специальные языки программирования, но и C++, C и даже Python.

    Для удобства перепрограммирования робота можно воспользоваться официальной программой от LEGO, которая позволит настраивать элементы при помощи интуитивно понятного интерфейса.

    Лего держит пальму первенства в роботах-конструкторах уже более десяти лет. Устраиваются соревнования по созданию , где главным призом чаще всего оказывается бюджетное место в престижном ВУЗе.

    LEGO Mindstorms – один из 17 вариантов сборки

    HUNA

    Это сравнительно новый бренд, родом из южной Кореи, который постепенно набирает популярность в кругах юных кибернетиков. Типов наборов HUNA существует два. Их принципиальное отличие заключается в том, что, в одном случае детали выполнены из пластика, а в другом – из металла. Но в то же время их можно комбинировать, так как принцип соединения частей у них общий.

    Узнать больше об увлекательных металлических конструкторах для мальчиков можно .

    Пластиковые наборы HUNA предназначены для детей, возрастом от шести лет, так как не требуют знания даже основ программирования.

    В качестве “мозга” железных комплектов выступает контроллер Arduino, на котором уже стоит специальная прошивка. Среда программирования тут – обычный C-образный язык для Arduino, но для большего удобства его визуализировали.

    За счет Arduino, а также более продвинутых систем, данные наборы специализируются на аудитории, достигшей пятнадцати лет. То есть, тех, кто уже перерос Mindstorms.

    Makeblock

    Следующим конструктором в нашем списке является китайский Makeblock. Как и в предыдущем случае, здесь используется электроника Arduino. Количество продаваемых наборов на официальном сайте просто огромное. Вы можете найти как дешевые комплекты обычных машинок, так и достаточно серьёзные наборы, которые позволяют создать своими руками 3D-принтер.

    Все детали Makeblock выполнены из алюминия, на который электростатическим методом нанесена краска (примерно, как и на автомобили). Таким образом, вероятность того, что со временем детали будут выглядеть неказисто, стремится к нулю.

    Из интересных моделей следует заметить те, которые выполняют рисунки, среди них:

    • mScara – робо-рука, на которую можно вместо маркера поставить лазер;
    • mSpider – он рисует в вертикальных плоскостях, подобно пауку перемещаясь на ниточках;
    • mCar – машинка, которая рисует маркером там, где она ездит.

    Также для этих роботов имеется специальное ПО, которое позволяет создать рисунок любой сложности. Для этого достаточно загрузить его в графический редактор программы.

    #Структор

    Этот конструктор производится в России и отличается от других тем, что его детали выполнены из вспененного ПВХ. Их толщина составляет пять миллиметров, что позволяет создавать небольшие, но достаточно прочные конструкции.

    А тот факт, что ПВХ – мягкий материал, позволяет решить вечную проблему конструкторов – детали не такие, как их хочется видеть. В данном случае все решается обычным канцелярским ножом или скальпелем.

    Достоинства ПВХ:

    • низкая стоимость;
    • простота обработки – достаточно лишь вооружиться ножом, карандашом и линейкой;
    • высокая прочность;
    • влагоустойчивость;
    • пожаробезопасность – температура возгорания листового ПВХ превышает 400 градусов Цельсия.

    Малую прочность конструкции производители предлагают решить двумя способами. Первый – просто склеить детали. Лучше всего для таких целей подойдет специальный клей “Космофен”. Второй способ – объединить #Структор с советским (или аналогичным) железным конструктором.

    #Структор от “Амперка”

    Хоть детали от такого обращения долго не проживут, вы всегда сможете купить лист пластика и вырезать новые. Чертежи деталей находятся в свободном доступе, да и фантазию никто не исключал.

    Управление элементами #Структор производится на Arduino. А благодаря универсальности материала, из которого изготовлены элементы конструктора, любой датчик, сервопривод или мотор легко внедряются в конструкцию.

    Vex

    Фирма известна в основном благодаря своим вибророботам. Но немногие в курсе, что она также производит наборы по созданию полноценных роботов. Наборы предназначены для детей от десяти лет. Но благодаря широкому ассортименту продукции их также можно использовать в школах или университетах.

    Если какого-то элемента будет недоставать, всегда можно приобрести его отдельно. На сайте производителя имеется масса различных датчиков, моторов и других элементов конструктора. Кроме того, покупая дополнительные детали, можно повысить сложность изделий.

    Только в наборах корейской компании Vex встречаются коробки передач или колеса Илона.

    Программирование происходит на одной из нескольких сред. Всего среды три. Первая представляет собой экран, где вместо прописывания команд просто перетаскиваются блоки. Вторая же – классические блок-схемы, как на уроках информатики. Третья среда очень похожа на ПО от LEGO – то же перетаскивание блоков с командами и значениями.

    Примечательной особенностью является также наличие ПО VEX Assembler. Это 3D редактор, в котором вы можете придумать и испытать своего робота до того, как начнете его строить вживую.

    VEX Robotics by HEXBUG

    FischerTechnik

    Комплекты конструкторов производит немецкая компания. Линейка ROBOTICS, которая и открывает для детей мир роботов, насчитывает шесть наборов. Все они предлагают создать несколько роботов, которые выполняют те или иные функции. Как и со всеми конструкторами, веселье начинается в тот момент, когда все инструкции уже перепробованы.

    Чтобы не было недостатка в деталях и электронных компонентах отдельно можно приобрести наборы расширения, дистанционное управление и многое другое.

    Отдельного внимания заслуживают контроллеры, продающиеся отдельно. Хоть их стоимость сопоставима со стоимостью целого набора, границы, которые они открывают, с легкостью перекрывают этот факт.

    В продаже имеется два типа контроллеров:

    • Robo TX;
    • Robo TXT.

    Высокая цена за них обусловлена тем, что это не просто контроллеры, а настоящие микрокомпьютеры с поддержкой Wi-Fi, Bluetooth и довольно мощной “начинкой” для своих малых размеров. Для повышения производительности эти контроллеры могут быть совмещены в одну сеть.

    Программирование происходит на бесплатной программе Robo Pro. Все команды задаются при помощи логических блоков, что позволяет обучить ребенка азам программирования в игровой форме.

    ТРИК

    Конструктор родом “рожденный” в России. Его производители решили помочь любителям робототехники, которые используют советские металлические конструкторы. Поэтому все детали имеют отверстия с теми же десятью миллиметрами, что и железные конструкторы.
    Этот конструктор на рынке новичок, но уже зарекомендовал себя как универсальный и очень удобный.

    На данный момент имеется четыре типа наборов:

    • стартовый;
    • образовательный;
    • школьный;
    • соревновательный.

    Их различие в количестве деталей и электроники. Во всех наборах вы найдете микроконтроллер, микрофон и видеокамеру или датчики, светодиоды и колеса.

    Микроконтроллер ТРИК работает на Linux и имеет на борту процессор с 24 мегагерцами и целые 256 Мбайт оперативной памяти. Также ее можно расширить за счет Flash-карты.

    Набор для сборки ТРИКС

    Создатели данного конструктора решили не привязывать контроллер к одной среде программирования. Поэтому он поддерживает C, C++, Python и даже Java. Для тех, кто только изучает программирование, имеется специальная среда программирования, предназначенная для контроллера ТРИК.

    Так как контроллер поддерживает множество команд, для удобства управления имеется приложение для смартфонов под управлением Android. Команды передаются при помощи Wi-Fi.

    MOSS


    Американская компания, придумавшая MOSS, пошла нестандартным путем – она отказалась от проводов.
    Вместо них используются детали кубической формы, которые имеют цветные грани. Их назначение следующее:

    1. Зеленые – передача электричества от аккумулятора.
    2. Красные – вход данных.
    3. Коричневые грани – выход данных.
    4. Голубые – эти грани передают и электричество и данные. Они нужны для того, чтобы соединять детали при помощи гибкого элемента.

    Да, конструкция довольно сложна, но если в ней разобраться, фантазию в создании роботов будет уже не остановить. А понять в чем суть в ней, может и ребенок 8 лет, на которого конструктор и рассчитан. Модули соединяются межу собой при помощи металлических шаров, крепящихся на магниты. Магниты эти расположены на углах модулей.

    Robo Wunderkind от MOSS

    Программирование микроконтроллеров можно совершать на двух программах. Первая представляет собой визуализатор с дополнительными параметрами. Она подойдет для тех, кто не очень хорошо разбирается в C-коде.

    Вторая же программа направлена на тех, кто хорошо в нем разбирается. Она компилирует ваш код и переносит его в контроллер. Обе эти программы работают на Windows и Mac OS, но не поддерживаются Linux.

    Для удаленного правления роботом MOSS существует сразу несколько программ для мобильных устройств. Это и пульты управления, экспорт данных с датчиков, рисование графиков и многое другое. Все программы доступны для iOS, а некоторые и для Android.

    Для детей дошкольного возраста можно выбрать набор для сборки без электротехнической составляющей, например, .

    Стоит заметить, что в обзоре не учитывались конструкторы, стоимостью свыше ста тысяч рублей, а также те, которые требуют какой-либо пайки.

    Робот MECCANO, управляемый с помощью смартфона или планшета

    Видео

    Данное видео подробно расскажет Вам о программируемых роботах: какие они бывают и какой лучше выбрать.

    Чтобы выбрать конструктор, нужно определиться, для кого он:

    • LEGO Mindstorms лучше всего подойдет ребенку, который увлекается роботами. А так как у большинства детей есть обширная коллекция LEGO, фантазия ребенка будет поистине безграничной.
    • Если вы разыскиваете конструктор для себя, то стоит обратить внимание на ТРИК или #Структор, так как они оба совместимы с советским железным конструктором, а второй к тому же, еще, и выполнен из ПВХ.
    • Но, так или иначе, эти конструкторы очень сильно улучшат способности вашего ребенка к логическому мышлению, а также подготовят его к тому, что будет ждать его в школе или институте.

    Не лишним будет, перед покупкой , подробно изучить каждый понравившийся набор для сборки. А также подумать над тем, чтобы отдать ребенка в клуб радиолюбителей, если данная тематика ему нравится.

    Конструкторы LEGO знакомы каждому. За несколько десятилетий наборы разноцветных пластмассовых деталек стали поистине культовыми: дети с удовольствием собирают из них замки, машины и космические корабли, а взрослые – целые настоящие города.

    Сегодня LEGO не только развивает мелкую моторику и фантазию. Новый набор LEGO Boost предлагает в буквальном смысле оживить собранный конструктор , используя смартфон или планшет.

    То есть, собранный киберкот действительно будет мурчать, робот разговаривать и ездить а гитара выдавать бешеные «соляги».

    Как это выглядит? Я собрал своего робота и сейчас всё расскажу.

    Что такое LEGO Boost

    Lego Boost – это развивающий конструктор, состоящий из 847 деталей. из них можно собрать на выбор одну из 5-ти моделей:

    1. Робот Верни
    2. Кот Фрэнки
    3. Гитара 4000
    4. Фабрика роботов
    5. Вездеход (M.T.R.4)

    Основными элементами каждой модели являются 3 детали: это основной механический блок, датчик определения цветов и расстояния и интерактивный двигатель.

    Основной механический блок является «сердцем» LEGO Boost, который приводит собранный конструктор в движение. Именно к нему можно подключить свой iPhone или iPad, чтобы запрограммировать собранную модель на выполнение разных команд и даже общение с владельцем.

    К механическому блоку подключаются два других: датчик цвета и расстояния реагирует на внешние раздражители, помогая игрушке объезжать препятствия или следовать своему сценарию поведения при виде определённого цвета, а интерактивный двигатель оживляет конструктор, вращая гусеницы или колёса (смотря что соберёте).

    Для программирования конструктора понадобится приложение LEGO Boost Creative Toolbox [скачать в App Store ]. Скачать его придётся в обязательном порядке, потому что в коробке с конструктором нет бумажных инструкций – все этапы сборки каждой из 5-ти моделей наглядно показываются в приложении.

    Про каждую модель можно написать отдельный обзор, но я расскажу кратко о возможностях каждого робота LEGO Boost:

    1. Робот Верни. Отличный собеседник и друг

    Робот Верни может ездить и крутиться вокруг своей оси, разговаривать, различать цвета и объезжать препятствия. К роботу можно собрать пушку и стрелять по мишени.

    С помощью дополнительных аксессуаров робота можно превратить в танцора, диджея, полицейского или хоккеиста. Чтобы разобраться и попробовать все возможности Верни уйдет не один час.

    Верни умеет выражать эмоции с помощью подвижных бровей: удивление, злость и радость. Это просто нужно видеть, чтобы оценить как удивительно точно игрушке удаётся радоваться или грустить при помощи всего лишь нескольких двигающихся деталек.

    Вот короткое видео, в котором робот Верни ведет себя неприлично:

    Робот не умеет сам двигать руками, однако он может сжать в «пальцах» мелкие предметы и отвезти их из одной точки в другую.

    Нет, пиццу не принесет. Может быть, это в следующем поколении LEGO Boost пофиксят:)

    2. Киберкот Френки. Идеальный питомец без шерсти и неприятных запахов

    Киберкот по имени Френки не умеет передвигаться сам, зато может вставать на задние лапы, двигать ушами и вилять хвостом. Френки можно погладить, и он отзовётся довольным мурлыканием, а можно заставить его сыграть на губной гармошке, причём мелодия зависит от цвета, который нужно показать киберкоту.

    У Френки тоже есть мимика, правда брови ему нужно двигать руками. Интерактивные элементы заняты в вышеописанных процессах виляния хвостом и вставанием на задние лапы.

    Да, мы всё ещё говорим про конструктор LEGO.

    3. Гитара 4000. Играет как настоящая

    Гитара 4000 является почти настоящим музыкальным инструментом, с помощью которого можно играть музыку. Аккорды зажимать не нужно, вместо этого предлагается передвигать «слайдер» по грифу гитары. Датчик движения отслеживает положение «слайдера» и даёт команды на воспроизведение разных звуков.

    Вторая рука тоже нужна, чтобы имитировать удары по невидимым струнам с помощью специального рычажка. Есть даже специальный контроллер для получения звука «тремоло» во время сольных запилов.

    Кстати, эта модель может проигрывать не только гитарные звуки, но и любые другие. Так что почему бы не использовать её в качестве сэмпл-машины, чтобы почувствовать себя настоящим диджеем?

    4. Фабрика роботов. Для создания своей армии Терминаторов

    Это самая сложная модель из всех пяти, но и самая крутая. После сборки фабрика может сама собирать небольших роботов из кубиков LEGO.

    Натурально, весь процесс автоматический. Выглядит завораживающе, но лучше всего это может передать видео.

    Краткий гайд по созданию армии роботов:

    Я жалею, что сначала собрал робота Верни. Надо было собирать вот эту фабрику, чтобы завалить видеороликами, какой LEGO Boost крутой конструктор, весь инстаграм.

    5. Вездеход (M.T.R.4). Проедет по любому ковру

    Тяжёлая машина на гусеничном ходу с большими колёсами с лёгкостью проедет по заданному маршруту, объезжая препятствия. На вездеход можно собрать дополнительные аксессуары: пушку, ковш, катапульту и даже строительные конусы, которые игрушка будет аккуратно объезжать.

    Датчик расстояния здесь выполняет роль обнаружителя предметов: если вездеход с ковшом подъедет к небольшому «грузу», то датчик даст команду игрушке поднять ковш и положить предмет в кузов.

    Лучше всего один раз увидеть, как это происходит:

    По схожему принципу работают и другие аксессуары вместе с датчиком движения. Если нет доверия датчикам, можно перейти в режим ручного управления: на экране iPhone или iPad появятся виртуальные джойстики, с помощью которых можно управлять движением вездехода и работой ковша, катапульты или пушки.

    Как программировать конструктор?

    Приложение LEGO Boost напоминает игру, где каждый уровень помогает освоить новые навыки взаимодействия с конструктором. В самом начале можно увидеть всех роботов и выбрать того, кого хочется собрать.

    Для программирования готового робота не нужно уметь даже читать и писать: все команды выглядят как разноцветные блоки, которые нужно просто перетащить на временную шкалу в желаемом порядке.

    Все блоки команд разделены по типам и цвету. В некоторых случаях можно самому задать время выполнения той или иной команды, а некоторые блоки выполняют случайные действия, что делает робота более «живым» и самостоятельным.

    Конструктор LEGO Boost способен воспринимать и интерактивные команды: можно помахать перед роботом рукой, произнести кодовое слово или прикоснуться, чтобы начал выполняться заранее заданный алгоритм. При составлении алгоритмов действий доступны целые циклы, что уже приближает управление игрушкой к настоящему программированию.

    Сложно собрать своего робота?

    Для взрослого человека сборка любой модели LEGO Boost займёт 2-3 часа. Для ребенка же весь процесс растянется на несколько дней, особенно если чаду еще нет 10-ти лет.

    Sphero SPRK

    Sphero SPRK - робот для обучения программированию, замаскированный под небольшой полупрозрачный шарик. Управлять устройством нужно с помощью кода: его набирают в редакторе смартфона, используя блоки с командами. Шарик может катиться, крутиться, прыгать и менять цвета. Играть могут и те, кто пока не умеет программировать – для этого разработчики загрузили 12 базовых алгоритмов.

    Шарик придумала компания Sphero, основанная в 2010 году для производства детских игрушек. Робота специально сделали прозрачным: дети могут следить за тем, как механизмы внутри шарика управляют его движениями. Кстати, название SPRK расшифровывается как Schools-Parents-Robots-Kids (школы, родители, роботы, дети). В магазинах игрушку можно купить за $129.99.

    Ozobot

    Робот Ozobot размером не превышает мячик для гольфа. Если нарисовать жирным маркером линию на бумаге (или виртуальным маркером - на экране планшета), он по ней покатится. Для дальнейших действий потребуется придумать код: например, можно запрограммировать шарик так, чтобы он повернулся вокруг своей оси или ускорился. Пока к роботу прилагается оригинальный редактор кода Ozobot, но в скором времени можно будет пользоваться языком программирования Blockly.

    Основатель проекта рассказал в интервью Techcrunch: «Дети сегодня стали очень замкнутые, поэтому мы хотели сделать что-то такое, что побудило бы их вернуться в реальный физический мир». Сейчас Ozobot работает на iOS и Android, а полный комплект стоит около $50 (туда входит сам робот, игры, приложения и другие программы).

    Project Bloks

    Конструктор Project Bloks был разработан Google в партнерстве со студией дизайна IDEO. Используя готовые запчасти, можно создавать различные устройства и проводить эксперименты: сочинять музыку или дистанционно управлять вещами в комнате. Платформа состоит из трех частей: процессора, работающего на основе Raspberry Pi, панели управления и инструментов (например, светодиодных лампочек или аудиопроигрывателя).

    Главное достоинство Project Bloks состоит в том, что платформа позволяет не просто нажимать на кнопки и ждать эффекта, но прочувствовать связь между софтом и железом. Например, иконки команд нанесены прямо на физические кнопки, через которые выполняются эти команды. С помощью Project Bloks дети могут создавать алгоритмы для управления различными роботами: к примеру, Lego WeDo 2.0 или Mirobot.

    Cubetto

    Деревянные кубики – важная часть детства. При желании, из кубиков Cubetto тоже можно строить башни, но отнюдь не только это. Каждый кубик является роботом, умеющим выполнять команды. Предполагается, что программировать Cubetto смогут даже трехлетние дети – те, которые пока не умеют ни читать, ни писать. В набор стоимостью 225 долларов входит деревянный кубик-робот на колесиках, деревянная настольная игра, дополнительные блоки и книжка с заданиями.

    Как в языке программирования LOGO, каждый блок представляет собой простую команду: например, вперед, назад, вправо или влево. Дети размещают блоки на игровой площадке, тем самым создавая программу движения робота.

    AERobot

    Далеко не все школы могут себе позволить приобретение робота. Другое дело, если он стоит всего 11 долларов. Такова примерная цена AERobot — небольшого устройства, оснащённого несколькими датчиками и способного выполнять запрограммированные команды. Его придумали несколько исследователей из Гарварда, увлечённых идеей дать возможность школьникам из развивающихся стран поиграть с настоящим роботом, попутно обучаясь программированию.

    Передать код на устройство и зарядить его можно с обычного компьютера через USB. «И никаких лишних рюшечек», - комментирует создатель робота.

    Robbo

    Создатели Robbo мечтают вдохновлять детей на изучение окружающей среды и решение практических проблем. Устройства выполняют команды пользователя, которые пишутся на визуальном и простом языке программирования Scratch.

    Устройства и учебные материалы Robbo уже используются в ряде европейских школ. Компания разработала роботов в сотрудничестве с факультетом педагогического образования Университета Хельсинки и финскими школами.

    Root

    Робот Root, разработанный в Гарварде – это глазастый шестиугольник, наводящий на мысль о роботах-пылесосах или детях из рассказа Брэдбери. У робота есть сканеры и бамперы, позволяющие передвигаться, следовать заданной траектории и избегать препятствий. Кстати, Root умеет ездить не только по полу, но и по школьной доске, а также рисовать и стирать нарисованное. Для управления роботом нужно установить приложение Square на iPad.

    Среда для создания алгоритмов напоминает редактор Scratch: чтобы робот произвел определенное действие, надо выбрать блок с соответствующей командой. В процессе обучения правила игры усложняются – нужно не просто перетаскивать блоки, но самому писать команды. Пока робот находится в доработке, поэтому в магазинах окажется еще не скоро.

    Бонус: игра «Битва Големов»

    На первый взгляд, «Битва Големов» – это обычная настольная игра, но на самом деле авторы заложили в нее многое. Цели этого российского проекта – обучить детей программированию, зародить в них интерес к робототехнике, посеять начальные знания и дать навыки, необходимые затем для погружения в мир интернет-технологий. Проект совмещает основы алгоритмики, работы с исполнителями, принципы построения и выполнения программ, основные алгоритмические конструкции, пространственное мышление и логику команд для роботов-исполнителей, основы программных конструкций типа условий и циклов. И всё это без использования компьютеров!

    Для iPad — образовательного приложения для кодирования. Приложение позволяет программировать роботов, дронов и музыкальных инструментов на Swift — языке от Apple.

    “Несмотря на то, что Swift предназначен в первую очередь для разработчиков iOS и mac OS, приложение также позволит понять общие концепции программирования, зная которые, можно смелее начать изучение любого понравившегося языка программирования и углубляться в его тонкости”, — говорит Илья Вислоцкий, руководитель департамента разработки Stack Group.

    “В прошлом, если человеку захотелось разобраться, как работают программы, или хотел попробовать себя в программировании, то у него не было выбора, кроме как сразу использовать профессиональные IDE”, — отмечает Илья Вислоцкий. Сейчас создано уже довольно много учебных программ, они позволяют привлечь детей в программирование и разобрать основные конструкции алгоритмизации (условие, цикл, подпрограммы). «Я сам часто играю в подобные игры, например Lightbot. На мой взгляд вдвойне полезно, если программа ограничивает алгоритм по количеству операций, так как задание можно выполнить множеством способов, стремясь к самому эффективному», — добавляет Максим Бекурин, тренер по робототехнике центр «Техноit».

    А вот аналогов в формате приложения для планшета, даже немного схожих по функционалу и назначению, нет. В Swift Playgrounds пользователь может мгновенно увидеть созданный им код и напрямую управлять устройствами — уроки программирования станут еще увлекательнее и более наглядными. С помощью Bluetooth приложение легко подключается к разным роботам и дронам от нескольких компаний.

    Универсальная платформа взаимодействует с пятью моделями:

    1. С помощью популярного набора LEGO MINDSTORMS EV3 миллионы детей по всему миру могут кодировать и управлять моторами и датчиками своих учебных роботов.
    2. Роботизированный шар Sphero SPRK + умеет вращаться, катиться, поворачиваться, ускоряться и менять цвет. С Swift Playgrounds станет возмножным контролировать шар с помощью датчиков, обеспечивающих обратную связь.
    3. Под управлением кода на Swift дроны Parrot Mambo, Airborne и Rolling Spider могут взлетать, приземляться, поворачиваться и выполнять различные трюки.
    4. Робота UBTECH Jimu Robot MeeBot Kit можно запрограммировать и научить его ходить, наклоняться и танцевать.
    5. Робот от Wonder Workshop иллюстрирует основные принципы написания кода. С Swift Playgrounds он поможет ученикам младших классов изучить программирование на практике.

    “Возможность подключения к нескольким роботам является безусловным плюсом, создавая этим самым дополнительное направление изучения робототехники. К тому же, учитывая многолетнюю работу компании Apple, можно с уверенностью сказать, что они будут и дальше развивать это приложение, чтобы оно подходило и для крупных серьезных проектов”, — отмечает Александр Кормильцев, преподаватель отделения политехнического образования Дворца молодежи, Екатеринбург.

    Swift Playgrounds совместим со всеми моделями iPad Air, iPad Pro и iPad mini 2, а также с iOS 10 или более поздними версиями.

    Работающий на стыке кибернетики, психологии и бихевиоризма (науки о поведении), и инженер, составляющий алгоритмы для промышленных роботизированных комплексов, среди основных инструментов которого - высшая математика и мехатроника, работают в самой перспективной отрасли ближайших лет - робототехнике. Роботы, несмотря на сравнительную новизну термина, издавна знакомы человечеству. Вот лишь несколько фактов из истории развития умных механизмов.

    Железные люди Анри Дро

    Еще в мифах Древней Греции упоминались механические рабы, созданные Гефестом для выполнения тяжелых и однообразных работ. А первым изобретателем и разработчиком человекоподобного робота стал легендарный Леонардо да Винчи. До наших дней сохранились подробнейшие чертежи итальянского гения, описывающие механического рыцаря, способного имитировать человеческие движения руками, ногами, головой.

    Созданию первых автоматических механизмов с программным управлением положили начало в конце XVΙΙΙ века европейские часовые мастера. Наиболее преуспели на этом поприще швейцарские специалисты отец и сын Пьер-Жак и Анри Дро. Ими создана целая серия ("пишущий мальчик", "рисовальщик", "музыкантша") в основе управления которыми лежали часовые механизмы. Именно в честь Анри Дро в дальнейшем все программируемые человекоподобные автоматы стали называть "андроидами".

    У истоков программирования

    Основы программирования промышленных роботов были заложены на заре XIX века во Франции. Здесь же и были разработаны первые программы для автоматических текстильных станков (прядильных и ткацких). Стремительно растущая армия Наполеона остро нуждалась в обмундировании и, следовательно, тканях. Изобретатель из Лиона Жозеф Жаккар предложил способ быстрой перенастройки ткацкого станка для производства различных видов продукции. Нередко эта процедура требовала огромного количества времени, колоссальных усилий и внимания целого коллектива. Суть нововведения сводилась к использованию картонных карточек с перфорированными отверстиями. Иглы, попадая в просеченные места, необходимым образом смещали нити. Смена карт быстро проводилась оператором станка: новая перфокарта - новая программа - новый тип ткани или узора. Французская разработка стала прообразом современных автоматизированных комплексов, роботов с возможностью программирования.

    Идею, предложенную Жаккаром, с восторгом использовали в своих автоматических устройствах многие изобретатели:

    • Начальник статистического управления С. Н. Корсаков (Россия, 1832 г.) - в механизме для сравнивания и анализа идей.
    • Математик Чарльз Бэббидж (Англия, 1834 г.) - в аналитической машине для решения широкого круга математических задач.
    • Инженер (США, 1890 г.) - в устройстве для хранения и обработки статистических данных (табуляторе). Для заметки: в 1911 году компания. Холлерита получила название IBM (International Business Machines).

    Перфокарты были основными носителями информации вплоть до 60-х годов прошлого века.

    Своим названием интеллектуальные машины обязаны чешскому драматургу В пьесе "R.U.R.", увидевшей свет в 1920 году, писатель назвал роботом искусственного человека, созданного для тяжелых и опасных участков производства (robota (чешск.) - каторга). А что отличает робота от механизмов и автоматических устройств? В отличие от последних, робот не только выполняет определенные действия, слепо следуя заложенному алгоритму, но и способен более тесно взаимодействовать с окружающей средой и человеком (оператором), адаптировать свои функции при изменении внешних сигналов и условий.

    Принято считать, что первый действующий робот был сконструирован и реализован в 1928 году американским инженером Р. Уэнсли. Человекоподобный "железный интеллектуал" получил имя Герберт Телевокс. На лавры пионеров претендуют также ученый-биолог Макото Нисимура (Япония, 1929 г.) и английский военнослужащий Уильям Ричардс (1928 г.). Созданные изобретателями антропоморфные механизмы имели схожий функционал: способны были двигать конечностями и головой, выполнять голосовые и звуковые команды, отвечать на простые вопросы. Основным предназначением устройств была демонстрация научно-технических достижений. Очередной виток в развитии технологий позволил в скором времени создать и первых индустриальных роботов.

    Поколение за поколением

    Разработка робототехники представляет собой непрерывный, поступательный процесс. К настоящему моменту сформировались три ярко выраженных поколения "умных" машин. Каждое характеризуется определенными показателями и сферами применения.

    Первое поколение роботов создавалось для узкого вида деятельности. Машины способны выполнять только определенную запрограммированную последовательность операций. Устройства управления роботами, схемотехника и программирование практически исключают автономное функционирование и требуют создания специального технологического пространства с необходимым дополнительным оборудованием и информационно-измерительными системами.

    Машины второго поколения называют очувствленными, или адаптивными. Программирование роботов осуществляется с учетом большого набора внешних и внутренних сенсоров. На основе анализа информации, поступающей с датчиков, вырабатываются необходимые управляющие воздействия.

    И наконец, третье поколение - интеллектуальные роботы, которые способны:

    • Обобщать и анализировать информацию,
    • Совершенствоваться и самообучаться, накапливать навыки и знания,
    • Распознавать образы и изменения ситуации, и в соответствии с этим выстраивать работу своей исполнительной системы.

    В основе искусственного интеллекта лежит алгоритмическое и программное обеспечение.

    Общая классификация

    На любой представительной современной выставке роботов многообразие "умных" машин способно поразить не только простых обывателей, но и специалистов. А какие бывают роботы? Наиболее общую и содержательную классификацию предложил советский ученый А. Е. Кобринский.

    По назначению и выполняемым функциям роботов подразделяют на производственно-промышленные и исследовательские. Первые, в соответствии с характером выполняемых работ, могут быть технологическими, подъемно-транспортными, универсальными или специализированными. Исследовательские предназначены для изучения областей и сфер, опасных или недоступных для человека (космическое пространство, земные недра и вулканы, глубоководные слои мирового океана).

    По типу управления можно выделить биотехнические (копирующие, командные, киборги, интерактивные и автоматические), по принципу - жестко программируемые, адаптивные и гибко программируемые. Бурное развитие современной предоставляет разработчикам практически безграничные возможности при проектировании интеллектуальных машин. Но отличное схемное и конструктивное решение будет служить лишь дорогостоящей оболочкой без соответствующего программного и алгоритмического обеспечения.

    Чтобы кремний микропроцессора смог взять на себя функции мозга робота, необходимо "залить" в кристалл соответствующую программу. Обычный человеческий язык не способен обеспечить четкую формализацию задач, точность и надежность их логической оценки. Поэтому требуемая информация представляется в определенном виде с помощью языков программирования роботов.

    В соответствии с решаемыми задачами управления выделяют четыре уровня такого специально созданного языка:

    • Низший уровень используется для управления исполнительными приводами в виде точных значений линейного или углового перемещения отдельных звеньев интеллектуальной системы,
    • Уровень манипулятора позволяет осуществлять общее управление всей системой, позиционируя рабочий орган робота в координатном пространстве,
    • Уровень операций служит для формирования рабочей программы, путем указания последовательности необходимых действий для достижения конкретного результата.
    • На высшем уровне - заданий - программа без детализации указывает что надо сделать.

    Робототехники стремятся свести программирование роботов к общению с ними на языках высшего уровня. В идеале оператор ставит задачу: "Произвести сборку двигателя внутреннего сгорания автомобиля" и ожидает от робота полного выполнения задания.

    Языковые нюансы

    В современной робототехнике программирование роботов развивается по двум векторам: роботоориентированное и проблемно ориентированное программирование.

    Наиболее распространенные роботоориентированные языки - AML и AL. Первый разработан фирмой IBM только для управления интеллектуальными механизмами собственного производства. Второй - продукт специалистов Стэндфордского университета (США) - активно развивается и оказывает существенное влияние на формирование новых языков этого класса. Профессионал легко разглядит в языке характерные черты Паскаля и Алгола. Все языки, ориентированные на роботов, описывают алгоритм, как последовательность действий "умного" механизма. В связи с этим программа зачастую выходит очень громоздкой и неудобной в практической реализации.

    При программировании роботов на проблемно ориентированных языках, в программе указывается последовательность не действий, а целей или промежуточных позиций объекта. Наиболее популярным в этом сегменте является язык AUTOPASS (IBM), в котором состояние рабочей среды представлено в виде графов (вершины - объекты, дуги - связи).

    Обучение роботов

    Любой современный робот представляет собой обучаемую и адаптивную систему. Вся необходимая информация, включающая знания и умения, передается ей в процессе обучения. Это осуществляется, как непосредственным занесением в память процессора соответствующих данных (детальное программирование - семплинг), так и с использованием сенсоров робота (методом наглядной демонстрации) - все движения и перемещения механизмов робота заносятся в память и затем воспроизводятся в рабочем цикле. Обучаясь, система перестраивает свои параметры и структуру, формирует информационную модель внешнего мира. Это и есть основное отличие роботов от автоматизированных линий, промышленных автоматов с жесткой структурой и других традиционных средств автоматизации. Перечисленные методы обучения обладают существенными недостатками. Например, при семплинге перенастройка требует определенного времени и труда квалифицированного специалиста.

    Весьма перспективной выглядит программа для программирования роботов, представленная разработчиками Лаборатории информационных технологий при Массачусетском технологическом институте (CSAIL MIT) на международной конференции промышленной автоматизации и робототехники ICRA-2017 (Сингапур). Созданная ими платформа C-LEARN обладает достоинствами обоих методов. Она предоставляет роботу библиотеку элементарных движений с заданными ограничениями (например, усилие хвата для манипулятора в соответствии с формой и жесткостью детали). В то же время, оператор демонстрирует роботу ключевые движения в трехмерном интерфейсе. Система, исходя из поставленной задачи, формирует последовательность операций для выполнения рабочего цикла. C-LEARN позволяет переписать существующую программу для робота другой конструкции. Оператору при этом не требуются углубленные знания в области программирования.

    Робототехника и искусственный интеллект

    Специалисты Оксфордского университета предупреждают, что в ближайшие два десятилетия машинные технологии заменят более половины сегодняшних рабочих мест. Действительно, роботы давно уже трудятся не только на опасных и трудных участках. Например, программирование значительно потеснило брокеров-людей на мировых биржах. Несколько слов об искусственном интеллекте.

    В представлении обывателя это антропоморфный робот, способный заменить человека во многих сферах жизни. Отчасти так и есть, но в большей степени искусственный интеллект - это самостоятельная отрасль науки и технологии, с помощью компьютерных программ, моделирующая мышление "Homo sapiens", работу его мозга. На сегодняшнем этапе развития ИИ больше помогает людям, развлекает их. Но, по прогнозам экспертов, дальнейший прогресс в области робототехники и искусственного интеллекта может поставить перед человечеством целый ряд морально-этических и юридических вопросов.

    В этом году на выставке роботов в Женеве самый совершенный андроид София заявила, что учится быть человеком. В октябре София впервые в истории искусственного интеллекта была признана гражданкой Саудовской Аравии с полноценными правами. Первая ласточка?

    Основные тенденции робототехники

    В 2017 году специалисты цифровой индустрии отметили несколько выдающихся решений в области технологий виртуальной реальности. Не осталась в стороне и робототехника. Очень перспективным выглядит направление совершенствующее управление сложным робомеханизмом через виртуальный шлем (VR). Эксперты пророчат востребованность такой технологии в бизнесе и промышленности. Вероятные сценарии использования:

    • Управление беспилотной техникой (складскими погрузчиками и манипуляторами, дронами, трейлерами),
    • Проведение медицинских исследований и хирургических операций,
    • Освоение труднодоступных объектов и областей (дно океана, полярные области). Кроме того, программирование роботов позволяет им осуществлять и автономную работу.

    Еще один популярный тренд - connected car. Совсем недавно представители гиганта Apple заявили о старте разработок собственного "беспилотника". Все больше фирм выражают свою заинтересованность в создании машин, способных самостоятельно перемещаться по пересеченным трассам, сохраняя грузы и оборудование.

    Возрастающая сложность алгоритмов программирования роботов и машинного обучения предъявляет повышенные требования к вычислительным ресурсам и, следовательно, к "железу". По-видимому, оптимальным выходом в этом случае будет подключение устройств к облачной инфраструктуре.

    Важное направление - когнитивная робототехника. Стремительный рост количества "умных" машин заставляет разработчиков все чаще задумываться о том, как научить роботов слаженно взаимодействовать.