• Операционный усилитель: схемы включения, принцип работы. Схема усилителя на операционном усилителе неинвертирующего. Схема усилителя напряжения постоянного тока на операционном усилителе. Операционный усилитель

    Следовательно, .

    Так как U вых = U д · К и U д =U вых / К, при К → ∞ и U д ≈ 0, можно написать, что
    . Решая уравнение, получим выражение для коэффициента усиления с замкнутой обратной связьюK ос
    ,(15.3)

    которое справедливо при условии К » K ос.

    В схеме повторителя напряжения на ОУ ( рис.15.4) U вых обратная связь поступает с выхода усилителя на инвертирующий вход. Так как усиливается разность напряжения на входах ОУ - U д, то можно увидеть, что напряжение на выходе усилителя U вых = U д · К.

    Рис.15.4. Повторитель напряжения на ОУ

    Выходное напряжение ОУ U вых = U вх + U д. Так как U вых =U д ·К, получим, что U д =U вых /К. Следовательно,
    . Так как К велико (К → ∞), тоU вых /К стремится к нулю, и в результате получаем равенство U вх =U вых.

    Входное напряжение связано с землей только через входное сопротивление усилителя, которое очень велико, поэтому повторитель может служить хорошим согласующим каскадом.

    Усилитель с дифференциальным входом имеет два входа, причем инвертирующий и неинвертирующий входы находятся под одинаковым напряжением, в данном случае равным U ос, так как разность напряжений между инвертирующим и неинвертирующим входами очень мала (обычно меньше 1мВ),.

    Рис. 15.5. Усилитель с дифференциальным входом

    Если задать U 1 равным нулю и подать входной сигнал по входу U 2 , то усилитель будет действовать как неинвертирующий усилитель, у которого входное напряжение снимается с делителя, образованного резисторами R 2 и R΄ ос. Если оба напряжения U 1 и U 2 подаются на соответствующие входы одновременно, то сигнал на инвертирующем входе вызовет такое изменение выходного напряжения, что напряжение в точке соединения резисторов R 1 и R ос станет равным U ос, где
    .

    Вследствие того, что усилитель имеет очень высокое входное сопротивление,

    имеем

    .

    Решая полученное уравнение относительно U вых, имеем:

    Подставляя выражение для U ос, получим:

    Если положить R 1 = R 2 и R oc = R´ oc (ситуация, которая наиболее часто встречается), получим
    . Полярность выходного напряжения определяется большим из напряженийU 1 и U 2 .

    Очевидно, что если U 2 на рис.15.5 равно нулю, то усилитель будет действовать по отношению к U 1 как инвертирующий усилитель.

    Входное сопротивление схемы ОУ можно определить следующим образом. К дифференциальному входному сопротивлению ОУ r д приложено напряжение. U д. Благодаря наличию обратной связи это напряжение имеет малую величину.

    U д = U вых /K U = U 1 /(1+K U b), (15.6)

    где b = R 1 /(R 1 +R 2) - коэффициент передачи делителя в цепи обратной связи. Таким образом, через это сопротивление протекает только ток, равный U 1 /r д (1+K U b). Поэтому дифференциальное входное сопротивление, благодаря действию обратной связи, умножается на коэффициент 1+K U b. Согласно рис. 12, для результирующего входного сопротивления схемы имеем:

    R вх = r д (1+K U b)||r вх

    Эта величина даже для операционных усилителей с биполярными транзисторами на входах превышает 10 9 Ом. Следует однако помнить, что речь идет исключительно о дифференциальной величине ; это значит, что изменения входного тока малы, тогда как среднее значение входного тока может принимать несравненно бoльшие значения.

    Рис. 15.6. Схема неинвертирующего усилителя с учетом собственных сопротивлений ОУ.

    Выходное сопротивление ОУ операционного усилителя, не охваченного обратной связью, определяется выражением:

    (15.7)

    При подключении нагрузки происходит некоторое снижение выходного напряжения схемы, вызванное падением напряжения на rвых, которое передается на вход усилителя через делитель напряжения R 1 , R 2 . Возникающее при этом увеличение дифференциального напряжения компенсирует изменение выходного напряжения.

    В общем случае выходное сопротивление может иметь достаточно высокое значение (в некоторых случаях от 100 до 1000 Ом. Подключение цепи ОС поволяет уменьшить выходное сопротивление

    Для усилителя, охваченного обратной связью, эта формула принимает вид:

    (15.8)

    При этом величина U д не остается постоянной, а изменяется на величину

    dU д = - dU n = -bdU вых

    Для усилителя с линейной передаточной характеристикой изменение выходного напряжения составляет

    dU вых =K U dU д - r вых dI вых

    Величиной тока, ответвляющегося в делитель напряжения обратной связи в данном случае можно пренебречь. Подставив в последнее выражение величину dU д, получим искомый результат:

    (15.9)

    Если, например, b =0,1, что соответствует усилению входного сигнала в 10 раз, а K U =10 5 , то выходное сопротивление усилителя снизится с 1 кОм до 0,1 Ом. Вышеизложенное, вообще говоря, справедливо в пределах полосы пропускания усилителя f п, Гц. На более высоких частотах выходное сопротивление ОУ с обратной связью будет увеличиваться, т.к. величина |K U | с ростом частоты будет уменьшаться со скоростью 20дБ на декаду (см. рис. 3). При этом оно приобретает индуктивный характер и на частотах более f т становится равным величине выходного сопротивления усилителя без обратной связи.

    Динамические параметры ОУ, характеризующие быстродействие ОУ, можно разделить на параметры для малого и большого сигналов. К первой группе динамических параметров относятся полоса пропускания f п, частота единичного усиления f т и время установления t у. Эти параметры называются малосигнальными, т.к. они измеряются в линейном режиме работы каскадов ОУ (DU вых <1В). Ко второй группе относятся скорость нарастания выходного напряжения r и мощностная полоса пропускания f р. Эти параметры измеряются при большом дифференциальном входном сигнале ОУ (более 50 мВ). Некоторые из этих парамеров рассмотрены выше. Время установления отсчитывается от момента подачи на вход ОУ ступеньки входного напряжения до момента, когда в последний раз станет справедливым равенство |U вых.уст - U вых(t) | = d, где U вых.уст - установившееся значение выходного напряжения, d - допустимая ошибка.

    Рабочая полоса частот или полоса пропускания ОУ определяется по виду амплитудно-частотной характеристики, снятой при максимально возможной амплитуде неискаженного выходного сигнала. Вначале на низких частотах устанавливают такую амплитуду сигнала от генератора гармонических колебаний, чтобы амплитуда выходного сигнала U вых.макс немного не доходила до границ насыщения усилителя. Затем увеличивают частоту входного сигнала. Мощностная полоса пропускания f р соответствует значению U вых.макс равному 0,707 от первоначального значения. Величина мощностной полосы пропускания снижается при увеличении емкости корректирующего конденсатора.

    Эксплуатационные параметры ОУ определяют допустимые режимы работы его входных и выходных цепей и требования к источникам питания, а также температурный диапазон работы усилителя. Ограничения эксплуатационных параметров обусловлены конечными значениями пробивных напряжений и допустимыми токами через транзисторы ОУ. К основным эксплуатационным параметрам относятся: номинальное значение питающего напряжения U п; допустимый диапазон питающих напряжений; ток, потребляемый от источника I пот; максимальный выходной ток I вых.макс; максимальные значения выходного напряжения при номинальном питании; максимально-допустимые значения синфазных и дифференциальных входных напряжений

    Амплитудно-частотная характеристика операционного усилителя является важным фактором, от которого зависит устойчивость работы реальных схем с таким усилителем. В большинстве операционных усилителей отдельные каскады соединены между собой по постоянному току гальваническими связями, поэтому эти усилители не имеют спада усиления в области низких частот и у них необходимо анализировать спад коэффициента усиления с возрастанием частоты.

    Рис.15.7. АЧХ операционного усилителя

    На рис.15.7. показана типичная частотная характеристика операционного усилителя.

    Рис. 15.8. Упрощенная эквивалентная схема ОУ

    При возрастании частоты емкостное сопротивление падает, что приводит к уменьшению постоянной времени τ = R н* С. Очевидно, должна существовать частота, при превышении которой напряжение на выходе U вых окажется меньше, чем КU д.

    Выражение для коэффициента усиления К на любойчастоте

    имеет вид
    , где К – коэффициент усиления без обратной связи на низких частотах;f – рабочая частота; f 1 – граничная частота или частота при 3 дБ, т.е. частота, на которой К(f) на 3 дБ ниже К, или равен 0,707·А.

    Если, как это обычно бывает, R н » R вых, то
    .

    Обычно амплитудно-частотная характеристика дается в общем виде. как:

    . (15.10)

    где f - интересующая нас частота, в то время как f 1 – фиксированная частота, которая называется граничной частотой и является характеристикой конкретного усилителя. С ростом частоты коэффициент усиления по напряжению падает. Кроме того, из выражения для θ видно, что при изменении частоты, фаза выходного сигнала сдвигается относительно фазы входного; - выходной сигнал отстает по фазе от входного.

    Добавление отрицательной обратной связи так, например, как это сделано в инвертирующем или неинвертирующем усилителях, увеличивает эффективную полосу пропускания операционного усилителя.

    Чтобы убедиться в этом, рассмотрим выражение для коэффициента усиления без обратной связи усилителя со спадом 6дБ / октава (при двукратном увеличении частоты):

    , где К(f) – коэффициент усиления без обратной связи на частоте f; А – коэффициент усиления без обратной связи на низких частотах; f 1 – сопрягающая частота. Подставляя это соотношение в выражение для коэффициента усиления при наличии обратной связи
    , получим

    . (15.11)

    Это выражение можно переписать в виде
    , гдеf 1 oc = f 1 (1+Аβ); K 1 – коэффициент усиления с замкнутой обратной связью на низких частотах; f 1oc – граничная частота при наличии обратной связи.

    Граничная частота при наличии обратной связи равна граничной частоте без обратной связи, умноженной на (1+Кβ)>1, так что эффективная ширина полосы пропускания действительно увеличивается при использовании обратной связи. Это явление показано на рис.8, где f 1oc > f 1 для усилителя с коэффициентом усиления равным 40 дБ.

    Если скорость спада усилителя составляет 6дБ/октава, произведение коэффициента усиления на полосу пропускания постоянно: Kf 1 = const. Чтобы убедиться в этом, умножим идеальный коэффициент усиления на низких частотах на верхнюю частоту среза того же усилителя при наличии обратной связи.

    Тогда получим произведение усиления на полосу пропускания:

    , где К – коэффициент усиления без обратной связи на низких частотах.

    Если раньше было показано, что для увеличения полосы пропускания с помощью обратной связи следует уменьшить коэффициент усиления, то теперь выведенное соотношение дает возможность узнать, какой частью коэффициента усиления необходимо пожертвовать для получения желаемой полосы пропускания.

    Схема замещения операционного усилителя позволяет учитывать влияние неидеальности усилителя на характеристики схемы. Для этого удобно представить усилитель полной схемой замещения, содержащей существенные элементы неидеальности. Полная схема замещения ОУ для малых медленных изменений сигналов представлена на рис. 15.9.

    Рис. 15.9.. Схема замещения операционного усилителя для малых сигналов

    У операционных усилителей с биполярными транзисторами на входе входное сопротивление для дифференциального сигнала r д составляет несколько мегаом, а входное сопротивление для синфазного сигнала r вх несколько гигаом. Входные токи, определяемые этими сопротивлениями, имеют величину порядка нескольких наноампер. Существенно бoльшие значения имеют постоянные токи, протекающие через входы операционного усилителя и определяемые смещением транзисторов дифференциального каскада. Для универсальных ОУ входные токи находятся в пределах от 10 нА до 2 мкА, а для усилителей со входными каскадами, выполненными на полевых транзисторах, они составляют доли наноампер.

    Усилители на ОУ используют отрицательную обратную связь (ООС), поэтому есть несколько простых правил, которые определяют поведение такого усилителя. Следует воспользоваться тремя упрощающими предположениями о свойствах ОУ: коэффициент усиления ОУ без обратной связи и входное сопротивления бесконечно велики, выходное сопротивление равно нулю.

    При анализе следует помнить, что большой коэффициент усиления по напряжению ОУ приводит к тому, что изменение напряжения между входами на несколько долей милливольта вызывает изменение выходного напряжения в пределах его полного диапазона. Из этого следует первое правило: ОУ усиливает разность напряжения между входами и за счет внешней схемы ООС передает напряжение с выхода на вход таким образом, что разность напряжений между входами практически равна нулю.

    Входное сопротивление различных типов ОУ находится в пределах от мегаом до тысяч мегаом, входные токи - от долей наноампер до пикоампер. Это дает основание сформулировать второе правило: входы операционного усилителя токов не потребляют. Эти правила дают достаточную основу для анализа схем на ОУ. Схема инвертирующего усилителя на ОУ приведена на рис.

    Рис. Инвертирующий усилитель на ОУ

    Анализируя эту схему с учетом сформулированных выше правил, можно показать, что при заземленном неинвертирующем входе ОУ напряжение на инвертирующем входе также равно нулю. Это означает, что падение напряжения на резисторе RОС равно UВЫХ, а падение напряжения на резисторе R1 равно UВХ. Если входные токи ОУ равны нулю, то UВЫХ / RОС = -UВХ / R1, коэффициент усиления по напряжению КU = UВЫХ / UВХ = -RОС / R1. Знак «минус» показывает, что выходной сигнал инвертирован относительно входного (сдвинут на 180º).

    Данная схема является усилителем постоянного тока В этой схеме реализована параллельная ООС по напряжению, поскольку сигнал ООС оказывается включенным не последовательно с входным сигналом, а подается параллельно с ним на один и тот же вход.

    Как известно, параллельная ООС уменьшает входное сопротивление усилителя. В схеме потенциал точки соединения R1 и RОС всегда равен нулю, а эта точка называется «виртуальный ноль» (мнимая земля). Следовательно, входное сопротивление схемы RВХ = R1. Выходное сопротивление схемы мало и равно долям ома. Таким образом, недостатком схемы является малое входное сопротивление, особенно для усилителей с большим коэффициентом усиления по напряжению, в которых резистор R1, как правило, бывает небольшим. Достоинством схемы является малое значение синфазного напряжения, практически равного нулю. Тот факт, что коэффициент усиления определяется всего лишь соотношением двух сопротивлений, делает применение инвертирующего усилителя очень гибким.

    Практическое использование усилителей на ОУ имеет ряд особенностей. ОУ должен находиться в активном режиме, его входы и выходы не должны быть перегружены. Например, если подать на вход усилителя чересчур большой сигнал, то это приведет к тому, что выходной сигнал станет равным напряжению насыщения (обычно его величина меньше напряжения питания на 2 В).

    В схеме ОУ обязательно должны быть предусмотрена цепь обратной связи по постоянному току, в противном случае ОУ обязательно попадет в режим насыщения. Многие ОУ имеют довольно малое предельно допустимое дифференциальное входное напряжение. Максимальная разность напряжений между инвертирующим и неинвертирующим входами может быть ограничена величиной 5 В для любой полярности напряжения. Если пренебречь этим условием, то возникнут большие входные токи.

    Из-за наличия входного напряжения смещения, при нулевом напряжении на входе напряжение на выходе равно UВЫХ=KUUСМ. Для усилителя, имеющего коэффициент усиления, равный 100 и входное напряжение смещения 2 мВ, выходное напряжение смещения может достигать значения ±0,2 В. Для решения этой проблемы нужно использовать цепи внешней коррекции нуля (используя ОУ с такими возможностями), выбирать ОУ с малым значением смещения. Если усиление постоянного тока не нужно, то можно использовать разделительные емкости в последовательной цепи передачи входного и выходного сигнала.

    Если в инвертирующем усилителе один из входов заземлен, то даже при условии идеальной настройки (UСМ = 0), на выходе усилителя будет присутствовать отличное от нуля выходное напряжение. Это связано с тем, что входной ток смещения IВХсоздает падение напряжения на резисторах, которое затем усиливается схемой усилителя. В этой схеме сопротивление со стороны инвертирующего входа определяется резисторами R1║RОС, но ток смещения воспринимается как входной сигнал, подобный току, текущему через R1, а поэтому он порождает смещение выхода UСМ = IСМRОС.Для уменьшения ошибок, вызванных входным током смещения, используют включение дополнительного резистора между неинвертирующим входом и общим проводом. Величина этого резистора должна быть равна R2 = R1║RОС. Для приведенного примера R1 = 10кОм, RОС= 100кОм, R2 = 9,1 кОм.

    Рис. Усилитель на ОУ с компенсационным резистором

    С целью уменьшения токов смещения и их температурных дрейфов в практических схемах входные сопротивления имеют типичное значение от 1 до 100 кОм.

    Неинвертирующий усилитель (НУ) – это усилитель, обладающий стабильным коэффициентом усиления при нулевой разности фаз между входными и выходными сигналами.

    В НУ (рис. 5.3) имеет место последовательная ООС по напряжению. При идеальном ОУ (K д = К oc сф = ¥, R ВХ = ¥ и R ВЫХ = 0) R ВЫХ. F = 0 (связь отрицательная и по напряжению), R ВХ. F = ¥ (последовательная ООС).

    , (5.6)

    и согласно рис. 5.4,

    Подставляя (5.7) в (5.6), получим

    . (5.8)

    Коэффициент усиления НУ не зависит от сопротивления источника сигнала R С , так как входное сопротивление НУ равно ¥, и ток через R С не протекает, то падение напряжения на этом сопротивлении отсутствует и . При R 2 = 0, R 1 = ¥ K e F = 1. Значит, выходное напряжение полностью повторяет входное (только на более высоком уровне мощности). Отсюда и название – повторитель напряжения.

    Единичный коэффициент передачи, бесконечно большое входное сопротивление и нулевое выходное делает повторитель идеальным буферным каскадом (трансформатором полного сопротивления).

    Метод резистивной балансировки этой схемы зависит от обстоятельств. Если R С = 0, то симметрирующий резистор R СМ включается последовательно с неинвертирующим входом (рис. 5.5).

    При этом Du ВЫХ описывается выражением (5.5). Ненулевое, но известное и фиксированное внутреннее сопротивление R C можно было бы сбалансировать только резисторами ОС, при условии, что R 1 R 2 /(R 1 +R 2)=R C . Однако при этом будет изменяться и коэффициент усиления схемы (5.8). Проще резисторы R 1 и R 2 выбрать исходя из требуемого коэффициента усиления, а токовую балансировку схемы обеспечить R CM , включённым последовательно с инвертирующим входом (рис. 5.6). Для этой схемы

    . (5.9)

    Если имеет неопределённое и нестабильное значение, то лучше применить ОУ с входным каскадом (дифференциальным) на полевых транзисторах.



    Для уменьшения потенциальной составляющей выходной статической погрешности Du ВЫХ нужно либо использовать соответствующие выводы ОУ, либо при их отсутствии, осуществлять балансировку схемы по входу (рис. 5.7). Настройка нуля в этой схеме немного снижает его коэффициент усиления.

    Конец работы -

    Эта тема принадлежит разделу:

    Аналоговые электронные устройства

    Аналоговые электронные устройства. Часть II. Конспект лекций для студентов специальности “Радиотехника” всех форм обучения..

    Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

    Что будем делать с полученным материалом:

    Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

    Все темы данного раздела:

    Назначение, параметры
    Компараторы являются простейшими аналого-цифровыми преобразователями (АЦП), т.е. устройствами, преобразующими непрерывный сигнал в дискретный.Они предназначены для сравнения входного сиг

    Особенности применения полупроводниковых компараторов
    Компараторы, получившие наибольшее распространение, можно разделить на четыре группы: общего применения (К521СА2, К521СА5) , прецизионные (К521СА3, К597СА3), быстродействующие (К597СА1, К597СА2) и

    Специализированные компараторы на операционных усилителях
    При сравнении низкочастотных сигналов с высокой точностью (десятки микровольт) при минимальной потребляемой мощности использование компараторов на базе ОУ часто оказывается более предпочтительное,


    Практическое применение операционных усилителей.Часть первая.

    Часть первая.

    Всем привет.
    В этой статье мы обсудим некоторые аспекты практического применения операционных усилителей в повседневной жизни радиолюбителя.
    Не растекаясь мыслею по древу и не вдаваясь в дремучие теоретические основы работы вышеозначенного усилителя, давайте все же обозначим некоторые основные термины и понятия, с которыми нам предстоит столкнуться в дальнейшем.
    Итак - операционный усилитель. Далее будем называть его ОУ, а то очень лень писать каждый раз полностью.
    На принципиальных схемах, чаще всего, он обозначается следующим образом:

    На рисунке обозначены три самых главных вывода ОУ - два входа и выход. Разумеется, есть еще выводы питания и иногда выводы частотной коррекции, хотя последнее встречается все реже - у большинства современных ОУ она встроенная. Два входа ОУ - Инвертирующий и Неинвертирующий названы так по присущим им свойствам. Если подать сигнал на Инвертирующий вход, то на выходе мы получим инвертированный сигнал, то бишь сдвинутый по фазе на 180 градусов - зеркальный; если же подать сигнал на Неинвертирующий вход, то на выходе мы получим фазово не измененный сигнал.

    Так же как и основных выводов, основных свойств ОУ тоже три - можно назвать их ТриО (или ООО - кому как нравится): Очень высокое сопротивление входа, Очень высокий коэффициент усиления (10000 и более), Очень низкое сопротивление выхода. Еще один очень важный параметр ОУ называется скорость нарастания напряжения на выходе (slew rate на буржуинском). Обозначает он фактически быстродействие данного ОУ - как быстро он сможет изменить напряжение на выходе при изменение оного на входе.
    Измеряется этот параметр в вольтах в секунду (В/сек).
    Этот параметр важен прежде всего для товарищей, конструирующих УЗЧ, поскольку, если ОУ недостаточно быстрый, то он не будет успевать за входным напряжением на высоких частотах и возникнут изрядные нелинейные искажения. У большинства современных ОУ общего назначения скорость нарастания сигнала от 10В/мксек и выше. У быстродействующих ОУ этот параметр может достигать значения 1000В/мксек.
    Оценить - подходит ли тот или иной ОУ для ваших целей по скорости нарастания сигнала можно по формуле:

    где, fmax - частота синусоидального сигнала, Vmax - скорость нарастания сигнала, Uвых - максимальное выходное напряжение.
    Ну да не будем больше тянуть кота за хвост - приступим к главной задаче этого опуса - куда, собственно, эти клевые штуки можно воткнуть и что из этого можно получить.

    Первая схема включения ОУ - инвертирующий усилитель .

    Наиболее популярная и часто встречающаяся схема усилителя на ОУ. Входной сигнал подается на инвертирующий вход, а неинвертирующий вход подключается к общему проводу.
    Коэффициент усиления определяется соотношением резисторов R1 и R2 и считается по формуле:

    Почему "минус"? Потому что, как мы помним, в инвертирующем усилителе фаза выходного сигнала "зеркальна" фазе входного.
    Входное сопротивление определяется резистором R1. Ежели его сопротивление, например 100кОм, то и входное сопротивление усилителя будет 100кОм.

    Следующая схема - инвертирующий усилитель с повышенным входным сопротивлением .
    Предыдущая схема всем хороша, за исключением одного нюанса - соотношение входного сопротивления и коэффициента усиления может не подойти для реализации какого-либо специфического проекта. Ведь что получается - допустим, нам нужен усилитель с К=100. Тогда, исходя из того, что значения резисторов должны быть в разумных пределах берем R2=1Мом, а R1=10кОм. То есть, входное сопротивление усилителя будет равным 10 кОм, что в некоторых случаях недостаточно.
    В этих самых случая можно применить следующую схему:

    В данном случае, коэффициент усиления считается по следующей формуле:

    То есть, при том же коэффициенте усиление сопротивление R1 можно увеличить, а значит и повысить входное сопротивление усилителя.

    Коэффициент усиления определяется так:

    В данном случае, как видите, никаких минусов нет - фаза сигнала на входе и на выходе совпадает.
    Основное отличие от инвертирующего усилителя заключается в повышенном входном сопротивлении, которое может достигать 10Мом и выше.
    Если при реализации данной схемы в практических конструкциях, необходимо предусмотреть развязку с предыдущими каскадами по постоянному току - установить разделительный конденсатор, то нужно между входом ОУ и общим проводом включить резистор сопротивлением около 100кОм, как показано на рисунке.

    Усилители мощности. Линейные схемы на ОУ.

    ОУ широко применяется в аналоговых устройствах электроники. Функции, реализуемые ОУ с ООС, удобно рассматривать, если представить ОУ в виде идеальной модели, у которой:

    1. Входное сопротивление операционного усилителя равно бесконечности, токи входных электродов равны нулю (Rвх > ∞, i+ = i- = 0).
    2. Выходное сопротивление операционного усилителя равно нулю, т.е. операционный усилитель со стороны входа является идеальным источником напряжения (Rвых = 0).
    3. Коэффициент усиления по напряжению (коэффициент напряжения дифференциального сигнала) равен бесконечности, а дифференциальный сигнал в режиме усиления равен нулю (при этом не допускается закорачивания выводов операционного усилителя).
    4. В режиме насыщения напряжение на выходе равно по модулю напряжению питания, а знак определяется полярностью входного напряжения. Полезно обратить внимание на тот факт, что в режиме насыщения дифференциальный сигнал нельзя всегда считать равным нулю.
    5. Синфазный сигнал не действует на операционный усилитель.
    6. Напряжение смещения нуля равно нулю.

    Инвертирующий усилитель на ОУ

    Схема инвертирующего усилителя, охваченного параллельной ООС по напряжению показана на рисунках:

    ООС реализуется за счет соединения выхода усилителя со входом резистором R2.

    На инвертирующем входе ОУ происходит суммирование токов. Поскольку входной ток ОУ i- = 0, то i1 = i2 . Так как i1 = Uвх /R1, а i2 = -Uвых /R2, то . Ku = = -R2/R1. Знак "-" говорит о том, что происходит инверсия знака входного напряжения.

    На рисунке (б) в цепь неинвертирующего входа включен резистор R3 для уменьшения влияния входных токов ОУ, сопротивление которого определяется из выражения:

    Входное сопротивление усилителя на низких частотах приблизительно равно Rвх.ос = ≈ R1

    Выходное сопротивление Rвых.ос = существенно меньше Rвых собственно ОУ.

    Неинвертирующий усилитель на ОУ

    Схема неинвертирующего усилителя, охваченного последовательной ООС по напряжению, показана на рисунке:

    ООС реализуется при помощи резисторов R1, R2.

    Используя принятые ранее допущения для идеальной модели получим

    Входное сопротивление: Rвх.ос → ∞

    Выходное сопротивление: Rвых.ос = → 0

    Недостатком усиления является наличие на входах синфазного сигнала, равного Uвх .

    Повторитель напряжения на ОУ

    Схема повторителя, полученная из схемы неивертирующего усилителя, при R1 → ∞, R2 → 0, показана на рисунке:

    Коэффициент β = 1, Ku.ос = K/1+K ≈ 1, т.е. напряжение на входе и выходе ОУ равны: Uвх = Uвых .

    Сумматор напряжений на ОУ (инвертирующий сумматор)

    Схема инвертирующего усилителя с дополнительными входными цепями показана на рисунке:

    Учитывая, что i+ = i- = 0, ioc = - Uвых /Rос = Uвх1 /R1 + Uвх2 /R2 + ... + Uвхn /Rn, получим: Uвых = -Rос (Uвх1 /R1 + Uвх2 /R2 + ... + Uвхn /Rn)

    Если Rос = R1 = R2 = ... = Rn, то Uвых = - (Uвх1 + Uвх2 + ... + Uвхn ).

    ОУ работает в линейном режиме.

    Для уменьшения влияния входных токов ОУ в цепь неинвертирующего входа включают резистор Rэ (на рисунке показан пунктиром) с сопротивлением: Rэ = R1//R2//…//Rn//Roc .

    Вычитающий усилитель на ОУ

    Схема усилителя с дифференциальным входом показана на рисунке:

    Усилитель является сочетанием инвертирующего и неинвертирующего усилителей. В рассматриваемом случае напряжение на выходе определяется из выражения:

    Uвых = Uвх2 · R3/(R3+R4) · (1+R2/R1) - Uвх1 · R2/R1

    При R1 = R2 = R3 = R4: Uвых = Uвх2 - Uвх1 – т.е. зависит от разности входных сигналов.

    Интегрирующий усилитель на ОУ

    Схема интегратора, в которой в цепи ООС установлен конденсатор, показана на рисунке:

    Пусть на вход подается прямоугольный импульс Uвх . На интервале t1...t2 амплитуда Uвх равна U. Так как входной ток ОУ равен нулю, то |iвх | = |-ic |, iвх = Uвх /R1, ic = C · dUвых /dt.

    Uвх /R1 = C · dUвых /dt или

    где Uвых (0) – напряжение на выходе (конденсаторе С) к моменту начала интегрирования (к моменту t1).

    τ = R1 · C – постоянная времени интегрирования, т.е. время, в течение которого Uвых изменится на величину ΔUвых = U.

    Таким образом выходное напряжение на интервале t1...t2 изменяется по линейному закону и представляет интеграл от входного напряжения. Постоянная времени должна быть такой, чтобы до конца интегрирования Uвых < Eпит .

    Дифференцирующий усилитель

    Поменяв местами R1 и C1 в интеграле, получим схему дифференцирующего усилителя:

    По аналогии с интегрирующим усилителем запишем:

    Ic = C·dUвх /dt, IR2 = -Uвых /R

    Т.к. |Ic | = |-IR2 |, то Uвых = - CR · dUвх /dt

    τ = CR – постоянная дифференцирования.

    Применение ОУ далеко не исчерпывается приведенными выше схемами.

    Активные фильтры

    В электронике широко применяются устройство для выделения полезного сигнала из ряда входных сигналов с одного одновремённым ослаблением мешающих сигналов за счёт использования фильтров.

    Фильтры подразделяются не пассивные, выполненные на основе конденсаторов, индуктивностей и резисторов, и активные на базе транзисторов и операционных усилителей.

    В информационной электронике обычно используются активные фильтры. Термин "активный" объясняется включением в схему RLC - фильтра активного элемента (с транзистора или ОУ) для компенсации потерь на пассивных элементах.

    Фильтром называют устройство, которое пропускает сигналы в полосе пропускания и задерживает их в остальном диапазоне частот.

    По виду АЧХ фильтры подразделяются на фильтры нижних частот (ФНЧ), и на фильтры верхних частот (ФВЧ), полосовые фильтры и режекторные фильтры.

    Схема простейшего ФНЧ и его АЧХ приведены на рисунке:

    В полосе пропускания 0 - fc полезный сигнал проходит через ФНЧ без искажений.

    Fс – fз – переходная полоса,
    fз - ∞ – полоса задерживания,
    fс – частота среза,
    fз – частота задерживания.

    ФВЧ пропускает сигналы верхних частот и задерживает сигналы нижних частот.

    Полосовой фильтр пропускает сигналы одной полосы частот, расположенной в некоторой внутренней части оси частот.

    Схема фильтра получила название моста Вина. На частоте f0 =

    Мост Вина имеет коэффициент передачи β = 1/3. При R1 = R2 = R и C1 = C2 = C

    Режекторный фильтр не пропускает сигналы, лежащие в некоторой полосе частот, и пропускает сигналы с другими частотами.

    Схема фильтра называется несимметричным двойным Т-образным мостом.

    Где R1 = R2 = R3 = R, C1 = C2 = C3 = C.

    В качестве примера рассмотрим двухполюсный (по числу конденсаторов) активный ФНЧ.

    ОУ работает в линейном режиме. При расчёте задаются fс . Коэффициент усиления в полосе пропускания должен удовлетворять условию: К0 ≤ 3.

    Если принять С1 = С2 = С, R1 = R2 = R, то C = 10/fc , где fс – в Гц, С – в мкФ,

    Для получения более быстрого изменения коэффициента усиления на удаление от полосы пропускания последовательно включают подобные схемы.

    Поменяв местами резисторы R1, R2 и конденсаторы С1, С2, получим ФВЧ.

    Избирательные усилители

    Избирательные усилители позволяют усиливать сигналы в ограниченном диапазоне частот, выделяя полезные сигналы и ослабляя все остальные. Это достигается применением специальных фильтров в цепи обратной связи усилителя. Схема избирательного усилителя с двойным Т-образным мостом в цепи отрицательной обратной связи показана на рисунке:

    Коэффициент передачи фильтра (кривая 3) уменьшается от 0 до 1. АЧХ усилителя иллюстрируется кривой 1. На квазирезонансной частоте коэффициент передачи фильтра в цепи отрицательной обратной связи равен нулю, Uвых максимально. При частотах слева и справа от f0 коэффициент передачи фильтра стремится единице и Uвых = Uвх . Таким образом фильтр выделяет полосу пропускания Δf, а усилитель осуществляет операцию аналогового усиления.

    Генераторы гармонических колебаний

    В системах управления используются генераторы сигналов различного вида. Генератором гармонических колебаний называют устройство, создающее переменное синусоидальное напряжение.

    Структурная схема такого генератора показана на рисунке:

    Входной сигнал отсутствует. Uвых = К · Uос .

    Для возникновения синусоидальных колебаний должно выполняться условие самовозбуждения только для одной частоты:
    К · γ = 1 – баланс амплитуд,
    φ + ψ = 2πn – баланс фаз,
    где К – коэффициент усиления усилителя,
    γ – коэффициент передачи звена положительной обратной связи,
    φ – сдвиг по фазе для усилителя,
    ψ – сдвиг по фазе для цепи обратной связи,
    n = 0, 1, ...

    Основной генераторов синусоидальных сигналов являются фильтры, например мост Вина. Генератор на основе ОУ, содержащий мост Вина, представлен на рисунке:

    Генератор вырабатывает синусоидальный сигнал частотой .

    На частоте f0 коэффициент передачи фильтра β = 1/3. Усилитель должен иметь коэффициент усиления К ≥ 3, который задаётся резисторами R1 и R2. Важной проблемой является стабилизация амплитуды Uвых , которая обеспечивается в ведением резистора R3 и стабилитронов VD1 и VD2. При малых Uвых напряжение на VD1 и VD2 меньше напряжения стабилизации и R3 не зашунтировано стабилитронами. При этом К > 3 и Uвых возрастает. При достижении напряжения на стабилитронах, равного напряжения стабилизации, тот или иной стабилитрон открывается и пара стабилитронов шунтирует сопротивление R3. Коэффициент усиления становится равным и напряжение Uвых начинает уменьшатся, коэффициент усиления снова становится больше 3 и Uвых снова будет уменьшатся, но уже и в противоположном направлении. Таким образом стабилитроны предотвращают насыщение.

    При использовании данного генератора нагрузку желательно подключать через буферный каскад.

    Материал для подготовеки к аттестации