• Перевод из двоичной в десятичную как делать. Системы счисления. Перевод из одной системы в другую

    В повседневной жизни мы привыкли пользоваться десятичной системой счисления, знакомой нам еще со школьной скамьи. Однако помимо нее, существует и множество других систем. Как записывать цифры не в десятичной, а, например, в ?

    Как перевести в двоичную любое число из десятичной системы

    Необходимость перевести десятичное число в двоичный вид выглядит пугающей только на первый взгляд. На самом деле это довольно просто - необязательно искать даже онлайн-сервисы для совершения операции.

    • Для образца возьмем число 156, записанное в привычной нам десятичной форме, и попробуем перевести его в двоичный вид.
    • Алгоритм будет выглядеть следующим образом - начальное число понадобится разделить на два, затем еще раз на 2, и еще раз на 2 до тех пор, пока в ответе не останется единица.
    • При совершении деления для перевода в двоичный код имеют значения не целые числа - а остатки. Если при делении в ответе получилось четное число, то остаток записывается в виде цифры 0, если нечетное - то в виде цифры 1.
    • На практике можно легко убедиться, что начальный двоичный ряд остатков для числа 156 будет выглядеть следующим образом - 00111001. Для того, чтобы превратить его в полноценный двоичный код, этот ряд понадобится записать в обратном порядке - то есть, 10011100.

    Двоичное число 10011100, полученное в результате нехитрой операции, и будет двоичным выражением числа 156.

    Ещё один пример, но уже на картинке

    Перевод двоичного числа в десятичную систему

    Обратный перевод - из двоичной в десятичную систему - может показаться чуть более сложным. Но если использовать простой метод удвоения, то и с этой задачей получится справиться за пару минут. Для примера возьмем все то же число, 156, но в двоичном виде - 10011100.

    • Метод удвоения основан на том, что при каждом шаге вычисления берут так называемый предыдущий итог и прибавляют к нему следующую цифру.
    • Поскольку на первом шаге предыдущего итога еще не существует, здесь всегда берут 0, удваивают его и прибавляют к нему первую цифру выражения. В нашем примере это будет 0 * 2 + 1 = 1.
    • На втором шаге мы уже располагаем предыдущим итогом - он равен 1. Это цифру нужно удвоить, а потом прибавить к ней следующую по порядку, то есть - 1 * 2 + 0 = 2.
    • На третьем, четвертом и последующем шагах все так же берутся предыдущие итоги и складываются с последующей цифрой в выражении.

    Когда в двоичной записи останется только одна последняя цифра, и прибавлять больше будет нечего, операция будет завершена. При помощи нехитрой проверки можно убедиться, что в ответе получится нужное десятичное число 156.

    Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

    епозиционные системы счисления.

    Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

    К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

    I 1 (один)
    V 5 (пять)
    X 10 (десять)
    L 50 (пятьдесят)
    C 100 (сто)
    D 500 (пятьсот)
    M 1000 (тысяча)

    Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

    IL 49 (50-1=49)
    VI 6 (5+1=6)
    XXI 21 (10+10+1=21)
    MI 1001 (1000+1=1001)

    озиционные системы счисления.

    Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

    Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

    Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

      Например:
    • Двоичная - позиционная система счисления с основанием 2.
    • Четверичная - позиционная система счисления с основанием 4.
    • Пятиричная - позиционная система счисления с основанием 5.
    • Восьмеричная - позиционная система счисления с основанием 8.
    • Шестнадцатиричная - позиционная система счисления с основанием 16.

    Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

    10 с/с 2 с/с 8 с/с 16 с/с
    0 0 0 0
    1 1 1 1
    2 10 2 2
    3 11 3 3
    4 100 4 4
    5 101 5 5
    6 110 6 6
    7 111 7 7
    8 1000 10 8
    9 1001 11 9
    10 1010 12 A
    11 1011 13 B
    12 1100 14 C
    13 1101 15 D
    14 1110 16 E
    15 1111 17 F
    16 10000 20 10

    Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

    К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

    Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

    Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

    Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

    равила перевода из одной системы счисления в другую.

    1 Перевод целых десятичных чисел в любую другую систему счисления.

    Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

    Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


    Таким образом, 173 10 =255 8

    2 Перевод правильных десятичных дробей в любую другую систему счисления.

    Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

    Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.

    В одном из наших материалов мы рассмотрели определение . Оно имеет самый короткий алфавит. Только две цифры: 0 и 1. Примеры алфавитов позиционных систем счисления приведены в таблице.

    Позиционные системы счисления

    Название системы

    Основание

    Алфавит

    Двоичная

    Троичная

    Четверичная

    Пятеричная

    Восьмеричная

    Десятичная

    0,1,2,3,4,5,6,7,8,9

    Двенадцатеричная

    0,1,2,3,4,5,6,7,8,9,А,В

    Шестнадцатеричная

    0,1,2,3,4,5,6,7,8,9,А,В,С,D,E,F

    Тридцатишестиричная

    0,1,2,3,4,5,6,7,8,9,А,В,С,D,E,F,G, H,I,J,K,L,M,N,O,P,R,S,T,U,V,X,Y,Z


    Для перевода небольшого числа из десятичного в двоичное, и обратно, лучше пользоваться следующей таблицей.

    Таблица перевода десятичных чисел от 0 до 20 в двоичную систему счисления.

    десятичное

    число

    двоичное число

    десятичное

    число

    двоичное число


    Однако таблица получится огромной, если записать туда все числа. Искать среди них нужное число будет уже сложнее. Гораздо проще запомнить несколько алгоритмов перевода чисел из одной позиционной системы счисления в другую.


    Как сделать перевод из одной системы счисления в другую? В информатике существует несколько простых способов перевода десятичных чисел в двоичные числа. Рассмотрим два из них.

    Способ №1.

    Допустим, требуется перевести число 637 десятичной системы в двоичную систему.


    Делается это следующим образом: отыскивается максимальная степень двойки, чтобы два в этой степени было меньше или равно исходному числу.


    В нашем случае это 9, т.к. 2 9 =512 , а 2 10 =1024 , что больше нашего начального числа. Таким образом, мы получили число разрядов результата. Оно равно 9+1=10. Значит, результат будет иметь вид 1ххххххххх, где вместо х может стоять 1 или 0.


    Найдем вторую цифру результата. Возведем двойку в степень 9 и вычтем из исходного числа: 637-2 9 =125. Затем сравниваем с числом 2 8 =256 . Так как 125 меньше 256, то девятый разряд будет 0, т.е. результат уже примет вид 10хххххххх.


    2 7 =128 > 125 , значит и восьмой разряд будет нулём.


    2 6 =64 , то седьмой разряд равен 1. 125-64=61 Таким образом, мы получили четыре старших разряда и число примет вид 10011ххххх.


    2 5 =32 и видим, что 32 < 61, значит шестой разряд равен 1 (результат 100111хххх), остаток 61-32=29.


    2 4 =16 < 29 - пятый разряд 1 => 1001111ххх. Остаток 29-16=13.


    2 3 =8 < 13 => 10011111хх. 13-8=5


    2 2 =4 < 5 => 10011111хх, остаток 5-4=1.


    2 1 =2 > 1 => 100111110х, остаток 2-1=1.


    2 0 =1 => 1001111101.


    Это и будет конечный результат.

    Способ №2.

    Правило перевода целых десятичных чисел в двоичную систему счисления, гласит:

    1. Разделим a n−1 a n−2 ...a 1 a 0 =a n−1 ⋅2 n−1 +a n−2 ⋅2 n−2 +...+a 0 ⋅2 0 на 2.
    2. Частное будет равно an−1 ⋅2n−2+...+a1 , а остаток будет равен
    3. Полученное частное опять разделим на 2, остаток от деления будет равен a1.
    4. Если продолжить этот процесс деления, то на n-м шаге получим набор цифр: a 0 ,a 1 ,a 2 ,...,a n−1 , которые входят в двоичное представление исходного числа и совпадают с остатками при его последовательном делении на 2.
    5. Таким образом, для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на 2 до тех пор, пока не получим частное, которое будет равно нулю.

    Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков. Записывать его начинаем с последнего найденного.


    Переведём десятичное число 11 в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:


    Получили 11 10 =1011 2 .

    Пример:

    Если десятичное число достаточно большое, то более удобен следующий способ записи рассмотренного выше алгоритма:



    363 10 =101101011 2



    В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

    Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

    В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

    Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

    Попробуем считать в двоичной системе:
    0 – это ноль
    1 – это один (и это предел разряда)
    10 – это два
    11 – это три (и это снова предел)
    100 – это четыре
    101 – пять
    110 – шесть
    111 – семь и т.д.

    Перевод чисел из двоичной системы счисления в десятичную

    Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

    В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

    1476 = 1000 + 400 + 70 + 6

    1476 = 1 * 10 3 + 4 * 10 2 + 7 * 10 1 + 6 * 10 0

    Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

    Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

    10001001 = 1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0

    1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

    Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

    10001001 2 = 137 10

    Почему двоичная система счисления так распространена?

    Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

    Перевод десятичного числа в двоичное

    Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись.

    | 6 классы | Планирование уроков на учебный год | Перевод двоичных чисел в десятичную систему счисления

    Урок 5
    Перевод двоичных чисел в десятичную систему счисления
    Работа с приложением Калькулятор





    Перевод целых десятичных чисел в двоичный код

    Способ 1

    Попробуем представить число 1409 в виде суммы членов второго ряда.

    Воспользуемся методом разностей. Возьмем ближайший к исходному числу, но не превосходящий его член второго ряда и составим разность:

    1409 - 1024 = 385.

    Возьмем ближайший к полученной разности, но не превосходящий ее член второго ряда и составим разность:

    385 - 256 = 129.

    Аналогично составим разность: 129 - 128 = 1.

    В итоге получим:

    1409 = 1024 + 256 + 128 + 1 = 1 1024 + 0 512 + 1 256 + + 1 128 + 0 64 + 0 32 + 0 16 + 0 8 + 0 4 + 0 2 + 1 1.

    Мы видим, что каждый член второго ряда может либо не входить в сумму, либо входить в нее только один раз.


    Числа 1 и 0, на которые умножаются члены второго ряда, также составляют исходное число 1409, но в его другой, двоичной записи: 10110000001.

    Результат записывают так:

    1409 10 = 10110000001 2 .

    Исходное число мы записали с помощью 0 и 1, другими словами, получили двоичный код этого числа, или представили число в двоичной системе счисления.

    Способ 2

    Этот способ получения двоичного кода десятичного числа основан на записи остатков от деления исходного числа и получаемых частных на 2, продолжаемого до тех пор, пока очередное частное не окажется равным 0.

    Пример:


    В первую ячейку верхней строки записано исходное число, а в каждую следующую - результат целочисленного деления предыдущего числа на 2.

    В ячейках нижней строки записаны остатки от деления стоящих в верхней строке чисел на 2.

    Последняя ячейка нижней строки остается пустой. Двоичный код исходного десятичного числа получается при последовательной записи всех остатков, начиная с последнего: 1409 10 = 10110000001 2 .

    Первые 20 членов натурального ряда в двоичной системе счисления записываются так: 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011,1100, 1101,1110,1111, 10000. 10001. 10010. 10011. 10100. 

    Перевод целых чисел из двоичной системы счисления в десятичную

    Способ 1

    Пусть имеется число 111101 2 . Его можно представить так:

    Способ 2

    Возьмем то же число 111101 2 . Переведем единицу 6-го разряда (первая слева в записи числа) в единицы 5-го разряда, для чего 1 умножим на 2, ибо единица 6-го разряда в двоичной системе содержит 2 единицы 5-го разряда.

    К полученным 2 единицам 5-го разряда прибавим имеющуюся единицу 5-го разряда. Переведем эти 3 единицы 5-го разряда в 4-й разряд и прибавим имеющуюся единицу 4-го разряда: 3 2 + 1 = 7.

    Переведем 7 единиц 4-го разряда в 3-й разряд и прибавим имеющуюся единицу 3-го разряда: 7 2 + 1 = 15.

    Переведем 15 единиц 3-го разряда во 2-й разряд: 15 2 = 30. В исходном числе во 2-м разряде единиц нет.

    Переведем 30 единиц 2-го разряда в 1-й разряд и прибавим имеющуюся там единицу: 30 2 + 1 = 61. Мы получили, что исходное число содержит 61 единицу 1-го разряда.

    Письменные вычисления удобно располагать так:

    Переводить целые числа из десятичной системы счисления в двоичную систему счисления и обратно можно с помощью приложения Калькулятор .

    Проведем небольшой эксперимент .

    1. Запустите приложение Калькулятор и выполните команду [Вид-Инженерный] . Обратите внимание на группу переключателей, определяющих систему счисления :

    2. Убедитесь, что Калькулятор настроен на работу в десятичной системе счисления. С помощью клавиатуры или мыши введите в поле ввода произвольное двузначное число. Активизируйте переключатель Bin и проследите за изменениями в окне ввода. Вернитесь в десятичную систему счисления. Очистите поле ввода.

    3. Повторите пункт 2 несколько раз для других десятичных чисел.

    4. Настройте Калькулятор на работу в двоичной системе счисления. Обратите внимание на то, какие кнопки Калькулятора и цифровые клавиши клавиатуры вам доступны. Поочередно введите двоичные коды 5-го, 10-го и 15-го членов натурального ряда и с помощью переключателя Dec переведите их в десятичную систему счисления.