• Почему мутирует грипп. Мутация вирусов, механизмы ее возникновения Мутация вирусов

    Вирус гриппа — чемпион мутации
    Ежегодно тяжелую форму гриппа переносят от трех до пяти миллионов человек, до 500 тысяч из которых умирают от самого гриппа или его осложнений (по данным ВОЗ ). Прививки от гриппа, конечно, существенно снижают вероятность заболеть. Однако

    в отличие от таких болезней, как корь или туберкулез, иммунитет к которым вырабатывается после первого заболевания или прививки и остаётся эффективным в течение всей жизни, гриппом многие болеют практически каждый год.

    Эффективность иммунитета определяется тем, насколько успешно иммунная система распознает и обезвреживает источник инфекции — вирус или бактерию. При первом заражении или прививке иммунная система учится вырабатывать антитела — молекулы, которые связываются с вирусными частицами или бактериями и обезвреживают их. Однажды выработав антитела, иммунная система оставляет их «на вооружении» до конца жизни.

    Поэтому, если человек заражается той же самой инфекцией повторно, иммунитет срабатывает и инфекция быстро обезвреживается. Именно по такому принципу работают прививки против кори, туберкулёза и других заболеваний. Почему же этот механизм дает сбой с вирусом гриппа и прививаться от гриппа приходится каждый год заново?

    Это связано с двумя причинами. Первая — это особенность взаимодействия между нашей иммунной системой и вирусом. Поверхность частиц вируса гриппа покрыта молекулами двух белков, называемых гемагглютинин (HA) и нейраминидаза (NA) (см. рисунок). По типу этих белков классифицируются различные варианты гриппа человека, например, H1N1 (гемагглютинин типа 1, нейраминидаза типа 1). Человеческая иммунная система умеет вырабатывать антитела, которые успешно связываются с этими белками. Проблема заключается в том, что эти антитела довольно «привередливы». Даже небольшие изменения в структуре HA и NA приводят к тому, что антитела теряют способность связываться с ними и обезвреживать вирус.

    С точки зрения иммунной системы такие модифицированные варианты уже известного вируса выглядят как совершенно новые инфекции.

    Во-вторых, на помощь вирусу приходит чрезвычайно полезное для него (и вредное для нас) свойство — способность быстро эволюционировать. Как и все другие организмы, вирус гриппа подвержен случайным мутациям. Это значит, что генетическая информация вирусов-потомков немного отличается от генетической информации вирусов-родителей. Таким образом, мутации постоянно создаются новые варианты белков HA и NA. Однако в отличие от высших живых организмов и от многих других вирусов грипп видоизменяется очень быстро:

    чтобы накопить столько же мутаций, сколько белки млекопитающих накапливают за миллионы лет, вирусу гриппа требуется всего несколько лет или даже месяцев.

    Таким образом, эволюцию вируса гриппа мы можем наблюдать буквально в реальном времени.

    Некоторые из мутаций гриппа приводят к тому, что иммунная система, «натренированная» на старый штамм, распознаёт мутировавший вирус хуже, чем не мутировавший. В то время как иммунитет эффективно борется с немутировашими вирусами, вирусы-мутанты размножаются и заражают всё большее и большее количество людей. Это классический процесс естественного отбора, открытого Чарльзом Дарвином.

    Отбор осуществляет иммунная система, которая, защищая нас, невольно оказывает нам медвежью услугу.

    Через некоторое время — как правило, два-три года — старый, не мутировавший штамм (вариант вируса) полностью вымирает, а вирус-мутант становится новым доминирующим штаммом. Иммунная система большинства людей учится справляться и с новым штаммом, и цикл повторяется. Такая «гонка вооружений» между вирусом и иммунной системой продолжается десятилетиями.

    Как бороться с гриппом

    Как в таком случае бороться с гриппом? Есть несколько способов помочь нашей иммунной системе. Во-первых, создаются противовирусные препараты, например, озельтамивир (известный под торговой маркой «Тамифлю») или амантадин, которые препятствуют воспроизводству вируса внутри клеток. К сожалению, вирусы со временем вырабатывают устойчивость к таким препаратам посредством того же процесса мутаций и естественного отбора:

    так, почти весь вирус подтипа H1N1, циркулировавший в 2009 году, оказался устойчив к озельтамивиру («Тамифлю»).

    Во-вторых, ученые пытаются научить иммунную систему распознавать менее изменчивые части вируса (об этом писала ).

    В-третьих, ученые пытаются предсказать, какой штамм вируса окажется наиболее распространенным в следующем году. Если мы научимся это делать, мы сможем «переобучать» нашу иммунную систему по мере необходимости, заранее делая прививку против того штамма, который будет преобладать в следующем сезоне, и наш иммунитет получит фору в гонке вооружений с вирусом. Собственно,

    уже сегодня Всемирная организация здравоохранения обновляет состав вакцины от гриппа каждые полгода.

    Однако иногда — раз в несколько лет — преобладающим оказывается не тот штамм, на основе которого разрабатывалась вакцина; в таком случае прививка оказывается менее эффективной. Поэтому точное предсказание штамма, который будет наиболее распространён в следующем году, является одной из важных задач борьбы с гриппом.

    Наша группа (Джонатан Душофф, Джошуа Плоткин, Георгий Базыкин и Сергей Кряжимский) занимается изучением эволюции вируса гриппа и других организмов уже несколько лет. Наше сотрудничество началось в Принстонском университете в лаборатории профессора Саймона Левина, чьими аспирантами мы были в разные годы. Нас с самого начала интересовали как практические вопросы (как наиболее эффективно предсказать следующий преобладающий штамм), так и фундаментальные вопросы эволюции, например,

    является ли эволюция гриппа направленной или случайной.

    Задачей нашего последнего совместного проекта было определить взаимосвязь между мутациями, происходящими в разных частях белков HA и NA. Дело в том, что одна и та же мутация, скажем, в белке HA может иметь очень разные последствия для вируса в зависимости от того, произошли ли мутации в других частях того же белка. Например, мутация А позволяет вирусу стать «невидимым» для иммунной системы только в паре с мутацией Б, в то время как каждая из мутаций сама по себе для вируса бесполезна. Обнаружить такие пары мутаций, называемых эпистатическими, можно, проанализировав статистические закономерности в генетических последовательностях вируса. Это мы и сделали .

    Такой анализ стал возможен лишь в последние годы, когда резко упала стоимость «секвенирования», то есть выяснения генетических последовательностей.

    Количество генетических последовательностей вируса гриппа, зарегистрированных в базе данных , за последние пять лет выросло более чем в шесть раз и достигает 150 тысяч. Такого количества данных достаточно, чтобы обнаружить эпистатические пары мутаций, которые произошли в вирусе гриппа за последние 100 лет.

    Оказывается, количество эпистатических мутаций в гриппе достаточно велико, то есть избежать атаки иммунной системы или обрести невосприимчивость к антивирусному препарату могут, по всей видимости, лишь весьма специфические варианты вируса, которые обзаводятся необходимыми комбинациями мутаций. Например, невосприимчивость к препарату озельтамивир появилась в 2009-м году только у вирусов, обладающих как минимум тремя специфическими мутациями в белке NA.

    С практической точки зрения тот факт, что мутации в вирусе гриппа эпистатические, позволяет надеяться, что в ближайшем будущем мы научимся предсказывать последующие мутации по предыдущим. Пока вирус «собирает» все необходимые мутации для успешной комбинации, мы сможем разработать новую вакцину против штамма, обладающего всей комбинацией, который распространится только через несколько месяцев или даже лет.

    Чтобы определить успех той или иной мутации в сочетании с другими, необходимо понять, как именно происходит взаимодействие между мутациями

    и как они, совместно и по отдельности, влияют на структуру белков HA и NA, а также разобраться, как иммунная система реагирует на модифицированные варианты этих белков. Эти вопросы сейчас активно исследуются, в особенности в группе Джошуа Плоткина в Университете Пенсильвании, с которой мы активно сотрудничаем, а также другими коллективами.

    Вирус гриппа. Почему он мутирует.

    Грипп переносят каждые шесть из десяти заболевших детей и четыре из десяти взрослых, зарегистрированных в поликлинике (понятно, что данные эти далеко не полные: ведь не все обращаются к врачу!). Мало этого, грипп "подхлестывает" сердечно-сосудистые, легочные заболевания. Тяжелый урон здоровью людей делают проблему чрезвычайно острой.

    Вирусы вызывают сотни болезней животных, растений и даже бактерий. На их долю приходится большинство инфекционных заболеваний современного человека, и среди них такие грозные, как оспа, бешенство, полиомиелит.

    Вирус очень изменчив и приспосабливается к среде. Существо этой изменчивости было расшифровано сравнительно недавно. "Верхнее платье" вируса — его "выходной", а точнее, "входной" костюм чрезвычайно практичен. Его можно было бы назвать и "охотничьим" костюмом: он прекрасно приспособлен для охоты на клетку. "Сшит" костюм из двух основных белковых материалов — гемагглютининов (с их помощью вирус прикрепляется к поверхности клетки — жертвы) и нейраминидаз (чьи ферменты снимают стражу у крепостных ворот, когда вирусу нужно проникнуть в клетку, а затем и выйти из нее).

    Но и организм встречает вирус "по одежке": именно белковая оболочка — сфера приложения защитных сил. Стоит смениться хоть какой-то части белкового одеяния вируса, и ранее выработанные антитела уже недействительны.

    Так почему же вирус гриппа мутирует?
    Существует две противоборствующие точки зрения на природу изменчивости вируса гриппа.

    Вот первая из них.

    В лабораторных экспериментах чувствительные клетки заражали вирусом гриппа с разными нейраминидазами. В результате получили не только точные копии исходных вирусов, но и вирусы с перегруппированными фрагментами. Механизм такой перегруппировки (рекомбинации) более или менее понятен.

    Нить нуклеиновой кислоты вируса гриппа состоит из восьми отдельных фрагментов. Каждый из них заменяется сравнительно легко... Меняется фрагмент нуклеиновой кислоты, немедленно меняется и соответствующий ему белок в оболочке вируса.

    Но вот откуда берутся эти новые фрагменты? Казалось бы, им неоткуда взяться.

    Этот вопрос и озадачил исследователей. Он как будто вел в тупик. Пока не начали изучать грипп зверей и птиц. Оказалось, что среди домашних и диких животных циркулируют вирусы, напоминающие возбудителя гриппа человека. Особенно много их было выделено от птиц, в том числе и перелетных. Гибриды вирусов гриппа различных типов выделили, например, от уток, вирус гриппа, похожий на человеческий, обнаружили у китов.

    Обратите внимание: у птичьих вирусов встречаются все виды нейраминидаз, что у человека и других млекопитающих. Например, нейраминидазы вирусов, циркулировавших с 1933 года по 1957-й, а также нейраминидазы так называемого "азиатского" гриппа, появившегося после 1957 года.

    Так возникло предположение: мутация вируса гриппа связано с взаимоотношениями организмов в природе и обменом вирусами гриппа человека и животных. В пользу этой гипотезы говорит и то, что у людей и птиц выделены варианты ныне циркулирующих вирусов гриппа человека.

    И все-таки пока это не более чем догадка. Хотя в лабораторных опытах и получают рекомбинации вирусов человека и животных, никто не наблюдал таких явлений в природе. Неясно, каким образом новые варианты вирусов, если они возникают у животных, могут заражать человека. Потребуется немало усилий, чтобы выяснить это.

    Эта гипотеза выглядит логичной, стройной и поэтому весьма привлекательной. У нее много сторонников. Однако другие ученые считают, что искать причины изменчивости гриппа во взаимодействии с животным миром нельзя. Да, в природе и в лабораторной пробирке можно встретить гибриды вирусов человека и животных. Но они нежизнеспособны и не столь уж и агрессивны.

    Сторонники второй точки зрения обращаются к человеческому организму. Каждый ищет там, где ожидает найти. И, что самое удивительное, находит! Специальные исследования подтвердили: в крови пожилых людей существуют антитела против возбудителей гриппа, которые уже давно циркулировали или еще не циркулируют!

    Но ведь исследования китов, уток, свиней и многих других представителей животного мира как будто убеждают в том, что один и тот же вирус гриппа (имеется в виду его нуклеиновая кислота — болезнетворное начало) обнаруживается в разных царствах живого?..

    Кроме крупных, заметных сдвигов в белковом обличье вируса (они связаны с заменой одного из фрагментов наследственного аппарата), наблюдаются и менее заметные, но из года в год прогрессирующие изменения гемагглютининов. Предложенные учеными объяснения этого белкового "дрейфа" подвергаются экспериментальной проверке.

    А истина? Она, как водится, где-то посередине. Как только на перекрестке современных наук удастся воздвигнуть стройное и гармоничное здание обоснованной теории гриппа, так все наблюдения приобретут в нашем сознании единственно верный смысл и займут подобающее им место в ряду других факторов. Вероятнее всего, сойдутся и крайние точки зрения. Так было уже не раз, когда спорили страстные искатели истины.

    Повышение сохранности и продуктивности сельскохозяйственных животных невозможно без дальнейшего совершенствования ветеринарного обслуживания животноводства. Среди ветеринарных дисциплин важное место принадлежит вирусологии. Современный ветеринарный врач должен знать не только клинико – патологическую сторону болезни, но и иметь четкое представление о вирусах, их свойствах, методах лабораторной диагностики и особенностях постинфекционного и поствакцинального иммунитета.

    Вирусы изменяют свой свойства как в естественных условиях размножения, так и в эксперименте. В основе наследственного изменение свойств вирусов могут лежать два процесса: 1) мутация, т. е. изменение последовательности нуклеотидов в определенном участке генома вируса, ведущее к фенотипически выраженному изменению свойства;

    2) рекомбинация, т. е. обмен генетическим материалом между двумя близкими, но отличающимися по наследственным свойствам вирусами.

    Мутация у вирусов

    Мутация – изменчивость, связанная с изменением самих генов. Она может иметь прерывистый, скачкообразный характер и приводить к стойким изменением наследственных свойств вирусов. Все мутации вирусов делятся на две группы:

    · спонтанные;

    · индуцированные;

    По протяженности их делят на точечные и аберрационные (изменения, затрагивающие значительный участок генома). Точечные мутации обусловлены заменой одного нуклеотида (для РНК-содержащих вирусов). Такие мутации могут иногда ревертировать с восстановлением исходной структуры генома.

    Однако мутационные изменения способны захватывать и более крупные участки молекул нуклеиновых кислот, т. е. несколько нуклеотидов. В этом случае тоже могут происходить выпадения, вставки и перемещения (транслокация) целых участков и даже повороты участков на 180° (так называемые инверсии), смещения рамки считывания – более крупные перестройки в структуре нуклеиновых кислот, а следовательно, и нарушения генетической информации.

    Но не всегда точечные мутации приводят к изменению фенотипа. Имеется ряд причин, в силу которых такие мутации могут не проявляться. Одна из них – вырожденность генетического кода. Код белкового синтеза вырожден, т. е. некоторые аминокислоты могут кодироваться несколькими триплетами (кодонами). Например, аминокислота лейцин может кодироваться шестью триплетами. Вот почему, если в молекуле РНК вследствие каких-то воздействий произошла замена триплета ЦУУ на ЦУЦ, ЦУА на ЦУГ, то в молекуле синтезируемого белка все равно включится аминокислота лейцин. Поэтому ни структура белка, ни его биологические свойства не нарушатся.

    Природа пользуется своеобразным языком синонимов и, заменяя один кодон другим, вкладывает в них одно и тоже понятие (аминокислоту), сохраняя, таким образом, в синтезируемом белке его естественную структуру и функцию.

    Другое дело, когда какая-то аминокислота кодируется всего одним триплетом, например, синтез триптофана кодируется только одним триплетом УГГ и замены, т. е. синонима, не имеется. В этом случае в белок включается какая-нибудь иная аминокислота, что может привести к появлению мутантного признака.

    Аберрация у фагов обусловлена делециями (выпадением) различного числа нуклеотидов, от одной пары до последовательности, которая обуславливает одну или несколько функций вируса. Как спонтанные, так и индуцированные мутации делят также на прямые и обратные.

    Мутации могут иметь разные последствия. В одних случаях они ведут к изменению фенотипических проявлений в нормальных условиях. Например, увеличивается или уменьшается размер бляшек под агаровым покрытием; увеличивается или ослабляется нейровирулентность для определенного вида животных; вирус становится более чувствительным к действию химиотерапевтического агента и т. п.

    В других случаев мутация является летальной, так как вследствие ее нарушается синтез или функция жизненно важного вирусспецифического белка, например вирусной полимеразы.

    В некоторых случаях мутации являются условно летальными, так как вирусспецифический белок сохраняет свои функции в определенных для него условиях и теряет эту способность в неразрешающих (непермиссивных) условиях. Типичным примером таких мутаций являются температурно-чувствительные - ts-мутации, при которых вирус теряет способность размножаться при повышенных температурах (39 - 42°С), сохраняя эту способность при обычных температурах выращивания (36 – 37°С).

    Морфологические или структурные мутации могут касаться размера вириона, первичной структуры вирусных белков, изменения генов, детерминирующих ранние и поздние вирусспецифические ферменты, обеспечивающие репродукцию вируса.

    По своему механизму мутации могут быть тоже разными. В одних случаях происходит делеция, т. е. выпадение одного или нескольких нуклеотидов, в других – происходит встраивание одного или нескольких нуклеотидов, а в некоторых случаях – замена одного нуклеотида другим.

    Мутации могут быть прямыми и обратными. Прямые мутации меняют фенотип, а обратные (реверсии) – его восстанавливают. Возможны истинные реверсии, когда обратная мутация происходит вместе первичного повреждения, и псевдореверсии, если мутация происходит в другом участке дефектного гена (интрагенная супрессия мутации) или в другом гене (экстрагенная супрессия мутации). Реверсия не является редким событием, так как ревертанты обычно более приспособлены к данной клеточной системе. Поэтому при получении мутантов с заданными свойствами, например вакцинных штаммов, приходится считаться с возможной их реверсией к дикому типу.

    Вирусы отличаются от остальных представителей живого мира не только своими малыми размерами, избирательной способностью размножаться в живых клетках, особенностями строения наследственного вещества, но и значительной изменчивостью. Изменения могут касаться величины, формы, патогенности, антигенной структуры, тканевого тропизма, устойчивости к физико – химическим воздействиям и других свойств вирусов. Значение причин, механизмов и характера изменения имеет большое значение при получении необходимых вакцинных штаммов вирусов, а также для разработки эффективных мер борьбы с вирусными эпизоотиями, в процессе которых, как известно, свойства вирусов могут существенно изменят одной из причин сравнительно высокой способности вирусов изменять свои свойства является то, что наследственное вещество этих микроорганизмов менее защищено от воздействия внешней среды.

    Мутация вирусов может возникать в результате химических изменений цистронов или нарушения последовательности их расположения в структуре молекулы вирусной нуклеиновой кислоты.

    В зависимости от условий различают естественную изменчивость вирусов, наблюдаемую в обычных условиях размножения, и искусственную, получаемую в процессе многочисленных специальных пассажей или путем воздействия на вирусы особых физических или химических факторов (мутагенов).

    В естественных условиях изменчивость проявляется не у всех вирусов одинаково. Наиболее ярко этот признак выражен у вируса гриппа. Значительной изменчивости подвержен вирус ящера. Об этом свидетельствует наличие большого количества вариантов у разных типов этих вирусов, и существенные изменения его антигенных свойств в конце почти каждой эпизоотии.

    Частота мутаций и механизмы их возникновения

    Мутации бактериофагов изучались очень интенсивно не только с целью генетического анализа, но и для получения информации о свойствах самих фагов. Частота появления тех или иных мутантов в фаговом потомстве варьирует в весьма широких пределах: например, некоторые мутанты образуются с частотой не выше 10, тогда как другие возникают с частотой 10 и выше. Неблагоприятный эффект высокой частоты мутаций обычно компенсируется действием отбора. Например, мутант фага может быть вытеснен диким типом, который дает больший выход фага.

    Высокая частота вспонтанного возникновения обычно характерна для таких мутаций, которые могут происходить во многих сайтах одного локуса. В тех случаях, когда нормальный признак соответствует функциональной форме гена, а мутантный появляется в результате какого-то изменения в любой точке данного локуса, частота прямых мутаций будет выше, чем частота обратных, так как обратные мутаций должны приводить к восстановлению нормального состояния. Иногда ревертанты оказываются на самом деле псевдоревертантами: это происходит либо в результате изменений в каком-либо другом гене (супресорные мутации), либо вследствие изменений в том же гене, которые обусловливают иную, но также активную форму продукта.

    У зрелых фаговых частиц частота вспонтанных мутаций очень низка, но их можно идуцировать, воздействуя какими-либо мутагенными факторами, например рентгеновскими или ультрафиолетовыми лучами, азотистой кислотой, гидроксиламином или алкилирующими агентами. Азотистая кислота дезаминирует основания нуклеотидов, а этилметилсульфонат их этилирует. Гидроксиламин превращает щитозин в урацил. При зарожении модифицированными фагами вследствие ошибок, происходящих при репликации химически измененной нуклеиновой кислоты, возникают мутации, и потомство фага, высвобождающееся из одной бактерии, содеожит как нормальные, так и мутантные частицы. Однако, как и следует ожидать при обработке мутагеном фага, содержащего одноцепочечную ДНК, образуется чистый клон мутанта.

    Изучение мутационного процесса, происходящего во время размножения фага, имеет большое прямое отношение к анализу развития фага. Сначала рассмотрим спонтанный мутационный процесс. В бактериальной клетке, в которой произошла мутащия фага, образуется как нормальный, так и мутантный фаг. Число мутантных фаговых частиц, содержащихся в популяции фага, выходящей из данной единичной бактериальной клетки, очевидно, определяется характером репродукщии фага, ибо новые гены могут образоваться лишь путем репликации предсуществовавших. Если вероятность данной мутации при каждой репликации одинакова, то число возникших мутантов зависит от механизма репликации. Например, если каждая новая копия гена образуется независимо от остальных, то распределение мутантных копий в потомстве фага из различных инфицированных бактерий будет случайным. Если же, напротив, каждая из образующихся копий будет в свою очередь репродуцироваться, то мутантные копии будут встречаться группами, или клонами, состоящими из мутантных «сибсов».

    Модификации, вызываемые хозяином

    В дополнение к мутациям бактериофаги подвергаются негенетическим изменениям, в которых основная роль принадлежит клетке-хозяину. Это явление получило название модификаций, вызываемых хозяином. Важность этих модификаций для молекулярной биологии состоит в том, что они продемонстрировали способность внутриклеточной среды вызывать такие изменения в химическом строении генетического материала, с помощью которых можно идентифицировать клеточные линии, синтезирующие ДНК. Подобные явления были впервые открыты на фаговой ДНК, однако они верны и для любой ДНК бактериальной клетки. Есть также наблюдения, согласно которым этот феномен справедлив и для эукариотических клеток. В особых случаях могут возникнуть более сложные ситуации. Двустороннее ограничение фага двумя хозяевами иногда наблюдается, но оно не является обязательным.

    Фаг, который отвергается клетками, способен адсорбироваться на них и инъецировать свою ДНК. Однако часть последней быстро разрушается и репликации не происходит. Деградация ДНК обусловлена специфическими эндонуклеазами (рестриктазы, или R-нуклеазы), которые способны узнавать особые участки ДНК и расщеплять их, если они не были модифицированы под влиянием М-ферментов. После этого происходит расщепление ДНК экзонуклеазами до отдельных нуклеотидов. Бактериальный штамм может иметь одну или несколько R-нуклеаз и одновременно М-ферменты, которые предохраняют собственную ДНК клетки. Предложена удобная номенклатура этих ферментов. Согласно ряду данных, участки узнавания R-нуклеаз не всегда совпадают с участками расщепления ДНК; возможно, фермент способен мигрировать вдоль цепи, прежде чем он найдет участок, где ДНК подвергнется расщеплению.

    Функциональная роль модификаций, вызываемых хозяином, неясна. Они способны защитить данный штамм бактерий от массивного разрушения фагами, растущими на различных бактериях. В более общем виде роль модификаций можно определить как защиту от попадания неприемлемой чужеродной ДНК в бактериальную клетку и последующего ее «приживления». Бактерия А, которая отвергает фаг, размножающийся на штамме В, отвергает также и ДНК бактерии В, если ее вводить с помощью конъюгации или трансдукции.

    

    Введение

    Повышение сохранности и продуктивности сельскохозяйственных животных невозможно без дальнейшего совершенствования ветеринарного обслуживания животноводства. Среди ветеринарных дисциплин важное место принадлежит вирусологии. Современный ветеринарный врач должен знать не только клинико - патологическую сторону болезни, но и иметь четкое представление о вирусах, их свойствах, методах лабораторной диагностики и особенностях постинфекционного и поствакцинального иммунитета.

    Вирусы изменяют свой свойства как в естественных условиях размножения, так и в эксперименте. В основе наследственного изменение свойств вирусов могут лежать два процесса: 1) мутация, т. е. изменение последовательности нуклеотидов в определенном участке генома вируса, ведущее к фенотипически выраженному изменению свойства; 2) рекомбинация, т. е. обмен генетическим материалом между двумя близкими, но отличающимися по наследственным свойствам вирусами.

    Мутация у вирусов

    Мутация - изменчивость, связанная с изменением самих генов. Она может иметь прерывистый, скачкообразный характер и приводить к стойким изменением наследственных свойств вирусов. Все мутации вирусов делятся на две группы:

    · спонтанные;

    · индуцированные;

    По протяженности их делят на точечные и аберрационные (изменения, затрагивающие значительный участок генома). Точечные мутации обусловлены заменой одного нуклеотида (для РНК-содержащих вирусов). Такие мутации могут иногда ревертировать с восстановлением исходной структуры генома.

    Однако мутационные изменения способны захватывать и более крупные участки молекул нуклеиновых кислот, т. е. несколько нуклеотидов. В этом случае тоже могут происходить выпадения, вставки и перемещения (транслокация) целых участков и даже повороты участков на 180° (так называемые инверсии), смещения рамки считывания - более крупные перестройки в структуре нуклеиновых кислот, а следовательно, и нарушения генетической информации.

    Но не всегда точечные мутации приводят к изменению фенотипа. Имеется ряд причин, в силу которых такие мутации могут не проявляться. Одна из них - вырожденность генетического кода. Код белкового синтеза вырожден, т. е. некоторые аминокислоты могут кодироваться несколькими триплетами (кодонами). Например, аминокислота лейцин может кодироваться шестью триплетами. Вот почему, если в молекуле РНК вследствие каких-то воздействий произошла замена триплета ЦУУ на ЦУЦ, ЦУА на ЦУГ, то в молекуле синтезируемого белка все равно включится аминокислота лейцин. Поэтому ни структура белка, ни его биологические свойства не нарушатся.

    Природа пользуется своеобразным языком синонимов и, заменяя один кодон другим, вкладывает в них одно и тоже понятие (аминокислоту), сохраняя, таким образом, в синтезируемом белке его естественную структуру и функцию.

    Другое дело, когда какая-то аминокислота кодируется всего одним триплетом, например, синтез триптофана кодируется только одним триплетом УГГ и замены, т. е. синонима, не имеется. В этом случае в белок включается какая-нибудь иная аминокислота, что может привести к появлению мутантного признака.

    Аберрация у фагов обусловлена делециями (выпадением) различного числа нуклеотидов, от одной пары до последовательности, которая обуславливает одну или несколько функций вируса. Как спонтанные, так и индуцированные мутации делят также на прямые и обратные.

    Мутации могут иметь разные последствия. В одних случаях они ведут к изменению фенотипических проявлений в нормальных условиях. Например, увеличивается или уменьшается размер бляшек под агаровым покрытием; увеличивается или ослабляется нейровирулентность для определенного вида животных; вирус становится более чувствительным к действию химиотерапевтического агента и т. п.

    В других случаев мутация является летальной, так как вследствие ее нарушается синтез или функция жизненно важного вирусспецифического белка, например вирусной полимеразы.

    В некоторых случаях мутации являются условно летальными, так как вирусспецифический белок сохраняет свои функции в определенных для него условиях и теряет эту способность в неразрешающих (непермиссивных) условиях. Типичным примером таких мутаций являются температурно-чувствительные - ts-мутации, при которых вирус теряет способность размножаться при повышенных температурах (39 - 42°С), сохраняя эту способность при обычных температурах выращивания (36 - 37°С).

    Морфологические или структурные мутации могут касаться размера вириона, первичной структуры вирусных белков, изменения генов, детерминирующих ранние и поздние вирусспецифические ферменты, обеспечивающие репродукцию вируса.

    По своему механизму мутации могут быть тоже разными. В одних случаях происходит делеция, т. е. выпадение одного или нескольких нуклеотидов, в других - происходит встраивание одного или нескольких нуклеотидов, а в некоторых случаях - замена одного нуклеотида другим.

    Мутации могут быть прямыми и обратными. Прямые мутации меняют фенотип, а обратные (реверсии) - его восстанавливают. Возможны истинные реверсии, когда обратная мутация происходит вместе первичного повреждения, и псевдореверсии, если мутация происходит в другом участке дефектного гена (интрагенная супрессия мутации) или в другом гене (экстрагенная супрессия мутации). Реверсия не является редким событием, так как ревертанты обычно более приспособлены к данной клеточной системе. Поэтому при получении мутантов с заданными свойствами, например вакцинных штаммов, приходится считаться с возможной их реверсией к дикому типу.

    Вирусы отличаются от остальных представителей живого мира не только своими малыми размерами, избирательной способностью размножаться в живых клетках, особенностями строения наследственного вещества, но и значительной изменчивостью. Изменения могут касаться величины, формы, патогенности, антигенной структуры, тканевого тропизма, устойчивости к физико - химическим воздействиям и других свойств вирусов. Значение причин, механизмов и характера изменения имеет большое значение при получении необходимых вакцинных штаммов вирусов, а также для разработки эффективных мер борьбы с вирусными эпизоотиями, в процессе которых, как известно, свойства вирусов могут существенно изменят одной из причин сравнительно высокой способности вирусов изменять свои свойства является то, что наследственное вещество этих микроорганизмов менее защищено от воздействия внешней среды.

    Мутация вирусов может возникать в результате химических изменений цистронов или нарушения последовательности их расположения в структуре молекулы вирусной нуклеиновой кислоты.

    В зависимости от условий различают естественную изменчивость вирусов, наблюдаемую в обычных условиях размножения, и искусственную, получаемую в процессе многочисленных специальных пассажей или путем воздействия на вирусы особых физических или химических факторов (мутагенов).

    В естественных условиях изменчивость проявляется не у всех вирусов одинаково. Наиболее ярко этот признак выражен у вируса гриппа. Значительной изменчивости подвержен вирус ящера. Об этом свидетельствует наличие большого количества вариантов у разных типов этих вирусов, и существенные изменения его антигенных свойств в конце почти каждой эпизоотии.

    Подобно тому, как естественный отбор формировал эволюцию человека, животных, растений и всех живых организмов на нашей планете, этот же процесс происходит в огромном, невидимом человеческому глазу, мире вирусов. Хотя вирусы не могут «технически» жить самостоятельно, – для своих репродуктивных функций им необходим организм-хозяин,– они постоянно подвержены эволюционным влияниям.

    Вирусы представляют собой неклеточную форму жизни без собственной системы образования энергии, поражающие живые организмы, необходимые им для размножения. Только внутри животной или растительной клетки, вирус способен изменяться и формировать новые вирусные структуры. Для человека, животных и растений вирусы – это источник многих заболеваний.

    Иммунная система человека использует ряд приемов для борьбы с патогеном (микроорганизм, вызывающий болезнь). А патоген, в свою очередь, находит ответные приемы, чтобы избежать губительного влияния иммунной системы. Это происходит путем создания многочисленных копий, которые распространяются по клеткам пораженного организма. Новообразованное поколение вируса наследует именно те характеристики, которые являются сильной стороной этого вида и помогают выжить, а те свойства, которые затрудняют распространение, просто теряются. Такая несложная система представляет невиданную силу и таит в себе угрозу образования заболеваний, с которыми медицина не успевает справляться.

    Возьмем, например, вирус, который мутировал и стал смертельным для своего хозяина. В течение считанных часов человек погибает от инфекции. А вирусу требуется новый, здоровый организм для своего потомства. В том случае, если «хозяин» погиб раньше, чем кто-либо от него заразился, мутация исчезнет.

    Единственным способом, которым организм-хозяин защищает себя от вируса, является выработка антител. Антитела защищают клетки хозяина от проникновения вируса, образуя снаружи клетки мощный щит, не пропускающий белок конкретного вирусного штамма. Мутировавший вирус, который оказывается отличным от других, поразивших хозяина, получает преимущество: у хозяина отсутствует сформированный ранее иммунитет в виде антител к этому вирусу.

    Несмотря на отсутствие клеточной структуры, природа вирусов зашифрована в их генах (которых может быть всего два или многим более, до 200). Различают ДНК и РНК вирусы. ДНК является более стабильной молекулой, чем РНК, а также ДНК вирусы обладают особым свойством проверки своей структуры, что является частью их репродуктивной функции. Для этого они используют клетку хозяина, которая контролирует репликацию правильного набора ДНК. Таким образом, ДНК вирусы практически не подвержены изменению, а, следовательно, их мутация близка к нулю. РНК менее стабильная молекула, и функция контроля репликации у РНК вирусов отсутствует. В процессе формирования новых вирусов, при копировании РНК, очень часто возникают ошибки. Вирусы мутируют и представляют особую опасность для человека. Самыми распространенными РНК вирусами являются вирусы гриппа и иммунодефицита человека (вызывающего СПИД).

    Вакцинация – это искусственно созданный способ предотвращения заболевания, вызываемого вирусами, которые уже были основательно изучены учеными-медиками. Вакцина (которую в большинстве случаев в кровь вводят еще в детстве) содержит уже готовые антитела и организм оказывается защищенным от таких серьезных заболеваний, как полиомиелит, корь, паротит и других. Вирусологи всего мира не прекращают работы по изучению природы новых вирусов и созданию современных вакцин для защиты человечества.

    Самым частым вирусным заболеванием, которым ежегодно страдают миллионы людей, является грипп. Его вирус особенно подвержен мутациям, что на сей день делает невозможным создание универсальной вакцины, которая бы раз и навсегда защитила человека от этого заболевания. Каждый сезон ученые создают новую вакцину, направленную против конкретного штамма вируса гриппа, претерпевшего очередную мутацию. Последние годы сезонная вакцинация против гриппа становится все более и более массовой, но нет полноценной гарантии, что в индивидуальном случае она окажется эффективной. Современные научные технологии и передовые умы из области медицины, своевременно реагируют на появление новых мутация и вирусов, которые несут особую опасность для человека. Самым последним тревожным сообщением в мире вирусологии является вспышка вируса Эболы, проявившаяся на африканском континенте летом 2014 года. Пока, ученые выяснили только то, что вирус отличается высокой степенью мутации – от человека к человеку вирус попадает уже в мутировавшей форме. Прогнозы ученых пока неутешительны, поскольку есть предположения, что пандемия вирусной геморрагической лихорадки (возбудитель – вирус Эбола) охватит более 20 тыс. человек в период от шести до девяти месяцев. Но исследования и попытки создания эффективной вакцины и лекарств для лечения этого вируса, не прекращаются, и остается только надеяться, что они увенчаются успехом, и человечество будет спасено от смертельной угрозы.