• Примеры определения нормальных и касательных напряжений. Напряжения в точке Касательным напряжением в точке сечения

    Напряжение – численная мера распределения внутренних сил по плоскости поперечного сечения. Его используют при исследовании и определении внутренних сил любой конструкции.

    Выделим на плоскости сечения площадку A ; по этой площадке будет действовать внутренняя сила R .

    Величина отношения R / A = p ср называется средним напряжением на площадке A . Истинное напряжение в точке А получим устремив A к нулю:

    Нормальные напряжения возникают, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц по плоскости рассматриваемого сечения.

    Очевидно, что
    . Касательное напряжение в свою очередь может быть разложено по направлениям осейx и y (τ z х , τ z у ). Размерность напряжений – Н/м 2 (Па).

    При действии внешних сил наряду с возникновением напряжений происходит изменение объема тела и его формы, т. е. тело деформируется. При этом различают начальное (недеформированное) и конечное (деформированное) состояния тела.

    16.Закон парности касательных напряжений

    Касат. напряжение на 2-ух взаимно перпендик. площ. направлены к ребру или от ребра и равны по величине

    17.Понятие о деформациях. Мера линейной, поперечной и угловой деформации

    Деформац – наз. взаимное перемещение точек или сечений тела по сравн с полож-ями тела которые они занимали до приложения внеш сил

    бывают: упругие и пластические

    а) линейная деформация

    мерой явл относительное удлинение эпсила =l1-l/l

    б) поперечная деф

    мерой явл. относительное сужение эпсила штрих=|b1-b|/b

    18.Гипотеза плоских сечений

    Основные гипотезы (допущения): гипотеза о не надавливании продольных волокон: волокна, параллельные оси балки, испытывают деформацию растяжения – сжатия и не оказывают давления друг на друга в поперечном направлении; гипотеза плоских сечений : сечение балки, плоское до деформации, остается плоским и нормальным к искривленной оси балки после деформации. При плоском изгибе в общем случае возникают внутренние силовые факторы : продольная сила N, поперечная сила Q и изгибающий момент М. N>0, если продольная сила растягивающая; при М>0 волокна сверху балки сжимаются, снизу растягиваются. .

    Слой, в котором отсутствуют удлинения, называется нейтральным слоем (осью, линией). При N=0 и Q=0, имеем случай чистого изгиба. Нормальные напряжения:
    , - радиус кривизны нейтрального слоя, y - расстояние от некоторого волокна до нейтрального слоя.

    19.Закон Гука (1670). Физический смысл входящих в него величин

    Он установил связь между напряжением, растяжением и продольной деформацией.
    где Е – коэффициент пропорциональности (модуль упругости материала).

    Модуль упругости характеризует жёсткость материала, т.е. способность сопротивляться деформациям. (чем больше Е, тем менее растяжимый материал)

    Потенциальная энергия деформации:

    Внешние силы, приложенные к упругому телу, совершают работу. Обозначим её через А. В результате этой работы накапливается потенциальная энергия деформированного тела U. Кроме того, работа идёт на сообщение скорости массе тела, т.е. преобразуется в кинетическую энергию К. Баланс энергии имеет вид А = U + К.

    Если мысленно вырезать вокруг какой-нибудь точки тела элемент в виде бесконечного малого кубика, то по его граням в общем случае будут действовать напряжения, представленные на рис. 3.1.

    Совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим какую-либо точку называют напряженным состоянием тела в данной точке

    Рис. 3 . 1

    Таким образом, на гранях элементарного параллелепипеда, выделенного в окрестности точки нагруженного тела, действуют девять компонентов напряжения. Запишем их в виде следующей квадратной матрицы:

    где в первой, второй и третьей строках расположены составляющие напряжений соответственно на площадках, перпендикулярных к осям , , . Эта совокупность напряжений называется тензором напряжений .

    Закон парности касательных напряжений. Главные площадки и главные напряжения.

    Составим уравнение моментов всех сил, приложенных к элементарному параллелепипеду относительно оси . (рис. 3.1.).

    Силы, параллельные этой оси и пересекающие ее, в уравнение не войдут. Моменты сил на двух гранях, перпендикулярных оси , уравновешиваются, равно как и моменты сил на верхней и нижней гранях элемента. Таким образом, получаем:

    Отсюда следует, что .

    Аналогично из двух других уравнений находим:

    Итак, имеем равенства

    называемые законом парности касательных напряжений

    Закон парности касательных напряжений – касательные напряжения на двух любых, но взаимно перпендикулярных площадках, направленные перпендикулярно к линии пересечения площадок, равны по величине. При этом они стремятся повернуть элемент в разные стороны.

    При изменении ориентации граней выделенного элемента меняются также действующие на его гранях напряжения. Можно провести такие площадки, на которых касательные напряжения равны нулю. Площадки, на которых касательные напряжения равны нулю, называются главными площадками , а нормальные напряжения на этих площадках – главными напряжениями .

    Можно доказать, что в каждой точке напряженного тела существует три главные взаимно перпендикулярные площадки.

    Главные напряжения обозначают , , . При этом индексы следует расставлять так, чтобы выполнялось неравенство

    Если отличны от нуля все три главных напряжения, то напряженное состояние называется трехосным или объемным (рис.3.2, а).

    Если равно нулю одно из главных напряжения, то напряженное состояние называется двухосным или плоским (рис.3.2, б).

    Если равно нулю два главных напряжения, то напряженное состояние называется одноосным или линейны м (рис.3.2, в).

    Рис. 3 . 2

    Плоское напряженное состояние.

    При исследовании напряженного состояния элементов конструкций наиболее часто приходится иметь дело с плоским напряженным состоянием. Оно встречается при кручении, изгибе и сложном сопротивлении. Поэтому на нем мы остановимся несколько подробнее.

    Рассмотрим элемент, грани которого являются главными площадками.

    Рис. 3 . 3

    По ним действуют положительные напряжения и , а третье главное напряжение (направление перпендикулярно к плоскости чертежа).

    Проведем сечение I – I, которое определит площадку (), характеризуемую положительным углом . Напряжения и по этой площадке будут определяться по формулам:

    (3.3)

    Сжимающие главные напряжения подставляют в эти формулы со знаком «минус», а угол отсчитывают от алгебраически большего главного напряжения.

    Проведем сечение II – II, которое определит площадку , перпендикулярную площадке . Нормаль к ней образует с направлением угол

    Подставив в формулы (3.2) и (3.3) значения угла , будем иметь

    . (3.5)

    Совокупность формул (3.2) - (3.5) дает возможность находить напряжения по любым взаимно перпендикулярным наклонным площадкам, если известны главные напряжения.

    Складывая равенства (3.2) и (3.4), обнаруживаем, что

    , (3.6)

    т. е. сумма нормальных напряжений по двум взаимно перпендикулярным площадкам не зависит от угла наклона этих площадок и равна сумме главных напряжений.

    Из формул (3.3) и (3.5) видим, что касательные напряжения достигают наибольшей величины при , т. е. по площадкам, наклоненным к главным площадкам под углом , причем

    . (3.7)

    Сравнивая формулы (3.3) и (3.5), находим, что

    Это равенство выражает закон парности касательных напряжений.

    Проведем теперь еще два сечения (рис. 3.3): Сечение ІІІ – ІІІ, параллельное І – І, и сечение ІV – ІV, параллельное ІІ – ІІ. Элемент , выделенный четырьмя сечениями из элемента (рис. 3.4, а), будет иметь вид, показанный на рис 3.4, б. Оба элемента определяют одно и то же напряженное состояние, но элемент представляет его главными напряжениями, а элемент - напряжениями на наклонных площадках.

    Рис. 3 . 4

    В теории напряженного состояния можно разграничить две основные задачи.

    Прямая задача . В точке известны положения главных площадок и соответствующие им главные напряжения; требуется найти нормальные и касательные напряжения по площадкам, наклоненным под заданным углом к главным.

    Обратная задача . В точке известны нормальные и касательные напряжения, действующие в двух взаимно перпендикулярных площадках; требуется найти главные направления и главные напряжения. Обе задачи можно решать как аналитически, так и графически.

    Прямая задача в плоском напряженном состоянии. Круг напряжений (круг Мора).

    Аналитическое решение прямой задачи дается формулами (3.2) – (3.5).

    Проанализируем напряженное состояние, воспользовавшись простым графическим построением. Для этого введем в рассмотрение геометрическую плоскость и отнесем ее к прямоугольным координатным осям и . Порядок расчета опишем на примере напряженного состояния, изображенного на рис. 3.5, а.

    Выбрав для напряжений некоторый масштаб, откладываем на оси абсцисс (рис 3.5, б) отрезки

    На как на диаметре строим окружность с центром в точке . Построенный круг носит название круга напряжений или круга Мора .

    Рис. 3 . 5

    Координаты точек круга соответствуют нормальным и касательным напряжениям на различных площадках. Так, для определения напряжения на площадке, проведенной под углом (рис. 3.5, а) из центра круга (рис 3.5, б) проводим луч под углом до пересечения с окружностью в точке (положительные углы откладываем против часовой стрелки). Абсцисса точки (отрезок ) равна нормальному напряжению , а ордината ее (отрезок ) – касательному напряжению .

    Напряжение на площадке, перпендикулярной к рассмотренной, найдем, проведя луч под углом и получив в пересечении с окружностью точку . Очевидно, ордината точки соответствует касательному напряжению , а абсцисса точки - нормальному напряжению .

    Проведя из точки линию, параллельную (в нашем случае горизонталь), до пересечения с кругом, найдем полюс – точку . Линия, соединяющая полюс с любой точкой круга, параллельна направлению нормального напряжения на площадке, которой эта точка соответствует. Так, например, линия параллельна главному напряжению . Очевидно, что линия параллельна направлению главного напряжения .

    Обратная задача в плоском напряженном состоянии.

    При практических расчетах обычно определяют нормальные и касательные напряжения на некоторых двух взаимно перпендикулярных площадках. Пусть, например, известны напряжения , , , (рис. 3.6, а). По этим данным требуется определить величины главных напряжений и положение главных площадок.

    Сначала решим эту задачу графически. Примем, что >, а >.

    В геометрической плоскости в системе координат нанесем точку , с координатами , и точку с координатами ,(рис. 3.6, б). Соединив точки и , находим центр круга – точку - и радиусом проводим окружность. Абсциссы точек ее пересечения с осью - отрезки и - дадут соответственно величины главных напряжений и .

    Для определения положения главных площадок найдем полюс и воспользуемся его свойством. Проведем из точки линию параллельно линии действия напряжения , т. е. горизонталь. Точка пересечения этой линии с окружностью и является полюсом. Соединяя полюс с точками и , получим направления главных напряжений. Главные площадки перпендикулярны к найденным направлениям главных напряжений.

    Рис. 3 . 6

    Используем построенный круг для получения аналитических выражений главных напряжений и :

    (3.9)

    (3.10)

    Формула (3.10) определяет единственное значение угла , на который нужно повернуть нормаль , чтобы получить направление алгебраически большего главного напряжения. Отрицательному значению соответствует поворот по часовой стрелке.

    Если одно из главных напряжений окажется отрицательным, а другое положительным, то их следует обозначать и . Если оба главных напряжения окажутся отрицательными, то их следует обозначать и .

    Лекция 4 . Теории прочности . Чистый сдвиг{jcomments on}

    Теории прочности.

    Важнейшей задачей инженерного расчета является оценка прочности элемента конструкции по известному напряженному состоянию. Для простых видов деформаций, в частности для одноосных напряженных состояний, определение значений опасных напряжений не представляет особых трудностей. Вспомним, что под опасными напряжениями понимают напряжения, соответствующие началу разрушения (при хрупком состоянии материала) или появлению остаточных деформаций (в случае пластического состояния материала):

    По опасным напряжениям устанавливают допускаемые напряжения, обеспечивающие определенный запас против наступления предельного состояния.

    При сложном напряженном состоянии, как показывают опыты, опасное состояние может иметь место при различных значениях главных напряжений , , в зависимости от соотношений между ними. В этом случае вводят гипотезу о преимущественном влиянии на прочность материала того или иного фактора. Предельное значение фактора, определяющего прочность, находят на основании простых опытов (на растяжение, сжатие, кручение).

    Выбранная указанным образом гипотеза называется механической теорией прочности .

    Рассмотрим классические теории прочности.

  • 4. Основные понятия о деформируемом теле: линейные и угловые перемещения и деформации; упругость, пластичность, хрупкость; изотропия и анизотропия.
  • 5. Метод сечений для определения внутренних усилий. Примеры использования метода сечений.
  • 6. Напряжение в точке. Полное, нормальное, касательное напряжения. Размерности напряжения.
  • 19. Удельная потенциальная энергия линейно-упругого материала при одноосном напряжённом состоянии и при чистом сдвиге.
  • 21. Поперечный изгиб прямого бруса. Вывод дифференциальных зависимостей между интенсивностью внешней поперечной нагрузки, внутренней поперечной силой и внутренним изгибающим моментом.
  • 24. Вывод формул для определения осевых моментов инерции прямоугольника, треугольника, круга, кольца.
  • 25. Преобразование моментов инерции плоской фигуры при параллельном переносе осей координат.
  • 26. Преобразование моментов инерции плоской фигуры при повороте осей координат. Главные моменты инерции. Главные центральные оси плоской фигуры. Моменты инерции плоских симметричных фигур.
  • 28. Прямой чистый изгиб прямого бруса. Обобщение задачи об определении напряжений в брусьях с симметричными поперечными сечениями и в брусьях с несимметричными поперечными сечениями.
  • 29. Условия прочности при прямом чистом изгибе бруса. Три типа задач по расчёту на прочность. Привести числовые примеры. Жёсткость бруса при изгибе.
  • 30. Рациональные формы поперечных сечений упругих балок (прямых брусьев) при прямом чистом изгибе. Привести примеры.
  • 32. Прямой поперечный изгиб балки (прямого бруса). Вывод формулы для определения касательных напряжений, возникающих в поперечных сечениях двутавровой балки с использованием формулы д.И.Журавского.
  • 45. Формула Эйлера для критической силы при различных способах опорных закреплений бруса. Приведённая длина бруса.
  • 6. Напряжение в точке. Полное, нормальное, касательное напряжения. Размерности напряжения.

    Напряжение – мера распределения внутренних сил по сечению.

    Где
    - внутренняя сила, выявленная на площадке
    .

    Полное напряжение
    .

    Нормальное напряжение – проекция вектора полного напряжения на нормаль обозначается через σ.
    , где Е – модуль упругости I рода, ε – линейная деформация. Нормальное напряжения вызывается только изменением длин волокон, направлением их действий, а угол поперечных и продольных волокон не искажается.

    Касательное напряжение – составляющие напряжения в плоскости сечения.
    , где
    (для изотропного материала) – модуль сдвига (модуль упругости II рода), μ – коэффициент Пуассона (=0,3), γ – угол сдвига.

    7. Закон Гука для одноосного напряжённого состояния в точке и закон Гука для чистого сдвига. Модули упругости первого и второго рода, их физический смысл, математический смысл и графическая интерпретация. Коэффициент Пуассона.

    - закон Гука для одноосного напряжённого состояния в точке.

    Е – коэффициент пропорциональности (модуль упругости I рода). Модуль упругости является физической константой материала и определяется экспериментально. Величина Е измеряется в тех же единицах, что и σ, т.е. в кГ/см 2 .

    - закон Гука для сдвига.

    G– модуль сдвига (модуль упругости II рода). Размерность модуляGтакая же, как и у модуля Е, т.е. кГ/см 2 .
    .

    μ – коэффициент Пуассона (коэффициент пропорциональности).
    . Безразмерная величина, характеризующая свойства материала и определяющаяся экспериментально и лежит в интервале от 0,25 до 0,35 и не могут превышают 0,5 (для изотропного материала).

    8. Центральное растяжение (сжатие) прямого бруса. Определение внутренних продольных сил методом сечений. Правило знаков для внутренних продольных сил. Привести примеры расчёта внутренних продольных сил.

    Брус испытывает состояние центрального растяжения (сжатия) в том случае, если в его поперечных сечениях возникают центральные продольные силы N z (т.е. внутренняя сила, линия действия которой направлена по осиz), а остальные 5 силовых факторов равны нулю (Q x =Q y =M x =M y =M z =0).

    Правило знаков для N z: истинная растягивающая сила – «+», истинная сжимающая сила – «-».

    9. Центральное растяжение (сжатие) прямого бруса. Постановка и решение задачи об определении напряжений в поперечных сечениях бруса. Три стороны задачи.

    Постановка: Прямой брус из однородного материала, растянутый (сжатый) центральными продольными силами N. Определить напряжение, возникающее в поперечных сечениях бруса, деформации и перемещения поперечных сечений бруса в зависимости от координатzэтих сечений.

    10. Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов.

    Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

    .

    При центральном растяжении (сж.) бруса в поперечном направлении в сечении возникает только нормальное напряжение σ z , постоянное во всех точках поперечного сечения и равноеN z /F.
    , гдеEF– жёсткость бруса при растяжении (сжатии). Чем больше жёсткость бруса, тем меньше деформируется бус при одной и той же силе. 1/(EF) – податливость бруса при растяжении (сжатии).

    11. Центральное растяжение (сжатие) прямого бруса. Статически неопределимые системы. Раскрытие статической неопределимости. Влияние температурного и монтажного факторов. Привести примеры соответствующих расчётов.

    Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

    Если число линейно-независимых уравнений статики меньше числа неизвестных, входящих в систему этих уравнений, то задача по определению этих неизвестных становится статически неопределимой.
    (На сколько удлинится одна часть, на столько сожмётся вторая).

    Нормальные условия - 20º С.
    .f(σ,ε,tº,t)=0 – функциональная зависимость между 4 параметрами.

    12. Опытное изучение механических свойств материалов при растяжении (сжатии). Принцип Сен-Венана. Диаграмма растяжения образца. Разгрузка и повторное нагружение. Наклёп. Основные механические, прочностные и деформационные характеристики материала.

    Механические свойства материалов вычисляют с помощью испытательных машин, которые бывают рычажными и гидравлическими. В рычажной машине усилие создаётся при помощи груза, действующего на образец через систему рычагов, а в гидравлической – с помощью гидравлического давления.

    Принцип Сен-Венана: Характер распределения напряжения в поперечных сечениях достаточно удалённых (практически на расстояния, равные характерному поперечному размеру стержня) от места приложения нагрузок, продольных сил не зависит от способа приложения этих сил, если они имеют один и тот же статический эквивалент. Однако в зоне приложения нагрузок закон распределения напряжения может заметно отличаться от закона распределения в достаточно удалённых сечениях.

    Если испытуемый образец, не доводя до разрушения, разгрузить, то в процессе разгрузки зависимость между силой Р и удлинением Δlобразец получит остаточное удлинение.

    Если образец был нагружен на участке, на котором соблюдается закон Гука, а затем разгружен, то удлинение будет чисто упругим. При повторном нагружении пропадёт промежуточная разгрузка.

    Наклёп (нагартовка) – явление повышения упругих свойств материала в результате предварительного пластического деформирования.

    Предел пропорциональности – наибольшее напряжение, до которого материал следует закону Гука.

    Предел упругости – наибольшее напряжение, до которого материал не получает остаточных деформаций.

    Предел текучести – напряжение, при котором происходит рост деформации без заметного увеличения нагрузки.

    Предел прочности – максимальное напряжение, которое может выдержать образец, не разрушаясь.

    13. Физический и условный пределы текучести материалов при испытании образцов на растяжение, предел прочности. Допускаемые напряжения при расчёте на прочность центрально растянутого (сжатого) бруса. Нормативный и фактический коэффициенты запаса прочности. Привести числовые примеры.

    В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести, за предел текучести принимается условно величина напряжения, при котором остаточная деформация ε ост =0,002 или 0,2%. В некоторых случаях устанавливается предел ε ост =0,5%.

    max|σ z |=[σ].
    ,n>1(!) – нормативный коэффициент запаса прочности.

    - фактический коэффициент запаса прочности.n>1(!).

    14. Центральное растяжение (сжатие) прямого бруса. Расчёты на прочность и жёсткость. Условие прочности. Условие жёсткости. Три типа задач при расчёте на прочность.

    Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

    max|σ z | растяж ≤[σ] растяж;max|σ z | сжатия ≤[σ] сжатия.

    15.Обобщённый закон Гука для трёхосного напряжённого состояния в точке. Относительная объёмная деформация. Коэффициент Пуассона и его предельные значения для однородного изотропного материала.

    ,
    ,
    . Сложив эти уравнения, получим выражение объёмной деформации:
    . Это выражение позволяет определить предельное значение коэффициента Пуассона для любого изотропного материала. Рассмотрим случай, когда σ x =σ y =σ z =р. В этом случае:
    . При положительном р величина θ должна быть также положительной, при отрицательном р изменение объёма будет отрицательным. Это возможно только в том случае, когда μ≤1/2. Следовательно, значение коэффициента Пуассона для изотропного материала не может превышать 0,5.

    16. Соотношение между тремя упругими постоянными для изотропного материала (без вывода формулы).

    ,
    ,
    .

    17. Исследование напряжённо-деформированного состояния в точках центрально-растянутого (сжатого) прямого бруса. Закон парности касательных напряжений.

    ,
    .

    - закон парности касательных напряжений.

    18. Центральное растяжение (сжатие) бруса из линейно-упругого материала. Потенциальная энергия упругой деформации бруса и её связь с работой внешних продольных сил, приложенных к брусу.

    А=U+K. (В результате работы накапливается потенциальная энергия деформированного телаU, кроме того, работа идёт на совершение скорости массе тела, т.е. преобразуется в кинетическую энергию).

    Если центральное растяжение (сжатие) бруса из линейно-упругого материала производится очень медленно, то скорость перемещения центра масс тела будет весьма малой. Такой процесс нагружения называется статическим. Тело в любой момент находится в состоянии равновесия. В этом случае А=U, и работа внешних сил целиком преобразуется в потенциальную энергию деформации.
    ,
    ,
    .

    "

    Напряженное и деформированное состояния упругого тела. Связь между напряжениями и деформациями

    Понятие о напряжении тела в данной точке. Нормальные и касательные напряжения

    Внутренние силовые факторы, возникающие при нагружении упругого тела, характеризуют состояние того или иного сечения тела, но не дают ответа на вопрос о том, какая именно точка поперечного сечения является наиболее нагруженной, или, как говорят, опасной точкой . Поэтому необходимо ввести в рассмотрение какую-то дополнительную величину, характеризующую состояние тела в данной точке.

    Если тело, к которому приложены внешние силы, находится в равновесии, то в любом его сечении возникают внутренние силы сопротивления. Обозначим через внутреннее усилие, действующее на элементарную площадку , а нормаль к этой площадке через тогда величина

    (3.1)

    называется полным напряжением.

    В общем случае полное напряжение не совпадает по направлению с нормалью к элементарной площадке, поэтому удобнее оперировать его составляющими вдоль координатных осей -

    Если внешняя нормаль совпадает с какой-либо координатной осью, например, с осью Х , то составляющие напряжения примут вид при этом составляющая оказывается перпендикулярной сечению и называется нормальным напряжением , а составляющие будут лежать в плоскости сечения и называются касательными напряжениями .

    Чтобы легко различать нормальные и касательные напряжения обычно применяют другие обозначения: - нормальное напряжение, - касательное.

    Выделим из тела, находящегося под действием внешних сил, бесконечно малый параллелепипед, грани которого параллельны координатным плоскостям, а ребра имеют длину . На каждой грани такого элементарного параллелепипеда действуют по три составляющие напряжения, параллельные координатным осям. Всего на шести гранях получим 18 составляющих напряжений.

    Нормальные напряжения обозначаются в виде , где индекс обозначает нормаль к соответствующей грани (т.е. может принимать значения ). Касательные напряжения имеют вид ; здесь первый индекс соответствует нормали к той площадке, на которой действует данное касательное напряжение, а второй указывает ось, параллельно которой это напряжение направлено (рис.3.1).

    Рис.3.1. Нормальные и касательные напряжения

    Для этих напряжений принято следующее правило знаков . Нормальное напряжение считается положительным при растяжении, или, что то же самое, когда оно совпадает с направлением внешней нормали к площадке, на которой действует. Касательное напряжение считается положительным, если на площадке, нормаль к которой совпадает с направлением параллельной ей координатной оси, оно направлено в сторону соответствующей этому напряжению положительной координатной оси.

    Составляющие напряжений являются функциями трех координат. Например, нормальное напряжение в точке с координатами можно обозначать

    В точке, которая отстоит от рассматриваемой на бесконечно малом расстоянии, напряжение с точностью до бесконечно малых первого порядка можно разложить в ряд Тейлора:

    Для площадок, которые параллельны плоскости изменяется только координата х , а приращения Поэтому на грани параллелепипеда, совпадающей с плоскостью нормальное напряжение будет , а на параллельной грани, отстоящей на бесконечно малом расстоянии , - Напряжения на остальных параллельных гранях параллелепипеда связаны аналогичным образом. Следовательно, из 18 составляющих напряжения неизвестными являются только девять.

    В теории упругости доказывается закон парности касательных напряжений , согласно которому по двум взаимно перпендикулярным площадкам составляющие касательных напряжений, перпендикулярные линии пересечения этих площадок, равны друг другу:

    Можно показать, что напряжения (3.3) не просто характеризуют напряженное состояние тела в данной точке, но определяют его однозначно. Совокупность этих напряжений образует симметричную матрицу, которая называется тензором напряжений :

    (3.4)

    Так как в каждой точке будет свой тензор напряжений, то в теле имеется поле тензоров напряжений.

    При умножении тензора на скалярную величину получится новый тензор, все компоненты которого в раз больше компонентов исходного тензора.

    Напряжение есть вектор и как всякий вектор может быть представлен нормальной (по отношению к площадке) и касательной составляющими (рис. 2.3). Нормальную составляющую вектора напряжений будем обозначать касательную . Экспериментальными исследованиями установлено, что влияние нормальных и касательных напряжений на прочность материала различно, и потому в дальнейшем окажется необходимым всегда раздельно рассматривать составляющие вектора напряжений.

    Рис. 2.3. Нормальное и касательное напряжения в площадке

    Рис. 2.4. Касательное напряжение при срезе болта

    При растяжении болта (см. рис. 2.2) в поперечном сечении действует нормальное напряжение

    При работе болта на срез (рис. 2.4) в сеченйи П должно возникать усилие, уравновешивающее усилие .

    Из условий равновесия следует, что

    В действительности последнее соотношение определяет некоторое среднее напряжение по сечению, которым иногда пользуются для приближенных оценок прочности. На рис. 2.4 показан вид болта после воздействия значительных усилий. Началось разрушение болта, и одна его половина сместилась относительно другой: произошла деформация сдвига или среза.

    Примеры определения напряжений в элементах конструкций.

    Разберем простейшие примеры, в которых предположение о равномерном распределении напряжений, можно считать практически приемлемым. В таких случаях величины напряжений определяются с помощью метода сечений из уравнений статики (уравнений равновесия).

    Кручение тонкостенного круглого вала.

    Тонкостенный круглый вал (труба) передает крутящий момент (например, от авиационного двигателя на воздушный винт). Требуется определить напряжения в поперечном сечении вала (рис. 2.5, а). Проведем плоскость сечения П перпендикулярно оси вала и рассмотрим равновесие отсеченной части (рис. 2.5, б).

    Рис. 2.5. Кручение тонкостенного круглого вала

    Из условия осевой симметрии, учитывая малую толщину стенки можно принять, что напряжения во всех точках поперечного сечения одинаковы.

    Строго говоря, такое предположение справедливо только при очень малой толщине стенки, но в практических расчетах его используют, если толщина стенки

    где - средний радиус сечения.

    Внешние силы, приложенные к отсеченной части вала, сводятся только к крутящему моменту, и потому нормальные напряжения в поперечном сечении должны отсутствовать. Крутящий момент уравновешивается касательными напряжениями, момент которых равен

    Из последнего соотношения находим касательное напряжение в сечении вала:

    Напряжения в тонкостенном цилиндрическом сосуде (трубе).

    В тонкостенном цилиндрическом сосуде действует давление (рис. 2.6, а).

    Проведем сечение плоскостью П, перпендикулярной оси цилиндрической оболочки, и рассмотрим равновесие отсеченной части. Давление, действующее на крышку сосуда, создает усилив

    Это усилие уравновешивается силами, возникающими в поперечном сечении оболочки, и интенсивность - указанных сил - напряжение - будет равна

    Толщина оболочки 5 предполагается малой по сравнению со средним радиусом , напряжения считаются равномерно распределенными во всех точках поперечного сечения (рис. 2.6, б).

    Однако на материал трубы действуют не только напряжения в продольном направлении, но и окружные (или кольцевые) напряжения в перпендикулярном направлении. Для их выявления выделим двумя сечениями кольцо длиной I (рис. 2.7), а затем проведем диаметральное сечение, отделяющее половину кольца.

    На рис. 2.7, а показаны напряжения на поверхностях сечения. На внутреннюю поверхность трубы радиусом действует давление

    Рис. 2.8. Трещина в цилиндрической оболочке при действии разрушающего внутреннего давления