• Пространственные и динамические модели. Объемно – Пространственная Модель. Точные методы интерполяции

    Существует модель, которая связывает и согласовывает между собой два, на первый взгляд далекие друг от друга описания человека – психофизическое и Трансперсональное. Модель эта имеет многовековую историю и опирается на глубокий исследовательский и практический опыт, передающийся непосредственно от Учителя к Ученику. На языке Традиции, представителями которой являются авторы данной книги, модель эта носит название Объемно – Пространственная Модель, (которая неоднократно упоминалась уже в первых главах). Имеются некоторые параллели Объемно – Пространственной Модели с другими древними описаниями человека (системой Чакр – “тонких” тел; “энергетических центров” – “планов сознания” и др.). К сожалению, серьезное исследование этих моделей сейчас, в большинстве случаев, подменено распространенным вульгарным представлением о Чакрах, как о неких пространственно – локализованных образованиях, а о “тонких” телах, как о своеобразной “матрешке”, состоящей из каких-то невидимых невооруженным глазом сущностей. Авторам известно лишь сравнительно небольшое число современных трезвых исследований этого вопроса [см., например, Йог №20 “Вопросы Общей теории Чакр” СПб 1994.]

    Сложившаяся ситуация крайне невыгодна: критически мыслящие специалисты настроены к модели Чакр и “тонких” тел скептически, прочие же (иногда несмотря даже на длительный опыт работы психологом или психотерапевтом) становятся в один ряд с домохозяйками (не в обиду им сказано), посещающими курсы “экстрасенсорики”, и пополняют армию носителей легенд о Чакрах и “Телах”, распространяемых популярными брошюрами. Дело доходит иногда до комического оборота. Так, одному из авторов данной книги довелось несколько лет назад присутствовать на психологическом тренинге, с элементами “эзотерики”, где весьма авторитетный ведущий давал примерно такую инструкцию к одному из упражнений: “... А теперь, вы своей эфирной рукой поставьте “якорь” прямо клиенту в нижнюю Чакру...”, что большинство присутствующих сразу с энтузиазмом попытались осуществить (конечно, не далее, чем в своем воображении).



    Далее мы не будем упоминать Чакры и Тела, а будем пользоваться языком Объемов и Пространств. Не следует, однако, проводить однозначное соответствие между Объемами и Чакрами, Пространствами и Телами; несмотря на некоторое сходство, модели эти отличаются; отличия, в свою очередь, связаны не с претензией на большую или меньшую правильность, а с удобством для той Практики, которую мы представляем на страницах данной книги.

    Вернемся еще раз к определениям Объемов и Пространств, которые мы давали в главах 1 и 2:

    Итак, Объемы – это не части физического тела и не некие локализованные области. Каждый Объем – Целостное психофизическое состояние, образование, отражающее некоторую (конгруэнтную) совокупность определенных качеств организма, как целого. Если говорить на энергетическом языке, то Объем – определенный диапазон энергии, который, при фокусировке восприятия на физическом мире, проявляется в сочетании тканей, органов, участков нервной системы и т.д. В довольно упрощенном варианте можно для каждого Объема найти наиболее характерную функцию и задачу, которую он выполняет в организме. . Так, функции Копчикового Объема можно связать с задачей выживания во всех его формах (физического, социального, духовного), проявления, рождения, становления... Функции Мочеполового Объема ассоциируются с процветанием, изобилием, плодородием, развитием и преумножением, многообразием и достатком... Для Пупочного Объема основные задачи (читай – диапазон энергии) – упорядочивание, структурирование, управление и связывание. И так далее. Нас будут пока интересовать не конкретные функции Объемов. а общие механизмы работы с ними.

    Каждое переживание, любой опыт воспринимается нами преимущественно через тот или иной Объем. Это относится к любому опыту – если мы хотим активизировать то или иное переживание, то возбуждается тот или иной Объем и мы начинаем воспринимать Мир “через него”. Применительно к психотерапевтической работе – когда терапевт обращается к какому-то переживанию клиента: “проблемному” или “ресурсному”, пытается работать с некой “частью личности”, он, тем самым, фокусирует сознание пациента в какой-то области того или иного Объема (кстати, мы кратко упомянули функции только трех нижних Объемов потому, что реальная продуктивная фокусировка внимания в верхних Объемах – явление незаурядное – тут не все так просто, как описано в книжках). То же относится и к Пространствам. Напомним, что Пространства – схемы восприятия, отражающие уровни “тонкости” восприятия. Один и тот же Объем на разных уровнях восприятия будет проявляться по-своему, сохраняя свои основные задачи. Так, например, Пупочный Объем в Пространстве Событий проявляется через ряд ситуаций, в которых человек что-то с чем-то связывает, упорядочивает, управляет и т.п., в Пространстве Имен – тот же Объем проявится через схематизацию. моделирование, приведение в порядок мыслей и взглядов на Мир, построение планов и т.д., в Пространстве Отражений весь эмоциональный спектр тоже будет окрашен соответствующими этому Объему задачами.

    Объемно-Пространственную Модель организма человека можно условно представить в виде схемы (Рис.3.)

    Рис.3. Объемно-Пространственная Модель.

    На схеме (Рис.3.) наглядно видно, что каждое Пространство охватывает весь спектр энергии на определенном уровне “тонкости”, где каждый Объем – это “сектор”, выделяющий определенный энергетический диапазон.

    Итак – Объемно-Пространственная Модель позволяет в Человеке и в Мире, которые воспринимаются, как динамические энергетические структуры, выделить различные качества энергии. В восприятии эти качества энергии проявляются через определенное сочетание самых разнообразных факторов:

    физиологических процессов (механических, тепловых, химических, электродинамических), динамике нервных импульсов, активизации тех или иных модальностей, окраске эмоций и мышления, сочетании событий, переплетении судеб; попадании в соответствующие “внешние” условия: географические, климатические, социальные, политические, исторические, культурные...

    Энергопотоки.

    Схема, приведенная на Рис.3. дает нам энергетическую модель организма человека. С этой точки зрения, всю жизнь человека, как проявление, оформление этой энергии или как динамику само-восприятия, можно представить в виде движения-пульсации некого “узора” на схеме, где в каждый момент времени активизируются те или иные области энергетического спектра (Рис.4.).

    Однако динамика само-восприятия и движения энергии не так уж произвольны и многообразны для обычного человека. Существуют области, в которых восприятие, так сказать, зафиксировано и довольно устойчиво, некоторые области спектра доступны только изредка и при особом стечении обстоятельств. Существуют области, практически недоступные для осознания в течении всей жизни (для каждого человека разные: для одного человека недоступно переживание смысла, другой за всю жизнь так и не пережил по-настоящему свое тело, третий не в состоянии пережить определенное качество эмоций, событий, мыслей и т.п.).

    Наиболее вероятная траектория движения и фиксаций восприятия и осознания определяется Доминантой. Становится понятно, что для того, чтобы оторваться от этой наиболее вероятной траектории и устойчивых позиций восприятия, нужна некая добавочная энергия и, что самое важное, умение направить эту энергию в нужном направлении, так, чтобы она не попала в наработанное стереотипное русло.

    t’
    t”
    t”’

    Рис.4. Динамика восприятия во времени.

    Этим и объясняется наличие труднодоступных и недоступных для восприятия и осознания диапазонов – обычно у человека нет этой добавочной энергии; лишь иногда она может высвободиться в результате каких-либо чрезвычайных, чаще всего стрессовых, обстоятельств, что позволит восприятию сместиться в ранее недоступный диапазон (такое внезапное смещение восприятия может привести к появлению у человека каких-то новых способностей, недоступных в обычном состоянии).

    Если мы вернемся к понятию Целостность, то теперь можно рассмотреть его еще с одной стороны: Реализация Целостности – это реализация Индивидуальной Сферы, т.е. ситуация, когда восприятие может свободно перемещаться, охватывая все диапазоны энергии, не имея жестко фиксированных позиций и однозначно заданных траекторий.

    Для более детального описания этой ситуации нам потребуется обратиться к понятию Энергопотока. Энергопоток – движение, развитие точечного импульса восприятия в Объемно-Пространственной энергосистеме. Можно сказать еще и так: Энергопоток – динамическое соединение различных областей в Индивидуальной Сфере по общему энергодиапазону (например по одной модальности).

    “Находясь в непрерывном диалоге с Миром, человек (И.С.) откликается практически на все сигналы, приходящие “извне” движением Энергопотоков. Причем чувствительность И.С. значительно выше порога восприятия органов чувств. Соответственно существует множество неосознанных реакций.

    Особенности личной деформации И.С. создают постоянные характерные индивидуальные Энергопотоки. То, что мы осознаем, как ощущения, эмоции, мысли, движения тела и превратности судьбы, память, проекции будущего, болезни, особенности культуры и мировоззрения – все это (и многое другое) движение Энергопотоков.”

    Можно условно выделить конструктивные и деструктивные Энергопотоки. Конструктивный Э. – динамика восприятия, способствующая устранению деформаций из И.С. – жестких, доминирующих структур. Деструктивный Э. – динамика восприятия, способствующая возникновению новых или подкреплению имеющихся деформаций И.С.

    В свою очередь, динамикой Энергопотоков мы будем называть многофакторный динамический процесс, переводящий восприятие человека из одного состояния в другое (пример динамики Энергопотоков изображен на Рис.5.).

    В Целостном организме возможны любые Энергопотоки, для которых он (организм) абсолютно прозрачен и проницаем. Динамика Энергопотоков может, в таких случаях, переводить восприятие в любое положение. (Это эквивалентно тому, что мы назвали сквозным Осознанием в Главе 1.).

    Динамика Энергопотоков – процесс многофакторный, т.к. любое состояние проявляется в виде сочетания большого числа факторов (например, определенных ощущений, характера движений. мимики, параметров голоса, тех или иных эмоций и т.п.). Динамика Энергопотоков переводит одно состояние в другое (точнее сказать – это процесс – непрерывная смена состояний) и, соответственно, могут меняться какие-то факторы и параметры, через которые Энергопотоки проявляются.

    Рис.5. Пример динамики Энергопотоков, переводящей восприятие из состояния с жестко локализованной структурой (А)в более Целостное (Д), в пределах одного Пространства

    Если теперь обратиться к психотерапии, то мы обнаружим следующее:

    Пациент находится в некотором состоянии восприятия (определяемом его Доминантой), которое, очевидно, не Целостно, в его энергетике имеются жестко локализованные структуры, что не дает возможности сдвигать восприятие в другие положения. Для выхода из такой ситуации необходимо задать Энергопотоки, позволяющие сместиться в другое состояние, которое пациент будет воспринимать, как более позитивное. На этом психотерапия, обычно, заканчивается.

    Если посмотреть с более общих позиций, то окажется, что не‑пациент или вылечившийся пациент по большому счету мало чем отличается от “больного”. Отличие только в том, что “больной” воспринимает свое состояние, как дискомфортное, а “здоровый”– как более – менеекомфортное и, может быть, имеющее больше степеней свободы. Однако, к Целостности это не имеет никакого отношения, т.к. и состояние “больного” и “здорового” это, как правило, все равно ограниченные, локализованные и задаваемые Доминантой фиксации восприятия.

    Целостность подразумевает возможность самостоятель­ного задания любых Энергопотоков и переживания Мира то­тально, одномоментно всем организмом.

    ГЛАВА 1 АНАЛИЗ СУЩЕСТВУЮЩИХ МЕТОДОВ И СИСТЕМ ОБРАБОТКИ И РАСПОЗНАВАНИЯ ДИНАМИЧЕСКИХ ОБЪЕКТОВ ПО ПОСЛЕДОВАТЕЛЬНОСТЯМ ИЗОБРАЖЕНИЙ.

    1.1 Изображение как носитель разнородной информации.

    1.2 Классификация задач распознавания изображений.

    1.3 Классификация методов оценки движения.

    1.3.1 Анализ сопоставительных методов оценки движения.

    1.3.2 Анализ градиентных методов оценки движения.

    1.4 Классификация групп признаков.

    1.5 Анализ методов сегментации движущихся объектов.

    1.6 Методы интерпретации событий и определения жанра сцены.

    1.7 Системы обработки и распознавания динамических объектов.

    1.7.1 Коммерческие аппаратно-программные комплексы.

    1.7.2 Экспериментально-исследовательские программные комплексы.

    1.8 Постановка задачи пространственно-временной обработки последовательностей изображений.

    1.9 Выводы по главе.

    ГЛАВА 2 МОДЕЛИ ОБРАБОТКИ И РАСПОЗНАВАНИЯ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ ОБРАЗОВ.

    2.1 Модель обработки и распознавания статических образов.

    2.2 Модель обработки и распознавания динамических образов.

    2.3 Дескриптивная теория распознавания изображений.

    2.4 Расширение дескриптивной теории распознавания изображений.

    2.5 Обобщенные модели поиска целевых признаков при обработке и распознавании динамических объектов в сложных сценах.ИЗ

    2.6 Выводы по главе.

    ГЛАВА 3 НАХОЖДЕНИЕ И ОЦЕНКА ЛОКАЛЬНЫХ ПРИЗНАКОВ ДВИЖЕНИЯ5 ДИНАМИЧЕСКИХ РЕГИОНОВ.119

    3.1 Условия и ограничения усовершенствованного метода обработки последовательностей изображений.

    3.2 Оценка локальных признаков движения.

    3.2.1 Стадия инициализации.

    3.2.2 Оценка пространственно-временного объема данных.

    3.2.3 Классификация динамических регионов.

    3.3 Способы нахождения локальных движений регионов.

    3.3.1 Нахождение и отслеживание особых точек сцены.

    3.3.2 Оценка движения на основе 3D тензора потока.

    3.4 Уточнение границ движущихся регионов.

    3.5 Выводы по главе.

    ГЛАВА 4 СЕГМЕНТАЦИЯ ДИНАМИЧЕСКИХ ОБЪЕКТОВ В СЛОЖНЫХ СЦЕНАХ.

    4.1 Модель многоуровневого движения в сложных сценах.

    4.2 Модели оценки движения на плоскости.

    4.3 Исследование свойств группы Ли.

    4.4 Изоморфизмы и гомоморфизмы группы.

    4.5 Модель предыстории движения объектов в последовательностях изображений.

    4.6 Сегментация сложной сцены на пространственные объекты.

    4.6.1 Предсегментация.

    4.6.2 Сегментация.

    4.6.3 Пост-сегментация.

    4.7 Отображение ЗБ движения точки на видеопоследовательностях.

    4.8 Выводы по главе.

    ГЛАВА 5 РАСПОЗНАВАНИЕ ДИНАМИЧЕСКИХ ОБЪЕКТОВ, АКТИВНЫХ ДЕЙСТВИЙ И СОБЫТИЙ СЛОЖНОЙ СЦЕНЫ.

    5.1 Построение контекстной грамматики:.

    5.1.1 Формирование деревьев грамматического разбора.

    5.1.2 Синтаксический анализ последовательности изображений.

    5.1.3 Синтаксический анализ сцены.

    5.2 Построение видеографа сложной сцены.

    5.3 Распознавание динамических образов.

    5.4 Распознавание событий сцены.

    5.4.1 Способ выявления активных действий.

    5.4.2 Построение видеографа событий.

    5.5 Распознавание событий и жанра сцены.

    5.5.1 Распознавание событий сцены.

    5.5.2 Распознавание жанра сцены.

    5.6 Выводы по главе.

    ГЛАВА 6 ПОСТРОЕНИЕ СИСТЕМ ОБРАБОТКИ И РАСПОЗНАВАНИЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ ИЗОБРАЖЕНИЙ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ.

    6.1 Экспериментальный программный комплекс «ЗРОЕЯ».

    6.2 Работа модулей экспериментальной системы «ЭРОЕИ.».

    6.2.1 Модуль предварительной обработки.".

    6.2.2 Модуль оценки движения.

    6.2.3 Модуль сегментации.

    6.2.4 Модуль распознавания объектов.

    6.2.5 Модуль распознавания активных действий.

    6.3 Результаты экспериментальных исследований.

    6.4 Прикладной проект «Визуальная регистрация государственных номерных знаков автотранспортных средств при многопоточном движении».

    6.5 Прикладной проект «Система идентификации моделей кор-пусов холодильников по изображениям».

    6.6 Программная система «Алгоритмы обработки и сегментации ландшафтных изображений. Идентификация объектов».

    6.7 Выводы по главе.

    Рекомендованный список диссертаций

    • Реконструкция изображений на основе пространственно-временного анализа видеопоследовательностей 2011 год, кандидат технических наук Дамов, Михаил Витальевич

    • Компьютерный метод локализации лиц на изображениях в сложных условиях освещения 2011 год, кандидат технических наук Пахирка, Андрей Иванович

    • Метод пространственно-временной обработки несинхронизированных видеопоследовательностей в системах стереовидения 2013 год, кандидат технических наук Пьянков, Дмитрий Игоревич

    • Теория и методы морфологического анализа изображений 2008 год, доктор физико-математических наук Визильтер, Юрий Валентинович

    • Распознавание динамических жестов в системе компьютерного зрения на основе медиального представления формы изображений 2012 год, кандидат технических наук Куракин, Алексей Владимирович

    Введение диссертации (часть автореферата) на тему «Модели и методы распознавания динамических образов на основе пространственно-временного анализа последовательностей изображений»

    Существует класс задач, в которых особую важность приобретает информация^ структуре и движении объектов сложной сцены (видеонаблюдение в закрытых помещениях, в местах большого скопления людей, управление движением робототехнических комплексов, наблюдение за движением транспортных средств и т.д.). Последовательности изображений являются сложным информационным ресурсом, структурированным в пространстве и во времени и объединяющим исходную информацию в виде многомерных сигналов, форму ее представления в компьютере и физические модели динамических объектов, явлений, процессов. Новые технические возможности цифровой обработки изображений позволяют частично учитывать такую специфику изображений, используя одновременно достижения когнитивной теории человеческого восприятия зрительных образов.

    Анализ пространственно-временного объема данных позволяет выявлять не только статические, но и динамические признаки объектов наблюдения. В этом случае задачу распознавания можно определить как классификацию совокупностей состояний или как классификацию траекторий, решение которой не может быть найдено классическими методами распознавания, т.к. временные переходы^ могут порождать,преобразования изображений, не описываемые известными аналитическими зависимостями; Также наряду с задачей распознавания динамических объектов возникают задачи распознавания активных действий и событий, например, для выявления несанкционированных действий в местах скопления людей или определении жанра сцены для индексации в мультимедийных базах данных. Если рассматривать задачу распознавания объектов и событий по последовательностям изображений в виде единого процесса, то наиболее целесообразным является иерархический подход с элементами параллельной обработки на каждом уровне.

    Совершенствование технических средств сбора и воспроизведение информации в виде статических изображений (фотографий) и видеопоследовательностей требует дальнейшего развития методов и алгоритмов их обработки, анализа ситуаций и распознавания изображенных объектов. Начальная теоретическая постановка задачи распознавания изображений относится к 1960-1970 гг. и отражена в ряде работ известных авторов . Постановка задачи распознавания изображений может варьироваться от собственно задачи распознавания объектов, задач анализа сцен до задач понимания изображений и проблем машинного зрения. При этом системы принятия интеллектуальных решений, основанные на методах распознавания образов и изображений, используют входную информацию комплексного типа. К ней относятся как изображения, полученные в широком волновом диапазоне электромагнитного спектра (ультрафиолетовом, видимом, инфракрасном и др.), так и информация в виде звуковых образов и локационных данных. Несмотря на различную физическую природу, такую информацию можно представить в виде реальных изображений объектов и специфических изображений. Радиометрические данные - это плоские изображения сцены, представленные в перспективной или ортогональной проекции. Они формируются путем измерения интенсивности электромагнитных волн определенного спектрального диапазона, отраженных или излучаемых объектами сцены. Обычно используют фотометрические данные, измеренные в видимом спектральном диапазоне, - монохроматические (яркостные)* или цветные изображения: Локационные данные - это пространственные координаты наблюдаемых точек сцены. Если координаты измерены для всех точек сцены, то такой массив локационных данных можно назвать изображением глубины сцены. Существуют упрощенные модели изображений (например, модели аффинной проекции, представленные слабоперспективными, пара-перспективными, ортогональными и параллельными проекциями), в которых глубина сцены считается постоянной величиной, и локационное изображение сцены не несет полезной информации . Звуковая информация носит в данном случае вспомогательный событийный характер.

    Наиболее оперативно измеряются фотометрические данные. Локационная информация, как правило, вычисляется по данным, получаемым от специальных устройств (например, лазерного дальномера, радиолокатора) или с использованием стереоскопического метода анализа яркостных изображений. Вследствие трудностей оперативного получения локационных данных (особенно для сцен с быстро изменяющейся формой визуальных объектов) преобладают задачи описания сцены по одному визуальному изображению, т.е. задачи монокулярного зрительного восприятия сцены. В общем случае полностью определить геометрию сцены по одному изображению невозможно. Только при определенных ограничениях для достаточно простых модельных сцен и наличии априорных сведений о пространственном расположении объектов удается построить полное трехмерное описание по одному изображению . Одним из способов выхода из данной ситуации является обработка и анализ видеопоследовательностей, полученных от одной или нескольких видеокамер, установленных неподвижно или перемещающихся в пространстве.

    Таким образом, изображения являются основной формой представления информации о реальном мире, и требуется дальнейшее развитие методов преобразования и семантического анализа как отдельных изображений, так и видеопоследовательностей. Одним из важнейших направлений разработки таких интеллектуальных систем является автоматизация выбора методов описания и преобразования изображений с учетом их информационной природы и целей распознавания уже на начальных этапах обработки изображений.

    Первые работы исследователей из США {Louisiana State University, Carnegie Mellon University, Pittsburgh), Швеции ("Computational Vision and Active Perception Laboratory {CVAP), Department of Numerical Analysis and Computer Science), Франции {INRIA), Великобритании (University of Leeds), ФРГ (University of Karlsruhe), Австрии {University of Queensland), Японии, Китая {School of Computer Science, Fudan University) по обработке последовательностей изображений и распознаванию динамических объектов были опубликованы в конце 1980-х гг. Позже аналогичные работы стали появляться и в России: в Москве (МГУ, МАИ (ГТУ), МФТИ, ГосНИИ АС), С.Петербурге (СПбГУ, ГУАП, ФГУП ГОИ, ЛОМО), Рязани (РГРТУ), Самаре (СГАУ), Воронеже (ВГУ), Ярославле (ЯрГУ), Кирове (ВГУ), Таганроге (ТТИ ЮФУ), Новосибирске (НГУ), Томске (ТГПУ), Иркутске (ИрГУ), Улан-Удэ (ВСГТУ) и др. городах. Следует отметить особый вклад таких выдающихся российских ученых, занимающихся в данной области, как академик РАН, д.т.н. Ю. И. Журавлев, член-корреспондент РАН, д.т.н. В. А. Сойфер, д.т.н. Н. Г. Загоруйко, д.т.н. Л. М. Местецкий, д.т.н. Б. А. Алпатов и др. На сегодняшний день достигнуты значительные успехи при построении систем видеонаблюдения, систем аутентификации личности по изображениям и т.д. Однако существуют нерешенные проблемы при распознавании динамических образов из-за сложности и многообразия поведения объектов реального мира. Таким образом, данное направление нуждается в совершенствовании моделей, методов и алгоритмов распознавания динамических объектов и событий по последовательностям изображений в различных диапазонах электромагнитного излучения, что позволит разрабатывать системы видеоиаблю-дения на качественно новом уровне.

    Целью диссертационной работы является повышение эффективности распознавания динамических объектов, их активных действий и событий в сложных сценах по последовательностям изображений для систем наружного и внутреннего видеонаблюдения.

    Поставленная цель определила необходимость решения следующих задач:

    Провести анализ методов оценки движения и нахождения признаков движения объектов по набору последовательных изображений, методов сегментации динамических объектов и семантического анализа сложных сцен, а также подходов к построению систем распознавания и слежения за динамическими объектами различного целевого назначения.

    Разработать модели распознавания статических и динамических образов, основываясь на иерархической процедуре обработки временных рядов, в частности, последовательностей изображений.

    Разработать метод оценки движения динамических структур по пространственно-временной информации, полученной в различных диапазонах электромагнитного излучения, позволяющий выбирать методы сегментации в зависимости от характера движения и, тем самым, выполнять адаптивное распознавание динамических образов.

    Создать модель многоуровневого движения динамических структур в сложной сцене, позволяющую на основе полученных одометрических данных строить траектории движения динамических структур и выдвигать гипотезы о существовании визуальных объектов на основе анализа предыстории движений.

    Разработать комплексный алгоритм сегментации, учитывающий совокупность выявленных признаков динамических структур при произвольных направлениях перемещений и перекрытий проекций объектов, основываясь на модели многоуровневого движения в сложных сценах.

    Разработать метод распознавания динамических образов, представленных в терминах формальной грамматики и видеографа сцены, на основе метода коллективного принятия решений, а также методы распознавания активных действий и событий в сложной сцене, использующие графы активных действий и событий (расширяющие видеограф сложной сцены), и байесовскую сеть.

    На основе разработанных методов и моделей спроектировать экспериментальные системы различного назначения; предназначенные для обработки последовательностей изображений объектов, характеризующихся фиксированным и произвольным набором 2£>-проекций, и-распознавания динамических образов в. сложных сценах.

    Методы, исследований. При выполнении диссертационной работы использовались методы теории распознавания образов, дескриптивной теории распознавания изображений, теории обработки сигналов, методы векторного анализа и тензорного исчисления, а также теория групп, теория формальных грамматик.

    Научная новизна диссертационной работы состоит в следующем:

    1. Построена новая модель преобразования динамических изображений, отличающаяся расширенными иерархическими уровнями сегментации (по локальным и глобальным векторам движения) и распознавания (объектов и их активных действий), позволяющая находить целевые признаки для статических сцен с движущимися объектами и динамических сцен на, основе понятия максимального динамического инварианта.

    2. Расширена дескриптивная теория распознавания изображений введением четырех новых принципов: учет цели распознавания на начальных стадиях анализа, распознавание поведения динамических объектов, оценка предыстории, переменное количество объектов наблюдения, что позволяет повысить качество распознавания движущихся объектов за счет повышения информативности исходных данных.

    3. Впервые разработан адаптивный пространственно-временной метод оценки движения в синхронных последовательностях видимого и инфракрасного диапазонов электромагнитного излучения, позволяющий извлекать признаки движения на различных иерархических уровнях, сочетая достоинства обоих типов последовательностей изображений.

    4. Разработана новая модель многоуровневого движения; позволяющая проводить декомпозицию сцены на отдельные уровни; не > ограничивающаяся; общепринятым разделением на передний план и фон, что позволяет выполнять более достоверную сегментацию изображений объектов в; сложных перспективных сценах.

    5: Обоснован? и построен; новый; обобщенный алгоритм сегментации динамических объектов; с, применением, множества признаков^ включающих предыстории поведения; и позволяющий отслеживать как динамику отдельных визуальных объектов, так и взаимодействия объектов в сцене (перекрытия проекций; появление/исчезновение объектов из поля зрения видеодатчика) на основе групповых преобразований; и впервые предложенном анализе общей части проекций объекта (из двух соседних кадров) с применением интегральных и инвариантных оценок.

    6. Модифицирован метод коллективного принятия решений, отличающийся нахождением признаков межкадровых проекций объекта и позволяющий учитывать предысторию наблюдений для распознавания активных действий и событий на основе байесовской сети, а также предложены четыре вида псевдо-расстояний для нахождения меры сходства v динамических образов с эталонными динамическими образами в зависимости от представления динамических признаков.

    Практическая значимость. Предложенные в диссертационной работе методы и алгоритмы предназначены для практического применения при"мониторинге автотранспортных средств при многополосном движении в рамках государственного проекта «Безопасный город», в системах автоматизированного контроля за различными технологическими производственными процессами по видеопоследовательностям, в системах наружного видеонаблюдения и видеонаблюдения в закрытых помещениях, а также в системах иденл тификации объектов на аэрофотоснимках и распознавании ландшафтных изображений. На основе диссертационных исследований разработаны программные комплексы обработки и распознавания динамических объектов, применяемые в различных сферах деятельности.

    Реализация результатов работы. Разработанные программы зареги- стрированы в Российском реестре программ для ЭВМ: программа «Сегментация изображений рукописного текста (SegPic)» (свидетельство №2008614243, г. Москва, 5 сентября 2008 г.); программа «Определение движения (MotionEstimation)» (свидетельство №2009611014, г. Москва, 16 февраля- 2009 г.); программа «Локализация лица (FaceDetection)» (свидетельство №2009611010, г. Москва, 16 февраля-2009 г.); программа «Система наложения визуальных природных эффектов на статическое изображение (Natural effects imitation)» (свидетельство №2009612794, г. Москва, 30 июля 2009 г.); программа «Визуальное детектирование дыма (SmokeDetection)» (свидетельство №2009612795, г. Москва, 30 июля 2009 г.); «Программа визуальной регистрации государственных номерных знаков автотранспортных средств при многопоточном движении (FNX CTRAnalyzer)» (свидетельство №2010612795, г. Москва, 23 марта 2010 г.), программа «Нелинейное улучшение изображений (Nonlinear image enhancement)» (свидетельство №2010610658, г. Москва, 31 марта 2010 г.

    Получены акты о передаче и использовании алгоритмического и программного обеспечения для распознавания корпусов холодильников на сборочной линии (ОАО КЗХ «Бирюса», г. Красноярск), для идентификации изо бражений объектов на ландшафтных изображениях (Концерн радиостроения «Вега», ОАО КБ «Луч», г. Рыбинск Ярославской области), для сегментации лесной растительности по набору последовательных аэрофотоснимков (ООО «Альтекс Геоматика», г. Москва), для обнаружения пластин государственных регистрационных знаков автотранспортных средств в видеопоследовательностях при многопоточном движении и повышении качества их отображения^ (УГИБДД ГУВД по Красноярскому краю, г. Красноярск).

    Разработанные алгоритмы и программное обеспечение используются в учебном процессе при проведении занятий по дисциплинам «Интеллектуальная обработка данных», «Компьютерные технологии в науке и образовании», «Теоретические основы цифровой обработки изображений», «Распознавание образов», «Нейронные сети», «Алгоритмы обработки изображений», «Алгоритмы обработки видеопоследовательностей», «Анализ сцен и машинное зрение» в Сибирском государственном аэрокосмическом университете имени академика М.Ф. Решетнева (СибГАУ).

    Достоверность полученных в диссертационной работе результатов обеспечивается корректностью используемых методов исследования^ математической строгостью выполненных преобразований, а также соответствием сформулированных положений- и выводов результатам их экспериментальной проверки.

    Основные положения, выносимые на защиту:

    1. Модель обработки и распознавания динамических образов в сложных сценах, существенно расширенная" иерархическими уровнями сегментации и распознавания не только объектов, но и их активных действий.

    2. Расширение дескриптивной теории распознавания изображений для временных рядов (последовательностей изображений) за счет повышения информативности анализируемых данных не только в пространственной области, но и по временной составляющей.

    3. Адаптивный пространственно-временной метод оценки движения на. основе тензорных представлений локальных ЗИ объемов в синхронных последовательностях видимого и инфракрасного диапазонов электромагнитного излучения.

    4. Модель многоуровневого движения в сложных сценах, расширяющая декомпозицию перспективных сцен на отдельные уровни для более достоверного анализа траекторий движения объектов.

    5. Обобщенный алгоритм сегментации динамических объектов, позволяющий на основе групповых преобразований и предложенных интегральных и инвариантных оценок выявлять перекрытия проекций объектов, появление/исчезновение объектов из поля зрения видеодатчика.

    6. Методы распознавания динамических образов на основе модифицированного метода коллективного принятия решений и нахождения псевдорасстояний в метрических пространствах, а также активных действий и событий в сложных сценах.

    Апробация работы. Основные положения и результаты диссертационных исследований докладывались и обсуждались на 10 международной конференции «Pattern Recognition and Image Analysis: Modern Information Technologies», (S.-Petersburg, 2010), международном конгрессе «Ultra Modern Telecommunications and Control Systems ICUMT2010» (Moscow, 2010); XII международном симпозиума по непараметрическим методам в кибернетике и системному анализу (Красноярск, 2010), II международном симпозиуме «Intelligent Decision-Technologies - IDT 2010» (Baltimore, 2010), III международной конференции. «Automation, Control? and Information Technology - AOIT- ICT"2010» (Novosibirsk, 2010), 10-й, 11-й и 12-й международных конференциях и выставках «Цифровая обработка сигналов и ее применение» (Москва, 2008 - 2010 гг.), X международной научно-технической конференции «Теоретические и прикладные вопросы современных информационных технологий» (Улан-Удэ, 2009 г.), IX международной научно-технической конференции «Кибернетика и высокие технологии XXI века» (Воронеж, 2008), всероссийской конференции «Модели и методы обработки изображений» (Красноярск, 2007 г.), на X, XI и XIII международных научных конференциях «Ре-шетневские чтения» (Красноярск, 2006, 2007, 2009 гг.), а также на научных семинарах Государственного университета аэрокосмического приборостроения (С.-Петербург, 2009 г.), Института вычислительного моделирования СО

    РАН (Красноярск, 2009 г.), Института систем обработки изображений РАН (Самара, 2010).

    Публикации. По результатам диссертационного исследования опубликовано 53 печатных работы, из них 1 монография, 26 статей (из них 14 статей - в изданиях, включенных в список ВАК, 2 статьи - в изданиях, перечисленных в «Thomson Reuters: Science Citation Index Expanded / Conference Proceedings Citation Index»), 19 тезисов докладов, 7 свидетельств, зарегистрированных в Российском реестре программ для ЭВМ, а также 3 отчета по НИР.

    Личный вклад. Все основные результаты, изложенные в диссертации, включая постановку задач и их математические и алгоритмические решения, получены автором лично, или выполнены под его научным руководством и при непосредственном участии. По материалам работы были защищены две диссертации на соискание ученой степени кандидата технических наук, при выполнении которых автор был официальным научным руководителем.

    Структура работы. Работа состоит из введения, шести глав, заключения, библиографического списка. Основной текст диссертации содержит 326 страниц, изложение иллюстрируется 63 рисунками и 23 таблицами. Библиографический список включает 232 наименования.

    Похожие диссертационные работы по специальности «Теоретические основы информатики», 05.13.17 шифр ВАК

    • Комбинированные алгоритмы оперативного выделения движущихся объектов в последовательности видеокадров на основе локального дифференциального метода вычисления оптического потока 2010 год, кандидат технических наук Казаков, Борис Борисович

    • Методы стабилизации видеопоследовательностей сложных статических и динамических сцен в системах видеонаблюдения 2014 год, кандидат технических наук Буряченко, Владимир Викторович

    • Метод и система обработки динамических медицинских изображений 2012 год, кандидат технических наук Марьяскин, Евгений Леонидович

    • Всеракурсное распознавание радиолокационных изображений наземных (надводных) объектов с сегментацией пространства признаков на зоны квазиинвариантности 2006 год, кандидат технических наук Матвеев, Алексей Михайлович

    • Методы и алгоритмы обнаружения наложенных текстовых символов в системах распознавания изображений со сложной фоновой структурой 2007 год, кандидат технических наук Зотин, Александр Геннадьевич

    Заключение диссертации по теме «Теоретические основы информатики», Фаворская, Маргарита Николаевна

    6.7 Выводы по главе

    В" данной главе подробно рассмотрена структура и основные функции экспериментального программного комплекса «ЗРОЕЛ», у.1.02, который; выполняет системную иерархическую обработку последовательностей изображений вплоть до высших уровней распознавания объектов и событий. Он является автоматизированной системой, требующей участия человека для обучения и настройки графов, сетей и классификаторов. Ряд низкоуровневых модулей системы работает в автоматическом режиме. Структура программного комплекса такова, что возможна модификация модулей без оказания влияния на другие модули системы. Представлены функциональные схемы основных модулей системы: модуля, предварительной обработки, модуля оценки движения, модуля сегментации, модуля распознавания объектов и модуля распознавания активных действий.

    Экспериментальные исследования на основе данного программного комплекса проводились на нескольких видеопоследовательностях и инфракрасных последовательностях из тестовой базы «OTCBVS^07», на тестовых видеопоследовательностях «Hamburg taxi», «Rubik cube». «Silent», а также на собственном видеоматериале. Тестировались пять методов оценки движения. Экспериментально было показано, что метод сопоставления блоков и предложенный метод для инфракрасной последовательности показывают близкие значения и являются наименее точными. Предложенный метод для видеопоследовательности и метод слежения за точечными особенностями демонстрируют близкие результаты. При этом разработанный тензорный подход требует меньшего объема компьютерных вычислений по сравнению с методом слежения за точечными особенностями. Совместное использование синхронизированных видеопоследовательности и инфракрасной последовательности целесообразно использовать для нахождения модуля вектора скорости и в условиях пониженного освещения сцены.

    Для распознавании визуальных объектов применялись четыре вида псевдо-расстояний (псевдо-расстояния Хаусдорффа, Громова-Хаусдорффа, Фреше, естественное псевдо-расстояние) для нахождения меры сходства входных динамических образов с эталонными динамическими образами (в зависимости от представления динамического признака - множества числовых характеристик, множества векторов, множества функций). Они показали свою состоятельность для образов с допустимыми морфологическими преобразованиями. Использовались интегрированные нормализованные оценки формы контура Кс общей части проекции объекта между условно соседними кадрами и площадь общей части 5е и инвариантная оценка - корреляционная функция общих частей проекций Fcor. Применение модифицированного метода коллективного принятия решений позволяет «отбросить» неудачные наблюдения входных образов (случаи перекрытия проекций объектов, искажения сцены от источников освещения и т. д.) и выбрать наиболее подходящие наблюдения. Эксперименты показали, что применение модифицированного метода коллективного принятия решения повышает точность распознавания в среднем на 2,4-2,9 %.

    Экспериментальные результаты оценки движения, сегментации и распознавания объектов были получены на тестовых последовательностях изображений («Hamburg taxi», «Rubik cube». «Silent», видеопоследовательности и инфракрасные последовательности из тестовой базы «ОТСВVS"07»). Для распознавания активных действий людей использовались примеры из тестовых баз «PETS», «CAVIAR», «VACE». Характер тестовой визуальной последовательности влияет на показатели. Хуже распознаются объекты, осуществляющие вращательное движение («Rubik cube»), лучше - техногенные объекты небольших размеров («Hamburg taxi», «Видео 1»). Наилучшие результаты показывает распознавание по двум последовательностям. Также лучшие экспериментальные результаты достигались при распознавании периодических активных действий людей, не находящихся в группах (хождение, бег, поднятие рук). Ложные срабатывания обусловлены засветкойш наличием теней, в ряде мест сцены.

    В ^завершении* шестой главы были рассмотрены такие прикладные"проекты, как «Визуальная регистрация государственных номерных знаков автотранспортных средств при многопоточном движении», «Система идентификации моделей корпусов холодильников по изображениям», «Алгоритмы.обработки и-сегментации, ландшафтных изображений. Идентификация объектов». Алгоритмическое и. программное обеспечение передано заинтересованным, организациям: Результаты тестовой эксплуатации показали работоспособность программного обеспечения, разработанного на основе предложенных в диссертационной работе моделей и методов.

    ЗАКЛЮЧЕНИЕ

    В диссертационной работе была поставлена и решена важная научно-техническая проблема обработки пространственно-временных данных, полученных из последовательностей видимого и инфракрасного диапазонов электромагнитного излучения, и распознавания динамических образов в сложных сценах. Система иерархических методов обработки и извлечения признаков из пространственно-временных данных представляет собой методологическую основу решения прикладных задач в области видеонаблюдения.

    Во введении обоснована актуальность диссертационной работы, сформулирована цель и поставлены задачи исследования, показана научная новизна и практическая ценность выполненных исследований, представлены основные положения, выносимые на защиту.

    В первой главе показано, что визуальные объекты в видеопоследовательностях характеризуются более многомерным вектором признаков, чем" образы в классической постановке задачи распознавания статических изображений. В диссертационной работе вводятся уточняющие этапы на среднем и высшем уровнях обработки, которые имеют существенное значение для динамических изображений.

    Построена классификация основных типов задач распознавания для статических изображений, статических сцен с элементами движения и последовательностей изображений, которая отражает исторический характер развития математических методов в данной области. Проведен подробный анализ методов оценки движения, алгоритмов сегментации движущихся объектов, методов интерпретации событий в сложных сценах.

    Рассмотрены существующие коммерческие аппаратно-программные комплексы в таких областях, как мониторинг транспортных средств различного назначения, обработка спортивных видеоматериалов, обеспечение безопасности (распознавание лиц, несанкционированное проникновения людей на охраняемую территорию), Также анализируются исследовательские разработки для систем видеонаблюдения.

    В завершении главы 1 приведена постановка задачи пространственно-временной обработки последовательностей изображений, представленная в виде трех уровней и пяти этапов обработки и распознавания визуальной информации по последовательностям изображений.

    Во второй главе диссертации разработаны формальные модели обработки и распознавания объектов по их статическим изображениям и последовательностям изображений. Построены допустимые отображения в пространстве изображений и пространстве признаков для прямой задачи и обратной задачи. Приведены правила построения инвариантных решающих функций и обобщенного максимального динамического инварианта. При распознавании траектории различных образов в многомерном пространстве признаков могут пересекаться. При пересечении проекций объектов нахождение обобщенного максимального динамического инварианта становится еще более трудной, а в некоторых случаях и невозможной задачей.

    Рассмотрены основные принципы дескриптивной теории распознавания изображений, в основу которой легли регулярные методы выбора и синтеза алгоритмических процедур обработки информации при распознавании изображений. Предложены дополнительные принципы, расширяющие дескриптивную теорию для динамических изображений: учет цели распознавания на начальных стадиях обработки последовательности изображений, распознавание поведенческих ситуаций динамических объектов, оценка предыстории динамических объектов, переменное количество объектов наблюдения в сложных сценах.

    Подробно рассмотрена проблема поиска целевых признаков для анализа последовательностей изображений в зависимости от типа съемки (в случае одноракурсной съемки), движения видеодатчика и наличия движущихся объектов в зоне видимости. Приведены описания четырех ситуаций в пространстве признаков по мере усложнения задачи.

    В третьей главе сформулированы этапы обработки последовательностей изображений и распознавания объектов, активных действий, событий и жанра сцены. Этапы отражают последовательный иерархический характер обработки визуальной информации. Также представлены условия и ограничения иерархических методов пространственно-временной обработки последовательностей изображений.

    Классификация динамических регионов изображения производится путем анализа собственных значений 31) структурного тензора, собственные векторы которого определяются по локальным смещениям интенсивностей изображений соседних кадров и используются для оценки локальных ориен-таций динамических регионов. Обоснован новый метод оценки движения в пространственно-временном объеме данных видимого и инфракрасного диапазонов излучения на основе тензорного подхода. Рассмотрена возможность применения пространственно изменяемого ядра, адаптивного к размерам и ориентации окружения точки. Адаптация окружения, вначале имеющего форму круга, а затем превращающегося после 2-3 итераций в форму ориентированного эллипса позволяет улучшить оценку ориентированных структур на изображении. Такая стратегия улучшает оценки градиентов в пространственно-временном наборе данных.

    Оценка локальных параметров движения производится путем вычисления геометрических примитивов и особенных точек локального региона. Таким образом, оценка локальных признаков движения регионов является основой выдвижения последующих гипотез принадлежности визуальных объектов к тому или иному классу. Использование синхронных видеопоследовательности и инфракрасной последовательности позволяет улучшить результаты сегментации движущихся регионов на изображении и нахождения локальных векторов движения.

    Показано, что оценить границы в цветных изображениях можно на основе многомерных градиентных методов, построенных по всем направлениям в каждой точке границы, векторными методами с использованием порядковых статистиках о цветном изображении, а также применением тензорного подхода в рамках многомерных градиентных методов. Способы уточнения контурной информации имеют существенное значение для регионов с произвольным количеством допустимых проекций.

    В четвертой главе построена многоуровневая модель движения на основе структур движения, отражающая динамику объектов реальных сцен и расширяющая двухуровневое представление сцены, разделяемой на объекты интереса и неподвижный фон.

    Исследуются модели движения объектов на плоскости, основанные на теории компактных групп Ли. Представлены модели для проективного преобразования и разновидностей моделей аффинного преобразования. Такие преобразования хорошо описывают структуры движения с ограниченным количеством проекций (техногенные объекты). Представление структур с неограниченным количеством проекций (антропогенные объекты) аффинными или проективными преобразованиями сопровождается рядом дополнительных условий (в частности, требование удаленности объектов от видеодатчика, малоразмерные объекты и т. д.). Приводятся определения и теорема, доказанная Л. С. Понтрягиным, на основании которых удалось найти внутренний автоморфизм групповых координат, описывающих некоторый объект с точностью до сдвигов между соседними кадрами. Величина сдвигов опреде1 ляется по методу оценки движения межкадровой разницы, разработанному в 3" главе.

    Построено расширение допустимых переходов между группами преобразований в- силу двойственности природы 2£)-изображений (отображение изменений проекции отдельного объекта и визуальное пересечение нескольких объектов: (взаимодействие объектов)). Найдены, критерии, которые при изменении групп преобразований фиксируют активные действия и события, в сцене, а именно, интегрированные оценки формы контура Кс общей части проекции между условно соседними кадрами и площадь общей части 5е и инвариантные оценки - корреляционная функция общих частей проекций Рсог и структурные константы группы Ли с"д, которые позволяют оценить степень изменчивости и выявить характер движения наблюдаемых объектов.

    Также построена модель предыстории движения объектов в последовательностях изображений, включающая временные ряды траекторий перемещения, изменения формы объекта при его движении в 3£>-пространстве, а также изменения формы объекта, связанные с взаимодействием объектов в сцене и появлением/исчезновением объекта из поля зрения датчика (используется для распознавания активных действий и событий в сцене). 1

    Разработан обобщенный алгоритм сегментации объектов в сложных сценах, учитывающий сложные случаи сегментации (перекрытия изображений, появление и исчезновение объектов из поля зрения камеры, движение на камеру), который включает три подэтапа: предсегментацию, сегментацию и пост-сегментацию. Для каждого подэтапа сформулированы задачи, исходные и выходные данные, разработаны блок-схемы алгоритмов, позволяющие проводить сегментацию сложных сцен, используя преимущества синхронных последовательностей из различных диапазонов излучения.

    В пятой главе рассматривается процесс распознавания динамических образов, использующий формальную грамматику, видеограф сцены и модифицированный метод коллективного принятия решений. Динамическая сцена с многоуровневым движением обладает изменяющейся во времени структурой, поэтому целесообразно использовать структурные методы распознавания. Предложенная трехуровневая контекстная грамматика распознавания сложных сцен с многоуровневым движением объектов реализует две задачи: задачу синтаксического анализа последовательности изображений и задачу синтаксического анализа сцены.

    Более наглядным средством семантического описания сцены является видеограф, построенный по методу иерархического группирования. На основе комплексных признаков низшего уровня формируются локальные пространственные структуры, устойчивые во времени, локальные пространственные объекты и строится видеограф сцены, включающий распознанные пространственные объекты, совокупность присущих им действий, а также пространственно-временные связи между ними.

    Модифицированный метод коллективного принятия решений основан на двухуровневой процедуре распознавания. На первом уровне осуществляется распознавание принадлежности изображения той или иной области компетентности. На втором уровне вступает в силу решающее правило, компетентность которого максимальна в заданной области. Построены выражения для псевдо-расстояний при нахождении меры сходства входных динамических образов с эталонными динамическими образами в зависимости от представления динамических признаков - множества числовых характеристик, множества векторов, множества функций.

    При распознавании событий видеограф сложной сцены расширяется до видеографа событий: Построена объектно-зависимая модель динамического объекта. В качестве функции соответствия используются простейшие классификаторы в пространстве признаков (например, по методу ^-средних), т. к. сопоставление осуществляется по ограниченному множеству шаблонов, ассоциированных с ранее опознанным объектом. Рассмотрены способы формирования шаблонов проекций визуальных объектов.

    Видеограф событий строится на основе сетей Маркова. Рассмотрены способы выявления активных действий агентов, а также порядок построения и разрезания видеографа событий для распознавания, событий в сцене. При этом для каждого события строится своя модель, которая обучается на тестовых примерах. Обнаружение событий сводится к кластеризации последовательно выполняемых активных действий на основе байесовского подхода. Выполняется рекурсивное разрезание- матрицы весовых коэффициентов во входной видеопоследовательности и сравнение с эталонными, событиями, полученными на этапе обучения. Данная информация является* исходной для определения жанра сцены и при необходимости индексирования видеопоследовательности в базе данных. Разработана схема понимания и интерпретации изображений и видеоматериалов для индексирования в мультимедийных Интернет-базах.

    В шестой главе представлено описание экспериментального программного комплекса «SPOER», v.l.02 по обработке последовательностей изображений и распознаванию движущихся объектов и событий. Он выполняет системную иерархическую обработку последовательностей изображений вплоть до высших уровней распознавания объектов и событий. Он является автоматизированной системой, требующей участия человека для обучения и настройки графов, сетей и классификаторов. Ряд низкоуровневых модулей системы работает в автоматическом режиме.

    В экспериментальных исследованиях, проведенных с помощью программного комплекса «SPOER», v.l.02, использовались видеопоследовательности и инфракрасные последовательности изображений из тестовой базы «OTCBVS"07», тестовые видеопоследовательности «Hamburg taxi», «Rubik cube». «Silent» и собственные видеоматериалы. Тестировались пять методов оценки движения. Предложенный метод для видеопоследовательности демонстрирует наиболее точные результаты и требует меньшего объема компьютерных вычислений по сравнению с другими методами. Совместное использование синхронизированных видеопоследовательности и инфракрасной последовательности целесообразно при нахождении модулей векторов скоростей в условиях пониженного освещения сцены.

    Для распознавании визуальных объектов с допустимыми морфологическими преобразованиями проекций использовались интегрированные нормализованные оценки формы контура Кс общей части проекции объекта между условно соседними кадрами и площадь общей части 5е и инвариантная оценка - корреляционная функция общих частей проекций Fcor. Применение модифицированного метода коллективного принятия решений позволяет «отбросить» неудачные наблюдения входных образов (случаи перекрытия проекций объектов, визуальные искажения сцены от источников освещения и т. д.) и выбрать наиболее подходящие наблюдения. Эксперименты показали, что применение модифицированного метода коллективного принятия решения повышает точность распознавания в среднем на 2,4-2,9 %.

    Экспериментальные результаты оценки- движения; сегментации и распознавания объектов были получены на тестовых последовательностях изображений («Hamburg taxi», «Rubik cube». «Silent», видеопоследовательности и инфракрасные последовательности из тестовой базы «OTCBVS*07»). Для распознавания активных действий людей использовались примеры из тестовых баз «PETS», «CAVIAR», «VACE». Наилучшие результаты показывает распознавание по двум последовательностям. Также лучшие экспериментальные результаты достигались при распознавании периодических активных действий людей, не находящихся в группах (хождение, бег, поднятие рук). Ложные срабатывания обусловлены засветкой и наличием теней в ряде мест сцены.

    На базе экспериментального комплекса «ЗРОЕЯ», V. 1.02 были разработаны системы обработки видеоинформации различного целевого назначения: «Визуальная регистрация государственных номерных знаков автотранспортных средств при многопоточном движении», «Система идентификации моделей корпусов холодильников по изображениям», «Алгоритмы обработки и сегментации ландшафтных изображений. Идентификация объектов». Алгоритмическое и программное обеспечение передано заинтересованным организациям. Результаты тестовой эксплуатации показали работоспособность программного обеспечения, разработанного на основе предложенных в диссертационной работе моделей и методов.

    Таким образом, в диссертационной работе были получены следующие результаты:

    1. Построены формальные модели обработки и распознавания пространственно-временных структур на основе адаптивной иерархической процедуры. обработки последовательностей изображений, отличающиеся тем, что в них учтены изоморфные и гомоморфные преобразования и выведены обобщенные функции статических и динамических инвариантов. Также построены модели поиска статических и динамических признаков объектов для четырех задач анализа последовательностей изображений в зависимости от наличия движущегося1 видеодатчика и движущихся объектов в сцене.

    2. Расширены- основные положения дескриптивного подхода к распознаванию последовательностей изображений, позволяющие учитывать цели распознавания на начальных стадиях обработки последовательности изображений с последующей сегментацией областей интереса, строить траектории движения и распознавать поведение динамических объектов, учитывать предысторию движения объектов при пересечении их проекций, сопровождать переменное количество объектов наблюдения.

    3. Разработан иерархический метод обработки и распознавания пространственно-временных структур, состоящий из трех уровней и пяти этапов и предполагающий нормализацию проекций объектов, что позволяет сократить количество эталонов для одного класса при распознавании сложных динамических объектов.

    4. Разработан метод оценки движения для последовательностей изображений из видимого и инфракрасного диапазонов электромагнитного излучения отличающийся тем, что используются пространственно-временные наборы данных, представленные в виде 3£> структурных тензоров и ЪВ тензоров. потока соответственно. Полученная оценка движения позволяет выбрать наиболее эффективный метод сегментации динамических визуальных объектов, отличающихся количеством допустимых проекций.

    5. Построена модель многоуровневого движения регионов изображения на основе локальных векторов скорости, отличающаяся тем, что позволяет разделять сцену не только на объекты переднего плана и фон, но и на уровни движения объектов, удаленных от наблюдателя. Это особенно актуально для сложных сцен, регистрируемых подвижным видеодатчиком, когда все объекты сцены находятся в относительном движении.

    6. Разработан адаптивный алгоритм-сегментации динамических объектов: а) для объектов с ограниченным количеством проекций, на основе анализа предыстории движения локальных динамических регионов, отличающийся тем, что при перекрытиях изображений достраивается форма, региона по текущему шаблону и при условии применения фильтра Калмана прогнозируется,текущая, траектория; б) для объектов с произвольным количеством проекций на основе комплексного анализа, цветовых, текстурных, статистических, топологических признаков и признаков движения, отличающийся тем, что при перекрытиях изображений^форма региона достраивается с использованием метода активных контуров.

    7. Предложен способ построения динамического видеографа сложной сцены по методу иерархического группирования комплексных признаков низшего уровня в локальные пространственные структуры, устойчивые во времени, и далее в локальные пространственные объекты. Сформированный видеограф устанавливает временные отношения между объектами и сохраняет все обобщенные признаки для распознавания событий в сцене. Расширена двумерная грамматика М.И. Шлезингера в рамках структурного метода распознавания до трехуровневой контекстной грамматики.

    8: Для распознавания динамических объектов модифицирован коллективный метод принятия решений, вначале осуществляющий распознавание принадлежности изображения области компетентности, а затем выбирающий то решающее правило, компетентность которого максимальна в заданной области. Построены четыре вида псевдо-расстояний для нахождения меры сходства входных динамических образов с эталонами в зависимости от представления динамических признаков.

    9. Разработан метод распознавания событий на основе байесовской сети, выполняющий рекурсивное разрезание матрицы весовых коэффициентов во входной видеопоследовательности и сравнение с эталонными событиями, полученными на этапе обучения. Данная информация является исходной для определения жанра сцены и индексирования видеопоследовательностей в мультимедийных Интернет-базах.

    10. Практические задачи обработки и распознавания последовательностей изображений решены с помощью адаптивно-иерархического метода пространственно-временной обработки, показана работоспособность метода, продемонстрирована эффективность применения системы иерархических методов обработки и. распознавания визуальной информации с возможностью адаптивного выбора признаков в. процессе решения задачи. Полученные результаты в виде спроектированных экспериментальных систем, переданы заинтересованным организациям.

    Таким образом, в данной диссертационной, работе решена важная научно-техническая проблема информационного обеспечения систем видеонаблюдения и разработано новое направление в области пространственно-временной обработки и распознавания динамических изображений.

    Список литературы диссертационного исследования доктор технических наук Фаворская, Маргарита Николаевна, 2011 год

    1. Автоматический анализ сложных изображений / Под ред. Э.М. Бра-вермана. М.: Мир, 1969. - 309 с. Бонгард М.М. Проблемы узнавания. - М.: Наука, 1967.-320 с.

    2. Алпатов, Б.А., Обнаружение движущегося объекта в последовательности изображений при наличии ограничений на площадь и скорость движения объекта / Б.А. Алпатов, A.A. Китаев // Цифровая обработка изображений, №1, 2007. с. 11-16.

    3. Алпатов, Б.А., Выделение движущихся объектов в условиях геометрических искажений изображения / Б.А. Алпатов, П.В. Бабаян // Цифровая обработка сигналов, № 45 2004. с. 9-14.

    4. Алпатов, Б.А., Бабаян П.В. Методы обработки и анализа изображений" в бортовых системах обнаружения и сопровождения объектов / Б.А. Алпатов, П.В. Бабаян // Цифровая обработка сигналов, №2, 2006. 45-51 с.

    5. Большаков, A.A., Методы обработки многомерных данных и временных рядов: Учебное пособие для вузов / A.A. Большаков, Р.И. Каримов / М.: Горячая линия-Телеком, 2007. 522 с.6: Бонгард, М.М. Проблемы узнавания / М.М. Бонгард / М.: Наука, 1967.-320 с.

    6. Булинский, A.B. Теория случайных процессов1 / A.B. Булинский, А.Н. Ширяев / М.: ФИЗМАТЛИТ, 2005. 408 с.

    7. Вайнцвайг, М.Н. Архитектура системы представления зрительных динамических сцен в терминах понятий / М.Н.Вайнцвайг, М.Н. Полякова // Сб. тр. 11-й всеросс. конф. «Математические методы распознавания образов (ММРО-11)», М., 2003. с.261-263.

    8. Вапник, В.Н. Задача обучения распознаванию образов / В.Н. Вапник / М.: Знание, 1970. - 384 с.

    9. П.Вапник, В.Н. Теория распознавания образов (статистические проблемы обучения) / В.Н. Вапник, А.Я. Червоненкис / М.: Наука, 1974. 416 с.

    10. Васильев, В.И. Распознавание движущихся тел / В.И. Васильев, А.Г. Ивахненко, В.Е. Реуцкий и др. // Автоматика, 1967, № 6, с. 47-52.

    11. Васильев, В.И. Распознающие системы / В.И. Васильев / Киев: Наук. Думка, 1969. 292 с.

    12. Васильев, В.И. Распознающие системы. Справочник / В.И. Васильев / Киев, Наук, думка, 1983. 422 с.

    13. Визильтер, Ю.В. Применение метода анализа морфологических свидетельств в задачах машинного зрения>/ Ю.В. Визильтер // Вестник компьютерных и информационных технологий, № 9, 2007 с. 11-18.

    14. Визильтер, Ю.В. Проективные морфологии на базе интерполяции / Ю.В. Визильтер // Вестник компьютерных и информационных технологий, №4, 2008.-с. 11-18.

    15. Визильтер, Ю.В., Проективные морфологии и их применение в структурном анализе цифровых изображений / Ю.В. Визильтер, С.Ю. Желтов // Изв. РАН. ТиСУ, № 6, 2008. с. 113-128.

    16. Визильтер, Ю.В. Исследование поведения авторегрессионных фильтров в задаче выделения и анализа движения на цифровых видеопоследовательностях / Ю.В. Визильтер, Б.В. Вишняков // Вестник компьютерных и информационных технологий, № 8, 2008. - с. 2-8.

    17. Визильтер, Ю.В. Проективные морфологии изображений на базе моделей, описываемых структурирующими функционалами /Ю.В. Визильтер, С.Ю. Желтов // Вестник компьютерных и информационных технологий, № 11, 2009.-с. 12-21.

    18. Вишняков, Б.В. Использование модифицированного метода оптических потоков в задаче обнаружения и межкадрового прослеживания движуs.

    19. Ганебных, С.Н. Анализ сцен на основе применения древовидных представлений изображений / С.Н.Ганебных, М.М. Ланге // Сб. тр. 11-й все-росс. конф. «Математические методы распознавания образов (ММРО-11)», М., 2003.-с. 271-275.

    20. Глушков, В.М. Введение в кибернетику / В.М. Глушков / Киев: изд-во АН УССР, 1964. 324 с.

    21. Гонсалес, Р., Вудс Р. Цифровая обработка изображений. Пер.с англ. под ред. П.А.Чочиа / Р.Гонсалес, Р. Вудс / М.: Техносфера, 2006. 1072 с.

    22. Горошкин, А.Н., Сегментация изображений рукописного текста (SegPic) / А.Н. Горошкин, М.Н. Фаворская // Свидетельство № 2008614243. Зарегистрировано в Реестре программ для ЭВМ г. Москва, 5 сентября 2008 г.

    23. Гренандер, У. Лекции по теории образов / У. Гренандер / В 3 т. / Пер.с англ. Под ред. Ю.И.Журавлева. М.: Мир, 1979-1983. 130 с.

    24. Грузман, И.С. Цифровая обработка изображений в информационных системах: Учебн. Пособие / И.С.Грузман, B.C. Киричук, В.П. Косых, Г.И.Перетягин, A.A. Спектор / Новосибирск, изд-во НГТУ, 2003. с. 352.

    25. Достоверный и правдоподобный вывод в интеллектуальных системах / Под ред. В.Н. Вагина, Д.А. Поспелова. 2-е изд., испр. и доп. - М.: ФИЗМАТЛИТ, 2008. - 712 с.

    26. Дуда, Р. Распознавание образов и анализ сцен / Р. Дуда, П. Харт / М.: изд-во «Мир», 1978. 512 с.

    27. Журавлев, Ю.И. Об алгебраическом подходе к решению задач распознавания и классификации / Ю.И. Журавлев // Проблемы кибернетики: Сб. ст., вып. 33, М.: Наука, 1978. с. 5-68.

    28. Журавлев, Ю.И. Об алгебраической коррекции процедур обработки (преобразования) информации / Ю.И.Журавлев, К.В. Рудаков // Проблемы прикладной математики и информатики, М.: Наука, 1987. с. 187-198.

    29. Журавлев, Ю.И. Распознавание образов и распознавание изображений / Ю.И. Журавлев, И.Б. Гуревич // Ежегодник «Распознавание. Классификация. Прогноз. Математические методы и их применение», вып. 2, М.: Наука, 1989.-72 с.

    30. Журавлев, Ю.И. Распознавание образов и анализ изображений / Ю.И.Журавлев, И.Б. Гуревич / Искусственный интеллект в 3-х кн. Кн. 2. Модели и методы: Справочник / Под ред. Д.А. Поспелова, М.: изд-во «Радио и связь», 1990. - с.149-190.

    31. Загоруйко, Н.Г. Методы распознавания и их применение / Н.Г. За-горуйко / М.: Сов. радио, 1972. 206 с.

    32. Загоруйко, Н.Г. Искусственный интеллект и эмпирическое предсказание / Н.Г. Загоруйко / Новосибирск: изд. НГУ, 1975. 82 с.

    33. Ивахненко, А.Г. О применении теории инвариантности и комбинированного управления к синтезу и анализу обучающихся систем / А.Г. Ивахненко // Автоматика, 1961, № 5, с. 11-19.

    34. Ивахненко, Г.И. Самообучающиеся системы распознавания и автоматического управления / А.Г. Ивахненко / Киев: Техника, 1969. 302 с.

    35. Кашкин, В.Б. Дистанционное зондирование Земли из космоса. Цифровая обработка изображений: Учебное пособие / В.Б. Кашкин, А.И. Су-хинин / М.: Логос, 2001. 264 с.

    36. Кобзарь, А.И. Прикладная математическая статистика. Для инженеров и научных работников / А.И. Кобзарь / М.: ФИЗМАТЛИТ, 2006. 816 с.

    37. Ковалевский, В.А. Корреляционный метод распознавания изображений / В.А. Ковалевский // Журн. вычисл. математики и мат.физики, 1962, 2, № 4, с. 684-690.

    38. Колмогоров, А.Н: Эпсилон-энтропия и эпсилон-емкость множеств в функциональных пространствах / А.Н. Колмогоров, В.М. Тихомиров // Теория информации и теория алгоритмов. М.: Наука, 1987. с. 119-198.

    39. Корн, Г. Справочник по математике для научных работников и инженеров / Г.Корн, Т. Корн // М.: Наука, Гл. ред. физ.-мат. лит., 1984. 832 с.

    40. Кроновер, Р. Фракталы и хаос в динамических системах / Р. Кроно-вер // М.: Техносфера, 2006. 488 с.

    41. Лапко, A.B. Непараметрические*и гибридные системы классификации разнотипных данных / А.В.Лапко, BlA. Лапко // Тр. 12-й всеросс. конф. «Математические методы и модели распознавания образов» (ММРО-12), М., 2005.-с. 159-162.

    42. Левтин, К.Э. Визуальное детектирование дыма (SmokeDetection) / К.Э.Левтин, М.Н. Фаворская // Свидетельство № 2009612795. Зарегистрировано в Реестре программ для ЭВМ г. Москва, ЗО июля 2009 г.

    43. Луцив, В.Р. Принципы унификации оптических систем роботов / В.Р. Луцив, М.Н. Фаворская // В- кн. «Унификация и стандартизация промышленных роботов», Ташкент, 1984. с. 93-94.

    44. Луцив, В.Р. Универсальная оптическая система для ГАП / В.Р. Луцив, М.Н. Фаворская // В кн. «Опыт создания, внедрения и использования АСУТП в объединениях и на предприятиях», Л., ЛДНТП, 1984. с. 44-47.

    45. Медведева, Е.В. Метод оценки векторов движения в видеоизображениях / Е.В.Медведева, Б.О. Тимофеев // В материалах 12-й международной конференции и выставки «Цифровая обработка сигналов и ее применение», М.: В 2 т. Т. 2, 2010. с. 158-161.

    46. Методы компьютерной обработки изображений / Под ред. В.А.Сойфера. 2-е изд., исп. - М.: ФИЗМАТЛИТ, 2003. - 784 с.

    47. Методы автоматического обнаружения и сопровождения объектов. Обработка изображений и управление / Б. А. Алпатов, П.В. Бабаян, O.E. Балашов, А.И. Степашкин. -М.: Радиотехника, 2008. - 176 с.

    48. Методы компьютерной оптики / Под ред. В.А.Сойфера. М.: ФИЗМАТЛИТ, 2003. - 688 с.

    49. Мудров, А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль / А.Е. Мудров / Томск: МП «РАСКО», 1991. 272 с.

    50. Пахирка, А.И. Локализация лица (FaceDetection) / А.И.Пахирка, М.Н. Фаворская // Свидетельство № 2009611010. Зарегистрировано в Реестре программ для ЭВМ г. Москва, 16 февраля 2009 г.

    51. Пахирка, А.И. Нелинейное улучшение изображений (Nonlinear image enhancement) / А.И.Пахирка, М.Н. Фаворская // Свидетельство № 2010610658. Зарегистрировано в Реестре программ для ЭВМ г. Москва, 31 марта 2010 г.

    52. Понтрягин, Л. С. Непрерывные группы J Л. С. Понтрягин // 4-е изд., М.: Наука, 1984.-520 с.

    53. Потапов, A.A. Фракталы в радиофизике и радиолокации: Топология выборки / A.A. Потапов // Изд. 2-е, перераб. и доп. - М.: Университетская книга, 2005. 848 с.

    54. Радченко, Ю.С. Исследование спектрального алгоритма обнаружения" изменений в видеопоследовательности / Ю.С.Радченко, А.В.Булыгин, Т.А. Радченко // Изв. ВУЗОВ. Радиоэлектроника, ;№ 7, 2009. с. 49-59.

    55. Сальников, И.И. Растровые пространственно-временные сигналы в системах анализа изображений / И.И. Сальников // М.: ФИЗМАТЛИТ, 2009. -248 с.

    56. Сергунин, С.Ю. Схема динамического построения многоуровнего описания изображений / С.Ю.Сергунин, К.М.Квашнин, М.И. Кумсков // Сб. тр. 11-й всеросс. конф: «Математические методы распознавания образов (ММРО-11)», М., 2003. с. 436-439:

    57. Слынько, Ю.В. Решение задачи одновременного сопровождения и оконтуривания методом максимального правдоподобия / Ю.В. Слынько // Цифровая обработка сигналов, № 4, 2008. с. 7-10

    58. Солсо, Р. Когнитивная психология / Р. Солсо / СПб.: Питер, 6-е изд., 2006. 590 с.

    59. Тарасов, И.Е. Разработка цифровых устройств на основе ПЛИС «Xi-linx»c применением языка VHDL / И.Е. Тарасов / М.: Горячая линия-Телеком, 2005. - 252 с.

    60. Фаворская, М.Н. Разработка алгоритмов цифрового распознавания изображений в адаптивных робототехнических комплексах / М.Н*. Фаворская // Л!, Ленинградский ин-т авйац. приборостр., 1985. Рукопись деп: в ВИНИТИ 23.01.85. № 659-85 Деп.

    61. Фаворская; М.Н. Применение спектральных методов для нормализации и распознавания изображений в адаптивных робототехнических комплексах / М.Н.*.Фаворская // Л., Ленинградский,ин-т авиац. приборостр., 1985. Рукопись деп. в ВИНИТИ23.01.85. № 660-85 Деп.

    62. Фаворская, М.Н. Опыт разработки алгоритмов распознавания объектов для штамповочного производства / М.Н. Фаворская // В кн. «Состояние, опыт и направления работ по комплексной автоматизации на основе ГПС, РТК и ПР», Пенза, 1985. с. 64-66.

    63. Фаворская, М.Н. Исследование проективных свойств групп объектов / М.Н. Фаворская, Ю.Б. Козлова // Вестник Сибирского государственного аэрокосмического университета. Вып. 3, Красноярск, 2002. - с. 99-105.

    64. Фаворская, М.Н. Определение аффинной структуры объекта по движению / М.Н. Фаворская // Вестник Сибирского государственного аэрокосмического университета, Вып. 6, Красноярск, 2005. - с. 86-89.

    65. Фаворская- М.Н. Общая классификация подходов к распознаванию изображений / М-.Н. Фаворская // В< материалах X междунар. научн. конф. «Решетневские чтения» СибГАУ, Красноярск, 2006. с. 54-55.

    66. Фаворская М.Н. Инвариантные решающие функции в задачах распознавания статических изображений / М.Н. Фаворская // Вестник Сибирского государственного аэрокосмического университета. Вып. 1 (14), Красноярск, 2007. с. 65-70.

    67. Фаворская, М.Н. Вероятностные методы сегментации видеопотока как задача с недостающими данными / М.Н. Фаворская // Вестник Сибирского государственного аэрокосмического университета. Вып. 3 (16), Красноярск, 2007. с. 4-8.

    68. Фаворская, М.Н. Выбор целевых информативных признаков в системах распознавания изображений / М.Н. Фаворская // В материалах XI меж-дунар. научн. конф. «Решетневские чтения» СибГАУ, Красноярск, 2007 с. 306-307.

    69. Фаворская, М.Н. Стратегии сегментации двумерных изображений / М.Н. Фаворская // В материалах всероссийской научной конференции «Модели и методы обработки изображений ММОИ-2007», Красноярск, 2007. с. 136-140.

    70. Фаворская, М.Н. Сегментация ландшафтных изображений на основе фрактального подхода / М.Н. Фаворская // В материалах 10-й международной конференции и выставке «Цифровая обработка сигналов и ее применение», М., 2008. с. 498-501.

    71. Фаворская, М.Н. Модель распознавания изображений рукописного текста / М.Н. Фаворская, А.Н. Горошкин // Вестник Сибирского государст4 i, венного аэрокосмического университета. Вып. 2" (19), Красноярск, 2008. с. 52-58.

    72. Фаворская, М.Н. Алгоритмы реализации оценки движения в системах видеонаблюдения / М.Н. Фаворская, A.C. Шилов // Системы управленияи информационные технологии. Перспективные исследования / ИПУ РАН; ВГТУ, № 3.3(33), М.-Воронеж, 2008. с. 408^12.

    73. Фаворская, М.Н. К вопросу об использовании формальных грамматик при распознавании объектов в сложных сценах // М.Н. Фаворская / В материалах XIII междунар.научн.конф. «Решетневские чтения». В 2 ч. 4.2, Красноярск, 2009. с. 540-541.

    74. Фаворская, М.Н. Распознавание динамических образов на основе предсказывающих фильтров / М.Н. Фаворская // Вестник Сибирского государственного аэрокосмического университета. Вып. 1(22) в 2 ч. 4f. 1, Красноярск, 20091 с. 64-68.

    75. Фаворская, М.Н., Методы, поиска движения в.видеопоследовательностях / М.Н. Фаворская, А.И. Пахирка, A.C. Шилов; М.В. Дамов // Вестник. Сибирского государственного аэрокосмического университета. Вып. 1 (22) в 2 ч. Ч. 2, Красноярск, 2009. с. 69-74.

    76. Фаворская, М.Н. Нахождение движущихся видео объектов, с применением- локальных 3D структурных тензоров / М.Н. Фаворская // Вестник Сибирского государственного аэрокосмического университета. Вып. 2 (23), Красноярск, 2009. с. 141-146.

    77. Фаворская, М.Н. Оценка движения объектов в сложных сценах на основе тензорного подхода / М.Н. Фаворская // Цифровая обработка сигналов, № 1,2010.-с. 2-9.

    78. Фаворская, М.Н. Комплексный расчет характеристик ландшафтных изображений / М.Н. Фаворская, Н.Ю. Петухов // Оптический журнал, 77, 8, 2010.-с. 54-60.

    79. Файн, B.C. Опознавание изображений / B.C. Файн // М.: Наука, 1970.-284 с.

    80. Форсайт, Д.А. Компьютерное зрение. Современный подход / Д.А. Форсайт, Дж. Понс // М.: издательский дом «Вильяме», 2004. 928 с.

    81. Фу, К. Последовательные методы в распознавании образов и обучение машин / К. Фу / М.: Наука, 1971. 320 с.

    82. Фу, К. Структурные методы в распознавании образов / К. Фу / М.: Мир, 1977.-320 с.

    83. Фукунага, К. Введение в статистическую теорию распознавания образов / К. Фукунага / М.: Наука, 1979. 368 с.

    84. Шелухин, О.И. Самоподобие и фракталы. Телекоммуникационные приложения / О.И. Шелухин, А.В. Осин, С.М. Смольский / Под ред. О.И. Шелухина. М.: ФИЗМАТЛИТ, 2008. 368 с.

    85. Шилов, А.С. Определение движения (MotionEstimation) / А.С. Шилов, М.Н. Фаворская // Свидетельство № 2009611014. Зарегистрировано в Реестре программ для ЭВМ г. Москва, 16 февраля 2009 г.

    86. Ш.Шлезингер, М.И. Корреляционный метод распознавания последовательностей изображений / М.И. Шлезингер / В кн.: Читающие автоматы. Киев: Наук.думка, 1965. с. 62-70.

    87. Шлезингер, М.И. Синтаксический анализ двумерных зрительных сигналов в условиях помех / М.И. Шлезингер // Кибернетика, № 4, 1976. - с.76-82.

    88. Штарк, Г.-Г. Применение вейвлетов для ЦОС / Г.-Г. Штарк / Ml: Техносфера, 2007. 192 с.

    89. Шуп, Т. Прикладные численные методы в физике и технике: Пер. с англ. / Т. Шуп / Под ред. С.П.Меркурьева; М.: Высш. Шк., 19901 - 255 с.11"5. Электр, ресурс: http:// www.cse.ohio-state.edu/otcbvs-bench

    90. Электр, ресурс: http://www.textures.forrest.cz/ электронный ресурс (база текстурных изображений textures library forrest).

    91. Электр, ресурс: http://www.ux.uis.no/~tranden/brodatz.html электронный ресурс (база текстурных изображений Brodatz).

    92. Allili M.S., Ziou D. Active contours for video object tracking using region, boundary and shape information // SIViP, Vol. 1, no. 2, 2007. pp. 101-117.

    93. Almeida J., Minetto R., Almeida T.A., Da S. Torres R., Leite N.J. Robust estimation of camera motion using optical flow models // Lecture Notes in

    94. Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5875 LNCS (PART 1), 2009. pp. 435-446.

    95. Ballan L., Bertini M., Bimbo A. D., Serra G. Video Event Classification using String Kernels // Multimed. Tools Appl., Vol. 48, no. 1, 2009. pp. 6987.

    96. Ballan L. Bertini M. Del Bimbo A., Serra G. Action categorization in soccer videos using string kernels // In: Proc. of IEEE Int"l Workshop on Content-Based Multimedia Indexing (CBMI). Chania, Crete, 2009. pp. 13-18.

    97. Barnard K., Fan Q. F., Swaminathan R., Hoogs A., Collins R, Rondot P., and Kaufhold J. Evaluation of localized semantics: Data, methodology, and experiments // International Journal of Computer Vision, IJCV 2008, Vol. 77, no. 1-3,2008.-pp. 199-217.

    98. Bertini M., Del Bimbo A., Serra G. Learning rules for semantic video event annotation // Lecture Notes In Computer Science; In: Proc. of Int"l Conference on Visual Information Systems (VISUAL), Vol. 5188, 2008. pp. 192-203.

    99. Bobick A.F., Davis J.W. The recognition of human-movement using temporal templates // IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, no. 3, 2001. pp. 257-267.

    100. Boiman O., Irani M. Detecting irregularities in images and in video // International Journal of Computer Vision, Vol. 74, no. 1, 2007. pp. 17-31.

    101. Bresson X., Vandergheynst P., Thiran J.-P. A Variational Model for Object Segmentation Using Boundary Information and Shape Prior Driven4 by the Mumford-Shah Functional // International Journal of Computer Vision, vol. 68, no. 2, 2006.-pp. 145-162.

    102. Cavallaro A., Salvador E., Ebrahimi T. Shadow-aware object-based video processing // IEEE Vision; Image and Signal Processing, Vol. 152, no. 4, 2005.-pp. 14-22.

    103. Chen J., Ye J. Training SVM with indefinite kernels // In: Proc. of the 25th international conference on Machine learning (ICML), Vol. 307, 2008. pp. 136-143.

    104. Cheung S.-M., Moon Y.-S. Detection of Approaching Pedestrians from a Distance Using Temporal Intensity Patterns // MVA2009, Vol. 10, no. 5, 2009. -pp. 354-357.

    105. Dalai N., Triggs B., and Schmid G. Human detection using oriented histograms of flow and appearance // In ECCV, vol. II, 2006. pp. 428^141.

    106. Dalai N., Triggs B. Histograms of Oriented Gradients for Human Detection // IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. II, 2005-pp. 886-893.

    107. Dani A.P., Dixon W.E. Single camera structure and motion estimation // Lecture Notes in Control and Information Sciences, 401, 2010. pp. 209-229.

    108. Datta Ri, Joshi D;, Li J., and Wang J. Z1 Image retrieval: Ideas, influences, and trends of the new age // ACM"-Computing Surveys, Vol. 40:, no: 2, 2008. ■ -pp. 1-60.

    109. Dikbas S., Arici T., Altunbasak Y. Fast motion estimation with interpolation-free sub-sample accuracy // IEEE Transactions on Circuits and Systems for Video Technology 20 (7), 2010. -pp. 1047-1051.

    110. Dollar P., Rabaud V., Cottrell G., Belongie S. Behavior recognition via sparse spatio-temporal features // In: Proc. 2nd Joint IEEE International Workshop on Evaluation of Tracking and Surveillance, VS-PETS, 2005. pp. 65-72.

    111. Donatini P. and Frosini P. Natural pseudodistances between closed surfaces // Journal of the European Mathematical Society, Vol. 9, no. 2, 2007 pp. 231-253.

    112. Donatini P. and Frosini P. Natural pseudodistances between closed curves // Forum Mathematicum, Vol. 21, no. 6, 2009. pp. 981-999.

    113. Ebadollahi S., L., X., Chang S.F., Smith J.R. Visual event detection using multi-dimensional concept dynamics // In: Proc. of IEEE Int"l Conference on Multimedia and Expo (ICME), 2006. pp. 239-248.

    114. Favorskaya M., Zotin A., Danilin I., Smolentcheva S. Realistic 3D-modeling of Forest Growth with Natural Effect // Proceedings of the Second KES International Symposium IDT 2010, Baltimore. USA. Springer-Verlag, Berlin, Heidelberg. 2010.-pp. 191-199.

    115. Francois A.R.J., Nevatia R., Hobbs J.R., Bolles R.C. VERL: An ontology framework for representing and annotating video events // IEEE Multimedia, Vol: 12; no. 4, 2005. pp. 76-86.

    116. Gao J., Kosaka A:, Kak A.C. A Multi-Kalman Filtering Approach for Video Tracking of Human-Delineated Objects in Cluttered" Environments // IEEE Com-puter Vision and Image Understanding, 2005, V. 1, no. 1. pp. 1-57.

    117. Gui L., Thiran J.-P., Paragios N. Joint Object Segmentation and Behavior Classification in Image Sequences // IEEE Conf. on Computer Vision and Pattern Recognition, 17-22 June 2007. pp. 1-8.

    118. Haasdonk B. Feature space interpretation of SVMs with indefinite kernels // IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 27, no. 4, 2005. pp. 482-492.

    119. Harris C. and Stephens M. A combined corner and edge detector // In Fourth Alvey Vision Conference, Manchester, UK, 1988. pp. 147-151.

    120. Haubold A., Naphade M. Classification of video events using 4-dimensional- time-compressed motion features // In CIVR "07: Proceedings of the6th ACM international confcrcnce on Image and video retrieval, NY, USA, 2007. -pp. 178-185.

    121. Haykin S. Neural Networks: A Comprehensive Introduction. / N.Y.: Prentice-Hall, 1999;.- 658 pi.

    122. Hoynck M., Unger M., Wellhausen J. and Ohm J.-R. A Robust Approach to Global Motion Estimation for Content-based Video Analysis // Proceedings of SPIE Vol. 5601, Bellingham, WA, 2004. pp. 36-45.

    123. Huang Q., Zhao D., Ma S., Gao W., Sun H. Deinterlacing using hierarchical motion analysis // IEEE Transactions on Circuits and Systems for Video Technology 20 (5), 2010. pp. 673-686.

    124. Jackins C.L., Tanimoto S.L. Quad-trees, Oct-trees and K-trees: A Generalized Approach to Recursive Decomposition of Euclidean Space // IEEE Transactions onPAMI, Vol. 5, no. 5, 1983.-pp. 533-539.

    125. Ke Y., Sukthankar R:, Hebert Mi. Efficient visual event detection using volumetric features // In: Proc. of Int"l Conference on Computer Vision (ICCV), vol.1, 2005.-pp. 166-173.

    126. Klaser A., Marszalek M., and Schmid C.A Spatio-Temporal Descriptor Based on 3D-Gradients // In BMVC, British Machine Vision, Conference, 2008. -pp. 995-1004.

    127. Kovashka, A., Grauman, К Learning a hierarchy of discriminative space-time neighborhood features for human action recognition // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition ,2010. pp.2046-2053 .

    128. Kumskov M.I. Calculation Scheme of the Image Analysis Controlled by the Models of the Objects to be Recognized // Pattern Recognition and Image Analysis, Vol. 11, no. 2, 2001. p. 446-449:

    129. Kwang-Kyu S. Content-based image retrieval by combining genetic algorithm and support vector machine // In ICANN (2), 2007. pp. 537-545.

    130. Lai C.-L., Tsai S.-T., Hung Y.-P. A study on the three-dimensional coordinate calibration using fuzzy system // International Symposium on Computer, Communication, Control and Automation 1, 2010. - pp. 358-362.

    131. Laptev I. On space-time interest points // International Journal of Computer Vision, Vol. 64, no. 23, 2005. pp. 107-123.

    132. Leibe B., Seemann E., Schiele B. Pedestrian Detection in- Crowded* Scenes // IEEE Conference on Computer Vision and"Pattern Recognition, Vol. 1, 2005.-pp. 878- 885.

    133. Lew M. S., Sebe N., Djeraba C., and Jain R. Content-based multimedia information1 retrieval: State of the art and challenges // ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 2, no. 1, 2006. pp. 1-19.

    134. Li J. and Wang J. Z. Real-time computerized annotation of pictures // IEEE Trans. PAMI, Vol. 30, 2008. pp. 985-1002.

    135. Li L., Luo R., Ma R., Huang W., and Leman K. Evaluation of An IVS System for Abandoned Object Detection on PETS 2006 Datasets // Proc. 9 IEEE Intern. Workshop on PETS, New York, 2006. pp. 91-98.

    136. Li L., Socher R., and Fei-Fei L. Towards Total Scene Understanding: Classification, Annotation and Segmentation in an Automatic Framework // IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2009. pp. 2036-2043.

    137. Li Q., Wang G., Zhang G.} Chen S. Accurate global motion estimation based on pyramid with mask // Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, Vol: 21, no. 6, 2009. pp. 758-762.

    138. Lindeberg T., Akbarzadeh A. and Laptev I. Galilean-diagonalized spatio-temporal interest operators // Proceedings of the 17th International Conference on Pattern Recognition (ICPR"04), 2004. pp. 1051-1057.

    139. Lim J., Barnes,N. Estimation of the epipole using optical flow at antipodal points // Computer Vision and Image Understanding 114, no. 2, 2010. pp. 245-253.

    140. Lowe D. G. Distinctive Image Features from Scale-Invariant Keypoints // International Journal of Computer Vision, Vol. 60, no. 2, 2004. pp. 91-110.

    141. Lucas B.D., Kanade T. An Iterative Image Registration Technique with an Application to Stereo Vision // International Joint Conference on Artificial Intelligence, 1981. pp. 674-679.

    142. Mandelbrot B;B. The Fractal Geometry of Nature / N.Y.: Freeman^ 1982. 468 p.; русс, пер.: Мандельброт Б. Фрактальная, геометрия природы: Пер. с англ. / М.: Институт компьютерных исследований, 202. - 658 с.

    143. Mandelbrot В.В., Frame M.L. Fractals, Graphics, and Mathematics Education/N. Y.: Springer-Verlag, 2002. 654 p.

    144. Mandelbrot B.B. Fractals and Chaos: The Mandelbrot Set.and Beyond / N.Y.: Springer-Verlag, 2004. 308 p.

    145. Memoli F. On the use of Gromov-Hausdorff distances for shape comparison // Proceedings of the Eurographics Symposium on Point-Based Graphics. Prague, Czech Republic, 2007. pp. 81-90.

    146. Mercer J. Functions of positive and negative type and their connection with the theory of integral equations // Transactions of the London Philosophical Society (A), vol. 209, 1909. pp. 415-446.

    147. Mikolajczyk K. Detection of local features invariant to affine transformations, Ph.D.thesis, Institut National Polytechnique de Grenoble, France. 2002.171 p.

    148. Mikolajczyk K. and Schmid G. An Affine Invariant Interest Point Detector // Proceedings of ECCV. Vol. 1. 2002. pp. 128-142.

    149. Minhas R., Baradarani A., Seifzadeh S., Jonathan Wu, Q.M. Human action recognition using extreme learning machine based on visual vocabularies // Neurocomputing, Vol. 73 (10-12), 2010. pp. 1906-1917.

    150. Mladenic D., Skowron A., eds.: ECML. Vol. 4701 of Lecture Notes in Computer Science, Springer, 2007. pp. 164-175.

    151. Moshe Y., Hel-Or H. Video block motion estimation based on gray-code kernels // IEEE Transactions on Image Processing 18 (10), 2009. pp. 22432254.

    152. Nakada T., Kagami S;, Mizoguchi H. Pedestrian Detection using 3D Optical Flow Sequences for- afMobile Robot // IEEE Sensors, 2008. pp: 116-119:

    153. Needleman, S.B:,. Wunsch C.D; A general method applicable to the search for similarities in the* amino acid sequence of two proteins // Journal"of Molecular Biology Vol. 48, no: 3, 1970. pp. 443-453.

    154. Neuhaus M., Bunke H. Edit distance-based kernel functions-for structural pattern classification // Pattern Recognition. Vol. 39, no. 10, 2006. pp: 1852-1863.

    155. Nevatia R., Hobbs J., and Bolles B. An ontology for video event representation // In Workshop on Event Detection and Recognition. IEEE, Vol.12, no. 4, 2004. pp. 76-86.

    156. Nguyen.N.-T., Laurendeau D:, Branzan-Albu A. A robust method for camera motion estimation in movies based on optical flow // The 6th International

    Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

    До последнего времени географические факторы, оказывающие существенно важное влияние на распространение заболеваний, исследовались сравнительно мало. Справедливость предположения об однородном перемешивании населения в небольшом городе или деревне уже давно ставилась под сомнение, хотя вполне допустимо в качестве первого приближения принять, что перемещения источников инфекции носят случайный характер и во многом напоминают движение частиц в коллоидном растворе. Тем не менее необходимо, конечно, иметь некоторое представление о том, к какому эффекту может привести наличие большого числа восприимчивых индивидуумов в пунктах, удаленных на довольно большие расстояния от любого данного источника инфекции.

    В детерминистской модели, принадлежащей Д. Кендаллу, предполагается существование бесконечного двумерного континуума популяции, в которой на единицу площади приходится о индивидуумов. Рассмотрим область , окружающую точку Р, и допустим, что числа восприимчивых, зараженных и удаленных из коллектива индивидуумов равны соответственно . Величины х, у и z могут быть функциями времени и положения, однако их сумма должна равняться единице. Основные уравнения движения, аналогичные системе (9.18), имеют вид

    где - пространственно взвешенное среднее значение

    Пусть и - постоянные, - элемент площади, окружающий точку Q, и - неотрицательный весовой коэффициент.

    Допустим, что начальная концентрация заболеваний равномерно распределена в некоторой небольшой области, окружающей первоначальный очаг. Заметим также, что в произведение Роху в явном виде введен множитель о, с тем чтобы скорость распространения инфекции оставалась независимой от плотности популяции. Если бы у оставалось постоянным на плоскости, то интеграл (9.53) наверняка сходился бы. В этом случае удобно было бы потребовать, чтобы

    Описанная модель позволяет довольно далеко продвинуть математические исследования. Можно показать (с одной-двумя оговорками), что пандемия охватит всю плоскость в том и только в том случае, если плотность популяции превышает пороговое значение . Если пандемия возникла, то ее интенсивность определяется единственным положительным корнем уравнения

    Смысл этого выражения состоит в том, что доля индивидуумов, заболевающих в конце концов в любой области, как бы далеко она ни отстояла от первоначального эпидемического очага, будет не меньше?. Очевидно, что эта теорема Кендалла о пороге пандемии аналогична пороговой теореме Кермака и Мак-Кендрика, в которой пространственный фактор не учитывался.

    Можно также построить модель для следующего частного случая. Пусть х и у - пространственные плотности восприимчивых и зараженных индивидуумов соответственно. Если считать инфекцию локальной и изотропной, то нетрудно показать, что уравнения, соответствующие первым двум уравнениям системы (9.18), можно записать в виде

    где не пространственные координаты] и

    Для начального периода, когда можно приближенно считать постоянной величиной, второе уравнение системы (9.56) примет вид

    Это стандартное уравнение диффузии, решение которого имеет вид

    где постоянная С зависит от начальных условий.

    Общее число зараженных индивидуумов, находящихся вне круга радиусом R, равно

    Следовательно,

    и если , то . Радиус соответствующий какому-либо выбранному значению растет со скоростью . Эту величину можно рассматривать как скорость распространения эпидемии, и ее предельное значение для больших t равно . В одном из случаев эпидемии кори в Глазго в течение почти полугода скорость распространения составляла около 135 м в неделю.

    Уравнения (9.56) легко видоизменить так, чтобы была учтена миграция восприимчивых и зараженных индивидуумов, а также появление новых восприимчивых индивидуумов. Как и в случае повторяющихся эпидемий, рассмотренных в разд. 9.4, здесь возможно равновесное решение, однако небольшие колебания затухают столь же быстро или даже быстрее, чем в непространственной модели. Таким образом, ясно, что в данном случае детерминистский подход имеет определенные ограничения. В принципе следовало бы, конечно, предпочесть стохастические модели, но обычно анализ их сопряжен с огромными трудностями, во всяком случае если он проводится чисто математическим путем.

    Было выполнено несколько работ по моделированию этих процессов. Так, Бартлетт использовал ЭВМ для изучения нескольких последовательных искусственных эпидемий. Пространственный фактор был учтен введением сетки ячеек . Внутри каждой ячейки использовались типичные непространственные модели для непрерывного или дискретного времени и допускалась случайная миграция зараженных индивидуумов между ячейками, имеющими общую границу. Была получена информация о критическом объеме популяции, ниже которого происходит затухание эпидемического процесса. Основные параметры модели были получены на основе фактических эпидемиологических и демографических данных.

    Недавно автор этой книги предпринял ряд аналогичных исследований, в которых была сделана попытка построить пространственное обобщение стохастических моделей для простого и общего случаев, рассмотренных в разд. 9.2 и 9.3. Допустим, что имеется квадратная решетка, каждый узел которой занят одним восприимчивым индивидуумом. В центре квадрата помещается источник инфекции и рассматривается такой процесс цепочечно-биномиального типа для дискретного времени, в котором опасности заражения подвергаются только индивидуумы, непосредственно примыкающие к какому-либо источнику инфекции. Это могут быть либо только четыре ближайших соседа (схема 1), либо также индивидуумы, расположенные по диагонали (схема 2); во втором случае всего будет восемь индивидуумов, лежащих на сторонах квадрата, центр которого занимает источник инфекции.

    Очевидно, что выбор схемы произволен, однако в нашей работе использовалось последнее расположение.

    Сначала была рассмотрена простая эпидемия без случаев выздоровления. Для удобства использовалась решетка ограниченного размера, и информация о состоянии каждого индивидуума (т. е. восприимчив ли он к инфекции или является ее источником) хранилась в вычислительной машине. В процессе моделирования проводилась текущая запись изменений состояния всех индивидуумов и подсчитывалось общее число новых случаев заболевания во всех квадратах с первоначальным источником инфекции в центре. В памяти машины фиксировались также текущие значения суммы и суммы квадратов числа случаев. Это позволило довольно легко вычислить средние значения и средние квадратические ошибки. Детали этого исследования будут опубликованы в отдельной статье, а здесь мы отметим лишь одну-две частные особенности этой работы. Например, ясно, что при очень высокой вероятности достаточного контакта будет иметь место почти детерминированное распространение эпидемии, при котором на каждом новом этапе развития эпидемии будет добавляться новый квадрат с источниками инфекции.

    При меньших вероятностях будет иметь место действительно стохастическое распространение эпидемии. Так как каждый источник инфекции может заразить только восемь своих ближайших соседей, а не всю популяцию, то можно ожидать, что эпидемическая кривая для всей решетки будет возрастать не столь резко, как при однородном перемешивании всей популяции. Этот прогноз действительно оправдывается, и число новых случаев увеличивается с течением времени более или менее линейно до тех пор, пока не начнут сказываться краевые эффекты (поскольку решетка имеет ограниченную протяженность).

    Таблица 9. Пространственная стохастическая модель простой эпидемии, построенная на решетке 21x21

    В табл. 9 приведены результаты, полученные для решетки при наличии одного исходного источника инфекции и вероятности достаточного контакта, равной 0,6. Можно видеть, что между первым и десятым этапами эпидемии среднее число новых случаев каждый раз увеличивается примерно на 7,5. После этого начинает преобладать краевой эффект, и эпидемическая кривая резко падает вниз.

    Можно также определить среднее число новых случаев для любой данной точки решетки и найти таким образом эпидемическую кривую для этой точки. Удобно проводить усреднение по всем точкам, лежащим на границе квадрата, в центре которого находится источник инфекции, хотя симметрия в этом случае не будет полной. Сравнение результатов для квадратов различного размера дает картину эпидемической волны, движущейся от первоначального источника инфекции.

    Здесь мы имеем последовательность распределений, моды которых увеличиваются в линейной прогрессии, а дисперсия непрерывно возрастает.

    Было также выполнено более детальное исследование эпидемии общего типа с удалением зараженных индивидуумов. Безусловно, все это очень упрощенные модели. Однако важно понять, что они могут быть значительно усовершенствованы. Чтобы учесть мобильность популяции, надо допустить, что восприимчивые индивидуумы заражаются и от тех источников инфекции, которые не являются их ближайшими соседями. Возможно, здесь придется использовать какой-то весовой коэффициент, зависящий от расстояния. Видоизменения, которые нужно будет ввести при этом в программу вычислительной машины, сравнительно невелики. На следующем этапе, возможно, удастся описать таким способом реальные или типичные популяции с самой разнообразной структурой. Это откроет возможность оценивать эпидемиологическое состояние реальных популяций с точки зрения опасности возникновения эпидемий различного типа.


    Информации

    Особенности пространственно-временной

    СВЯЗИ ПОКАЗАТЕЛЕЙ

    МНОГОФАКТОРНЫЕ ДИНАМИЧЕСКИЕ МОДЕЛИ

    Многофакторные динамические модели связи показателей строятся по пространственно-временным выборкам , которые представляют собой множество данных о значениях признаков совокупности объектов за ряд периодов (моментов) времени.

    Пространственные выборки формируются путем объединения за ряд лет (периодов) пространственных выборок, т.е. совокупности объектов, относящихся к одинаковым периодам времени. Используются в случае небольших выборок, т.е. краткой предыстории развития объекта.

    Динамические выборки образуются посредством объединения динамических рядов отдельных объектов в случае длительной предыстории , т.е. больших выборок.

    Классификация способов формирования выборок условна, т.к. зависит от цели моделирования, от устойчивости выявленных закономерностей, от степени однородности объектов, от числа факторов. В большинстве случае преимущество отдается первому способу.

    Динамические ряды с длительной предысторией рассматриваются как ряды, на основе которых можно строить модели взаимосвязи показателей различных объектов достаточно высокого качества.

    Динамические модели связи показателей могут быть:

    · пространственными, т.е. моделирующими связи показателей по всем объектам, рассматриваемым в определенный момент (интервал) времени;

    · динамическими, которые строятся по совокупности реализаций одного объекта за все периоды (моменты) времени;

    · пространственно-динамическими, которые формируются по всем объектам за все периоды (моменты) времени.

    Модели динамики показателейгруппируют по следующим видам:

    1) одномерныемодели динамики: характеризуются как модели некоторого показателя данного объекта;

    2) многомерные модели динамики одного объекта: моделируют несколько показателей объекта;

    3) многомерные модели динамики совокупности объектов: моделируют несколько показателей системы объектов.

    Соответственно, модели связи используются для пространственной экстраполяции (для прогнозирования значений результативных показателей новых объектов по значениям факторных признаков), модели динамики – для динамической экстраполяции (для прогнозирования зависимых переменных).

    Можно выделить основные задачи использования пространственно-временной информации.

    1. В случае краткой предыстории: выявление пространственных связей между показателями, т.е. изучение структуры связей между объектами для повышения точности и надежности моделирования этих закономерностей.

    2. В случае длительной предыстории: аппроксимация закономерностей изменения показателей в целях объяснения их поведения и прогнозирования возможных состояний.

    В предыдущей главе мы рассматривали модели, которые явля­ются статическим отражением систем в определенные моменты времени. В этом смысле рассмотренные варианты модели «черного ящика», модели состава и структурной модели называют статиче­скими моделями, что подчеркивает их неподвижность.

    Следующий шаг в исследовании системы состоит в том, чтобы понять и описать, как система «работает», выполняя свое предна­значение. Такие модели должны описывать поведение системы, фиксировать изменения, происходящие с течением времени, улав­ливать причинно-следственные связи, адекватно отражать последо­вательность протекаемых в системе процессов и этапность ее разви­тия. Такого рода модели называют динамическими. При исследова­нии конкретной системы необходимо определить направление воз­можных изменений ситуации. Если такой перечень будет исчерпы­вающим, то он характеризует число степеней свободы, а значит, достаточен для описания состояния системы. Как оказалось, дина­мические модели делятся на такие же типы, как статические («чер­ного ящика», состава и «белого ящика»), только элементы этих мо­делей имеют временной характер.

    2.4.1. Динамическая модель «черного ящика»

    При математическом моделировании динамической системы ее конкретная реализация описывается в виде соответствия между возможными значениями некоторой интегральной характеристики системы с и моментами времени t. Если обозначить через С - множество возможных значений с, а через Т - упорядоченное множество моментов времени t, то построение модели динамиче­ской системы равносильно построению отображения

    Г->С:с(t)ϵСͭͭ,

    где Сͭ - значение интегральной характеристики в точке t ϵ .

    В динамической модели «черного ящика» предполагается раз­биение входного потока х на две составляющие: и - управляемые входы, y - неуправляемые входы (рис 2.9).

    Таким образом, она выражается совокупностью двух процессов:

    Хͭ = {u(t), y(t)}; u(t)eU; y(f)eK;

    Рис. 2.9. Динамическая модель «черного ящика»

    предполагается, что это преобразование неизвестно.

    Из данного типа моделей в наибольшей мере изучены так назы­ваемые безынерционные системы. Они не учитывают фактора време­ни и работают по схеме «если-то». Например: если воду нагреть до

    100° С, то она закипит. Или: если вы правильно авторизовали свою кредитную карту, то банкомат вам сразу выдаст затребованную сумму денег. То есть следствие вступает в силу сразу за причиной.

    Определение 1. Динамическая система называется безынерцион­ной, если она мгновенно преобразует вход в выход, т.е. если y(t)

    является функцией только х(t) в тот же момент времени.

    Поиск неизвестной функции у(/) = Ф(х(t)) осуществляется по­средством наблюдения входов и выходов исследуемой системы. По существу, эта задача о переходе от модели «черного ящика» к моде­ли «белого ящика» по наблюдениям входов и выходов при наличии информации о безынерционности системы.

    Однако класс безынерционных систем весьма узок. В экономи­ке такие системы очень большая редкость. Разве только отдельные биржевые операции с некоторой натяжкой можно причислить к классу безинерционных.

    При моделировании экономических систем необходимо пом­нить, что в них всегда присутствует задержка и, более того, следст­вие (результат) может проявиться совсем не в том месте, где его ожидали. Таким образом, имея дело с экономическими системами, нужно быть готовым к тому, что последствия могут отстоять от вы­звавшей их причины во времени и пространстве.

    Например, если в фирме отдел сбыта пустит на самотек пред­продажное обслуживание и сконцентрирует все свои силы на про­дажах, пострадает отдел гарантийного обслуживания. Но это про­явится не сразу, а спустя определенное время. На лицо проявление следствия «не там и не в то время». Или: для изменения покупа­тельских пристрастий может потребоваться несколько недель рек­ламной кампании, и не обязательно ощутимые перемены начнутся сразу же после ее окончания.

    Обратная связь действует по цепочке причинно-следственных связей, образующих замкнутый контур, и требуется время, чтобы его обойти. Чем большей динамической сложностью обладает сис­тема, тем больше нужно времени на то, чтобы сигнал обратной свя­зи пробежал по ее структуре (сети взаимосвязей). Достаточно одной задержки, чтобы обеспечить сильное запаздывание сигнала.

    Определение 2. Время, необходимое для того, чтобы сигнал об­ратной связи прошел по всем звеньям системы и вернулся в исход­ную точку, называется памятью системы.

    Не только живые системы имеют память. В экономике, напри­мер, это ярко демонстрирует процесс вывода на рынок нового то­вара. Как только на рынке появляется новый товар, пользующийся спросом, сразу находится много желающих его производить. Мно­гие фирмы запускают производство этого товара, и пока существует спрос, наращивают его объемы. Рынок постепенно насыщается, но производители пока этого не ощущают. Когда объем производства превысит некоторое критическое значение, спрос станет падать. Производство товара по определенной инерции еще некоторое вре­мя будет продолжаться. Начнется затоваривание складов готовой продукцией. Предложение сильно превысит спрос. Цена на товар упадет. Многие фирмы прекратят производство этого товара. И та­кая ситуация будет сохраняться до тех пор, пока предложение не упадет до таких значений, что не сможет покрыть существующий спрос. Рынок сразу уловит складывающийся дефицит и отреагирует повышением цены. После этого начнется оживление производства и новый цикл взлета-падения рынка. Так будет продолжаться до тех пор, пока на рынке не останутся несколько производителей, которые либо договорятся между собой, либо интуитивно нащупают квоты производства товара, суммарный объем которых будет соответство­вать требуемому соотношению спроса и предложения (рис. 2.10).




    Точно так же выглядят графики инфляции и дефляции денеж­ного рынка, расцвета и крахов фондового рынка, пополнения и расходования семейного бюджета. Все дело в том, что причину и следствие разделяет задержка во времени. Все это время система «помнит» как она должна отреагировать на причину. На первых порах кажется, что и следствия-то никакого нет. Но со временем эффект проявляется. Введенные в заблуждение (в нашем примере предприниматели) слишком поздно и слишком сильно реагируют на пики спроса и предложения. А во всем виновата уравновеши­вающая обратная связь, работающая с задержкой во времени.

    Рис. 2.11. Колебание рынка товара

    В такой ситуации есть два решения. Во-первых, можно сделать более надежным измерение, осуществляя постоянный или перио­дический мониторинг рынка. Во-вторых, следует учитывать раз­ницу во времени и стремиться оказаться там где нужно к тому времени, когда сигнал обратной связи успеет пройти через все звенья системы. Когда понимаешь, как осуществляется процесс, появляется возможность изменить ситуацию в желательном на­правлении.

    В очень сложных системах следствие может проявиться спустя очень длительное время. К тому времени, когда оно даст о себе знать, критический порог может миновать и будет уже поздно что- либо исправлять. Особенно наглядно такая опасность просматрива­ется во влиянии промышленных отходов на окружающую среду. То, что мы делаем сейчас, скажется на нашей будущей жизни, когда появятся последствия наших дел. Нашими сегодняшними поступ­ками мы формируем облик будущего.

    В облике динамической модели «черного ящика», по существу, ничего не изменится, кроме того, что момент появления выхода у потребуется скорректировать на время задержки ∆, т.е. выход сис­темы примет вид y(t + ∆) (см. рис. 2.10). Однако основная труд­ность моделирования в том и заключается, чтобы определить вели­чину Д и место, в котором появится у. Наилучшим образом это удается в рамках построения так называемых лаговых моделей, кото­рые изучает математическая статистика.

    2.4.2. Динамическая модель состава

    В теории систем различают два вида динамики: функциониро­вание и развитие. Под функционированием подразумевают процессы, которые происходят в системе, стабильно реализующей фиксиро­ванную цель (функционирует предприятие, функционируют часы, функционирует городской транспорт и т.п.). Под развитием пони­мают изменение состояния системы, обусловленное внешними и внутренними причинами. Развитие, как правило, связывают с дви­жением систем в фазовом пространстве.

    Исследованием функционирования экономических систем заня­ты специалисты в области экономического анализа. Исходную базу для этого исследования составляют данные бухгалтерского учета, статистической отчетности и статистических наблюдений. В боль­шинстве случаев задача экономического анализа решается аналити­ческими методами бухгалтерского учета или сводится к построению и реализации корреляционно-регрессионных моделей. Богатейший инструментарий экономического анализа изучается в рамках ряда дисциплин цикла «Бухгалтерский учет и статистика».

    Развитие в большинстве случаев обусловлено изменением внешних целей системы. Характерной чертой развития является то, что существующая структура перестает соответствовать новым це­лям и для обеспечения необходимого соответствия приходится из­менять структуру системы, т.е. осуществлять ее реорганизацию. Экономические системы (предприятия, организации, корпоратив­ные образования) в условиях рыночной экономики для выживания в конкурентной борьбе должны постоянно находиться в фазе разви­тия. Только постоянное обновление ассортимента выпускаемой продукции или оказываемых услуг, совершенствование технологии производства и методов управления, повышение квалификации и образованности персонала могут обеспечить экономической систе­ме определенные конкурентные преимущества и расширенное вос­производство.

    В данном параграфе, не отрицая значимости фазы функциони­рования системы, большей частью будем вести речь о фазе ее раз­вития, хотя при расширенном толковании функционирования сис­темы как движения к намеченной цели (плану) приведенные ниже рассуждения вполне применимы к моделированию фазы функцио­нирования системы.

    Динамическому варианту модели состава соответствует перечень этапов развития или состояний системы на моделируемом интерва­ле времени. Под состоянием системы будем понимать такую сово­купность параметров, характеризующих пространственное положе­ние системы, которая исчерпывающе определяет ее текущее позирование.

    Фиксация состояния определяется посредством введения раз­личных переменных, каждая из которых отражает какую-то одну существенную сторону исследуемой системы. В данном случае важ­на исчерпываемость описания для раскрытия того назначения сис­темы, которое подвергается исследованию в рамках данной модели.

    Наиболее наглядно состояние системы определяется через сте­пени свободы. Это понятие введено в механике и означает число независимых координат, однозначно описывающих положение сис­темы. Так, твердое тело в механике есть система с шестью степеня­ми свободы: три линейные координаты фиксируют положение цен­тра масс, а три угловые - положение тела относительно центра масс.

    В экономических исследованиях каждую координату (степень свободы) связывают с определенным показателем (количественно измеряемой характеристикой системы). Ключевая задача при этом заключается в том, чтобы обеспечить независимость показателей, отобранных для построения модели системы. Поэтому необходимо глубоко понимать природу экономических явлений и отражающих их показателей, чтобы правильно сформировать базис для построе­ния модели состава экономической системы.


    Развитие системы есть не привычное перемещение, а некоторая абстракция, описывающая изменение ее состояния. Таким образом, динамические свойства объекта характеризуются через изменение параметров состояния во времени. На рис. 2.12 приведено графиче­ское отображение движения системы в трехмерном пространстве (в теории систем такое пространство называют пространством состоя­ний, или фазовым пространством).

    Рис. 2.12. Траектория развития системы

    Тогда состояние системы в момент времени ts описывается вектором Cs = (C1s,C2s,C3s). Аналогично описываются ее началь­ное Сн и конечное Ск состояния, а изменения в системе отобра­жаются некоторой кривой - траекторией развития. Каждая точка этой кривой фиксирует состояние системы в определенный момент времени. Тогда движение системы эквивалентно перемещению точ­ки по траектории С2.

    Экстраполируя это описание на случай и независимых коорди­нат и помня, что каждая координата (параметр) зависит от времени t, развитие системы можно описать совокупностью функций с1= с1(t), с2=с2(t) ,..., сn =сn(t), или вектором (с1(t), с2 (t),...,сn =сn(t)), принадлежащим пространству состояний С.

    Таким образом, динамическая модель состава системы это не что иное, как упорядоченная последовательность ее состояний, по­следнее из которых эквивалентно цели системы, т.е.

    Сн =С0 ->СJ ->Ct ->...->СT=Ск,

    где Сн - начальное;

    Ск - конечное;

    С, = (c1 (t), c2 (t),..., сn (t)), t ϵ - текущее состояние системы.

    Случай, когда строго определены граничные состояния систе­мы, относится к категории простейших, так как далеко не всегда удается описать состояние конкретными значениями. Более общей является ситуация, когда на начальное и конечное состояния сис­темы накладываются некоторые условия. Каждое из условий в про­странстве состояний представляется некоторой поверхностью или областью, размерность которой не должна быть больше числа сте­пеней свободы системы. Тогда вектор состояния системы в гранич­ные моменты времени должен находиться на заданной поверхности или в заданной области, что и будет означать выполнение условий.

    2.4.3. Динамическая структурная модель

    В динамических системах элементы могут вступать в самые раз­нообразные отношения между собой. А поскольку каждый из них способен пребывать во множестве различных состояний, то даже при небольшом числе элементов они могут быть соединены множе­ством различных способов. Построить модель такой системы, пре­дусмотрев изменение состояний одних элементов системы в зави­симости от того, что происходит с другими ее элементами, - очень непростая задача. Тем не менее современная наука выработала не­мало подходов к моделированию такого рода систем. На двух из них, которые стали классическими, остановимся подробнее.

    Как и в случае статической структурной модели, динамическая структурная модель представляет собой симбиоз динамической мо­дели «черного ящика» и динамической модели состава. Другими словами, динамическая структурная модель должна увязать в еди­ное целое вход в систему X = {х(t)} = {u(t),v(t)}, u(t)ϵu, v(t)ϵV, промежуточные состояния

    Ct = , t ϵ, и выход y={y(t)},

    где, U - множество управляемых входов u(t);

    U - множество неуправляемых входов v(t);

    X = U U X - множество всех входов в систему;

    Т - горизонт моделирования системы;

    С, - промежуточное состояние системы в момент време­ни t ϵ .

    В зависимости от того, отображаются промежуточные состояния системы строго определенной упорядоченной последовательностью

    Сt (t = 0,1, 2, ..., Т) или одной неопределенной функцией Ct = Ф(t, хt), в результате моделирования получают либо динамическую струк­турную модель сетевого типа, либо динамическую структурную мо­дель аналитического типа.

    Сетевые динамические модели. В динамической структурной мо­дели сетевого типа для каждой пары соседних состояний системы Сt-1 и Сt (t ϵ ) задается управляющее воздействие u(t), которое переводит систему из состояния Ct-l в состояние Ct. При этом оче­видно, что u(t) на каждом шаге траектории может принимать зна­чения из некоторого множества допустимых управляющих воздей­ствий на этом шаге

    Ut: u(t)ϵUt. (2.1)

    Таким образом, промежуточное состояние системы в некоторой точке t траектории ее развития записывается следующим образом

    Сt=F(Ct-i,u(t)), t ϵ.

    Обозначим через Ct множество всех состояний системы, в ко­торое можно ее перевести из начального состояния C0=CH за t ша­гов, используя управляющие воздействия u(t) ϵ Ut (t = 0,1, 2,..., t). Множество достижимости Сt определяется с помощью следующих рекуррентных соотношений:

    Сt = {Ct: Сt = ƒ(Сt-1, и(t); и(t ϵUt; t = 0,1, 2,...,t}.

    В задании на дальнейшее развитие или первоначальную разра­ботку системы указывается перечень допустимых ее конечных со­стояний, которые должны принадлежать некоторой области

    СtϵС-Т. (2.2)

    Управление U =(u(1), u(2),..., u{t),..., и(Т)) , состоящее из пошаговых управляющих воздействий, будет допустимым, если оно переводит систему из начального состояния Сн = С0 в конечное состояние Ск =СT , удовлетворяющее условию (2.2).

    Выведем условия допустимости управления. Для этого рассмотрим последний Т-й шаг. В силу ограниченности множества UT перевести систему в состояние СT ϵ СT можно не из любого состоя­ния CT-1, а лишь из-T-1,Ст-1 G с,

    Где, С - множество, удовлетворяющее условию

    VCT=1 ϵ C-T-1зu(T)ϵUT: су =/(СУ-1, и(Т))&ст.

    Иными словами, чтобы иметь возможность после Т-то шага-г управления выйти в область допустимых состояний С, необходимо-г-1 после (Г - 1) шагов находиться в области С.

    Аналогичные множества допустимых состояний с" формируют­ся для всех остальных шагов t = 1, Т - 1.

    Для достижения цели построения (развития) системы необхо­димо выполнение условий

    С"ПС"*0, / = 1,Т. (2.3)

    В противном случае цель системы не может быть достигнута. Для преодоления этого препятствия потребуется либо изменить-T цель системы, изменив тем самым С, либо расширить область возможных управляющих воздействий ut = 1,Т (в первую очередь на тех шагах траектории системы, на которых не выполняется усло­вие 2.3).

    Пусть в результате преодоления (t -1) шагов система перешла в состояние Ct-1. Тогда множество допустимых управляющих воздей­ствий на t-м шаге определяется следующим образом:

    U(t) = {u(t): Сt =ƒ(Сt-1, u(t) ϵс-t}. (2.4)

    Объединяя (2.1) и (2.4), можно записать условия управляемого целенаправленного развития системы:

    U(t)ϵ(t)nU(f) = 1д. (2.5)

    Условия (2.5) означают, что управление должно быть возможным по его реализуемости и допустимым по обеспечению выхода системы в заданную область конечных состояний.

    Таким образом, построение динамической структурной модели системы сетевого типа заключается в формализованном описании траектории ее развития путем задания промежуточных состояний системы и управляющих воздействий, последовательно переводя­ щих систему из начального состояния в конечное, соответствующее цели ее развития.

    Поскольку из «начала» в «конец», как правило, существует множество путей, определение траектории развития системы можно вести по различным критериям (минимуму времени, максимуму эффекта, минимуму затрат и т.п.). Выбор критерия определяется целью моделирования системы.

    Такой подход к моделированию динамических систем, как пра­вило, приводит к построению сетевых моделей разных типов (сете­вым графикам, технологическим сетям, сетям Петри и т.п.). Неза­висимо от типа сетевой модели их сущность заключается в том, что они описывают некоторую совокупность логически увязанных ра­бот, выполнение которых должно обеспечить построение некоторой системы (предприятия, дороги, политической партии) или перевода ее в другое состояние, соответствующее новым целям и требовани­ям времени.

    Конкретизация динамических систем на этом, конечно, не за­канчивается. Приведенные модели, скорее всего, являются отдель­ными примерами реальных систем. В классе моделей динамических систем различают еще стационарные модели, мягкие и жесткие мо­дели, которые находят применение при исследовании конкретных прикладных проблем.

    Контрольные вопросы

    1. Приведите несколько определений системы и содержательную характеристику каждого из них.

    2. В чем заключается разница между философской категорией и естественно-научным понятием?

    3. Перечислите и проинтерпретируйте основные свойства системы.

    4. Что такое эмерджентность системы?

    5. Как соотносятся понятия «целостность» и «эмерджентность»?

    6. В чем заключается сущность редукционизма? Чем он отличается от системного подхода?

    7. В чем заключается разница между внешними и внутренними связями системы?

    8. Какое свойство лежит в основе деления систем на открытые и закрытые (замкнутые)?

    9. Приведите примеры закрытых экономических систем.

    10. С помощью чего обеспечивается устойчивость системы?

    11. В чем заключаются внутренняя и внешняя цели системы?

    12. Как согласуются внутренняя и внешняя стратегии системы?

    13. Как установить границы экономической системы?

    14. Назовите причину неудовлетворительности прогнозов, получаемых в результате эконометрического моделирования.

    15. Охарактеризуйте транзакционную среду экономической системы.

    16. За счет чего открытые экономические системы сохраняют свои индивидуальные особенности?

    17. Как (в каких шкалах) измеряются эмерджентные свойства сис-тем?

    18. Назовите необходимое условие существования эмерджентного свойства системы.

    19. В чем заключается сущность свойства целеустремленности. Как это свойство проявляется в экономических системах?

    20. Приведите примеры реактивных, ответных, самонастраиваемых и активных экономических систем.

    21. В чем заключается сущность свойства иерархичности экономических систем?

    22. Эквивалентны ли понятия «уровень иерархии» и «страта»?

    23. В чем заключается сущность свойства многомерности экономической системы?

    24. Дайте системное определение понятию «компромисс».

    25. Приведите практические примеры использования свойства многомерности при исследовании экономических систем.

    26. В чем заключается сущность свойства множественности экономической системы?

    27. Приведите примеры множественности функций экономической системы.

    28. Как проявляется множественность структуры экономической системы?

    29. Приведите примеры эквифинальности и мультифинальности экономических систем.

    30. Перечислите причины контринтуитивного поведения экономи-ческих систем.

    31. Какой классификационный признак положен в основу первич-ной классификации систем?

    32. Назовите основные характеристики естественных систем. При-ведите примеры.

    33. Назовите основные характеристики искусственных систем. Приведите примеры.

    34. В чем заключается специфика социокультурных систем?

    35. К какому классу первичных систем относятся экономические системы?

    36. В какой мере естественные, технические и гуманитарные науки привлекаются к анализу экономических систем?

    37. Разместите факторы в порядке убывания влияния на конфигурацию системы: внешняя среда, внутренние связи системы, связи системы с внешней средой, элементы системы.

    38. Поясните, каким образом моральные ценности лица, принимающего решения, материализуются в реальной экономической системе.

    39. Что представляет собой среда, в которой существуют и функционируют экономические системы?

    40. Дайте определение экономической системы.

    41. Какие классификационные признаки положены в основу пространственно-временной классификации экономических систем?