• Рентгеновская трубка как объект регулирования. Устройство рентгеновской трубки

    Устройство рентгеновского апарата

    Одним из наиболее эффективных методов изучения строения кристаллических веществ является рентгенография.

    Рентгенография делится на 2 типа:

    1. рентгеноструктурный анализ (РСтА);

    2. рентгенофазовый анализ (РФА).

    Первый метод является наиболее общим и информативным и позволяет однозначно определить все детали кристаллической структуры (координаты атомов и т.д.). Объектом исследования в РСтА является монокристалл. Второй метод позволяет идентифицировать вещество и определить некоторые параметры кристаллической структуры. Объектами исследования РФА являются поликристаллические образцы.

    Рентгеновский аппарат предназначается для превращения электроэнергии в рентгеновское излучение. Устройство рентгеновского аппарата зависит от его функции, но в целом он состоит из источника излучения, блока питания, системы управления и периферии.

    Как работает рентгеновский аппарат

    Питание аппарата осуществляется обычно от электросети переменного тока в 126 или 220 В. Однако современные рентгеновские установки работают от постоянного тока существенно более высокого напряжения. В связи с этим в состав блока питания входят трансформатор (или система трансформаторов) и выпрямитель тока (иногда выпрямитель может отсутствовать – при низкой мощности аппарата). Генератор излучения – это рентгеновская трубка, одна или несколько.

    Система управления – это распределительное устройство, то есть пульт управления, регулирующий работу всей установки. Кроме того, аппарат включает в себя штатив (систему штативов), на который крепится генератор излучения. Принцип работы установки следующий. Переменный ток от электросети подводится к первичной обмотке трансформатора. С его вторичной обмотки снимается более высокое напряжение и подается на излучатель непосредственно (полуволновые установки) или через выпрямитель – кенотрон. Накалом катодной нити рентгеновской трубки регулируется ее работа. В излучение при этом переходит не более 1% подаваемой на трубку энергии, остальное превращается в тепло, прежде всего греется анод. Для того чтобы избежать его повреждения от перегрева, либо используются тугоплавкие материалы (вольфрам, молибден), либо конструируется специальная система охлаждения (водное охлаждение, вращающийся анод). Современные рентгеновские установки снабжаются специальными устройствами для стабилизации тока и защиты излучателя от перегрузки. Кроме того, устанавливается система защиты окружающих от избыточного излучения (а также от тока высокого напряжения).

    Рентгеновская трубка устройство

    Рентгеновская трубка - электровакуумный прибор с источником излучения электронов (катод) и мишенью, в которой они тормозятся (анод). Высоковольтное напряжение для разогревакатода подается через минусовой высоковольтный кабель с накального трансформатора, который находится вгенераторном устройстве. Накаленная спираль катода, при прикладывание к рентгеновской трубке высокого напряжения,начинает выбрасывать ускоряющийся потокэлектронов, а затем они резко тормозятся на вольфрамовой пластинке анода, что и приводит к появлениюрентгеновских лучей.


    Принцип работы рент геновской трубки

    Рисунок 1 - Схема рентгеновской трубки для структурного анализа: 1 - металлический анодный стакан (обычно заземляется); 2 – окна из бериллия для выхода рентгеновского излучения; 3 – термоэмиссионный катод; 4 – стеклянная колба, изолирующая анодную часть трубки от катодной; 5 – выводы катода, к которым подводится напряжение накала, а также высокое (относительно анода) напряжение; 6 – электростатическая система фокусировки электронов; 7 – ввод (антикатод); 8 – патрубки для ввода и вывода проточной воды, охлаждающей вводный стакан.

    Площадь анода, на которую попадают электроны, называют фокусом. В современных рентгеновских трубках обычно имеется два фокуса: большой и малый. В аноде свыше 95% энергии электронов превращается в тепловую энергию, нагревающую анод до 2000° и более. По этой причине с увеличением длительности экспозиции допустимая мощность снижается.

    Рентгенодиагностическую трубку размещают в просвинцованном кожухе, который заполнентрансформаторным маслом. В кожухе имеются отверстиядля подсоеденения высоковольтных кабелей и выходное окно, через которое выводится пучок излучения. Для минимизации дозы рентгеновского излучения в современных рентгеновских аппаратах, например ФМЦ на выходном окне крепится устройство колимации. Для того, чтоб исключить появление на аноде рентгеновской трубки повреждений, последний должен вращаться, для этого внизу кожуха рентгеновской трубки размещается устройство вращения анода.

    Рентгеновские камеры

    Рентгеновская камера – прибор для изучения или контроля атомной структуры образца путем регистрации на фотопленке картины, возникающей при дифракции рентгеновских лучей на исследуемом образце. Рентгеновскую камеру применяют в рентгеновском структурном анализе. Назначение рентгеновской камеры – обеспечить выполнение услови й дифракции рентгеновских лучей и получение рентгенограмм.

    Рисунок 2 - Гониометрическая головка : О – образец, Д – дуговые направляющие для наклона образца в двух взаимно перпендикулярных направлениях; МЦ – механизм центрирования образца, служащий для вынесения центра дуг, в котором находится образец, на ось вращения камеры.

    Рисунок 3 - Основные схемы рентгеновских камер для исследования поликристаллов: а – дебаевская камера; б – фокусирующая камера с изогнутым кристаллом-монохроматором для исследования образцов «на просвет» (область малых углов дифракции); в – фокусирующая камера для обратной съемки (большие углы дифракции) на плоскую кассету. Стрелками показаны направления прямого и дифракционного пучков. О – образец; F – фокус рентгеновской трубки; М – кристалл-монохроматор; К – кассета с фотопленкой Ф; Л – ловушка, перехватывающая неиспользованный рентгеновский пучок; ФО – окружность фокусировки (окружность, по которой располагаются дифракционные максимумы); КЛ – коллиматор; МЦ – механизм центрировки образца.

    Рисунок 4 - Основные схемы рентгеновских камер для исследования монокристаллов: а – камера для исследования неподвижных монокристаллов по методу Лауэ; б – камера вращения.

    Практическая часть

    По полученной от преподавателя рентгенограмме необходимо определить параметры вещества (представленные в таблице 1), а так же его идентифицировать.

    № линии d, A a, A Ширина линии, (рад) I, % hkl L, мкр.
    44,7 2,026 3,509 0,855 0,00073 0,0227 0.00181
    1,76 3,52 0,808 0,0012 39,7 0,0142 0.00246
    76,5 1,245 3,521 0,617 0,00127 16,9 0,01546 0.00162
    93,2 1,098 3,521 0,472 0,00167 26,7 0,01343 0.00161
    98,7 1,017 3,642 0,425 0,00181 8,6 0,01308 0.00157
    122,2 0,881 3,523 0,234 0,00418 5,7 0,00763 0.00232
    144,8 0,809 3,526 0,092 0,00233 13,4 0,02183 0.000758
    145,7 0,806 3,605 0,087 0,00324 10,6 0,0162 0.001054

    Таблица 1 – Данные анализа рентгенограммы 1

    1. Получили от преподавателя рентгенограмму порошка неизвестного состава. По рентгенограмме были найдены углы , интенсивности, так же ширины линий и , данные представлены в таблице 1.

    2. По формуле Вульфа – Брэгга, найдены межплоскостные расстояния d.

    3. Для нахождения параметра решётки, необходимо идентифицировать её структуру. Так как для ОЦК структуры отражение идёт только от плоскостей с чётными суммами индексов hkl, то первые две линии будут (110) и (200), зная, что каждому соответствует своя сумма hkl, получим, что соотношение первой и второй линии должно равняться , если это ОЦК структура. Аналогично рассматривая ГЦК структуру, где видны плоскости с однотипными индексами hkl (все или чётные или не чётные), определяем, что первые две линии будут (111) и (200). Следовательно, соотношение первой и второй линии должны равняться

    Так как мы не знаем состава порошка, то мы не можем утверждать по первым двум линиям, что весь порошок имеет ГЦК структуру. Однако, из соображений что

    можно получить ряд соотношения первой линии ко всем остальным и сравнить его с рядом соотношений суммы квадратов hkl. Получили следующий ряд:

    1, 075, 0,375, 0,292, 0,25, 0,187, 0,1585, 0,157.

    Получены так же ряды для ОЦК и ГЦК структур:

    ОЦК: 1, 0,5, 0,33, 0,25, 0,2, 0,166, 0,142, 0,125;

    ГЦК: 1, 0,75, 0,375, 0,272, 0,25, 0,187, 0,157, 0,15;

    Как видно, полученный ряд схож с рядом ГЦК структуры, следовательно, порошок имеет ГЦК структуру.

    Зная структуру порошка, можно найти параметр его решётки по известным индексам hkl и межплоскостному расстоянию d:

    4. Размер кристаллитов находится из формулы:

    Где В – ширина рентгеновской линии, К – коэффициент близкий к 1.

    Рисунок 5 – График зависимости параметра решётки от .

    6. Зная параметр решётки, а и структуру порошка (ГЦК) можем идентифицировать вещество как никель.

    7. Необходимо найти микроискажения.

    1)

    2)

    3)

    4)

    5)

    6)

    7)

    8)

    8. Зная что, полная ширина рентгеновских линий включает в себя уширение от микро искажений и уширение от размера кристаллитов, можем записать что:

    Умножив всё на cosθ и разделив на λ, получим формулу Вильямсона - Холла:

    Представив это уравнение, как уравнение прямой и подставив значения, полученные в таблице 1, получим следующие значения:

    Таблица 2 - Полученные значения для постройки графика по методу Холла

    , (Y) , (X)
    0,0004397 0,000169
    0,000698 0,000746
    0,000650 0,00065
    0,000733 0,000733
    0,000771 0,000771
    0,00131 0,00131
    0,000419 0,000418
    0,000468 0,000469

    Y=0.00027+0.00165x – уравнение полученного графика.

    По данным таблицы 2 построен график рисунок 6:

    Рисунок 6 – График для разделения вкладов в уширение рентгеновских линий методом Холла.

    По полученной от преподавателя рентгенограмме необходимо сделать задание аналогичное части 2 и количественный фазовый анализ.

    Рисунок 7 – Рентгенограмма неизвестного двухфазного порошка.

    Рисунок 8 – Начальные данные к рентгенограмме рисунка 7.

    № линии a, A Ширина линии, (рад) I, % hkl L, А.
    3,619 0,00211 846,6 0,00532
    2,882 0,00142 41,3 0,00347
    3,619 0,00319 40,5 588,6 0,00679
    2,883 0,00164 11,9 0,00259
    3,618 0,00286 21,8 844,2 0,00379
    2,884 0,00163 17,8 0,00188
    3,619 0,0036 21,8 852,7 0,00361
    3,619 0,00337 10,7 0,00388
    2,882 0,00186 9,6 0,00161
    2,885 0,00251 11,6 0,00159
    3,619 0,00444 6,7 0,00273

    Таблица 3 – Данные анализа рентгенограммы 2 (рисунок 7).

    1. Так как мы знаем, что в порошке содержится две фазы, необходимо отделить одну фазу от другой, для этого предположим, что у этих фаз разные структуры и попытаемся по отношению синусов отличить одну фазу от другой:

    1; 0,95; 0,75; 0,477; 0,376; 0,317; 0,272; 0,25; 0,238; 0,190; 0,187

    Как можно заметить в ряде присутствуют числа схожие с рядом ГЦК структуры:

    1; 0,75; 0,376; 0,272; 0,25; 0,187

    Предположив, что линии 1, 3, 5, 7, 8, 11 это первая фаза, рассмотрим отношения квадратов синусов оставшихся линий, приняв вторую линию, как первую линию во второй фазе:

    1; 0.498; 0,331; 0,249; 0,199

    Полученный ряд схож с рядом ОЦК структуры.

    Судя по полученным рядам, имеем на рентгенограмме две фазы со структурами ГЦК и ОЦК.

    2. Зная, что имеем две структуры ОЦК и ГЦК, можно провести количественный состав фаз.

    Количество фазы определяется: , где - отражательные факторы определяемые как произведение структурного фактора и фактора повторяемости. Расчёт ведём для линии с похожими значениями интенсивности, это линии 8 и 9:

    Структурный фактор для ГЦК решётки равен , так как у нас далее будет отношение, уйдёт, следовательно, берём 16. Фактор повторяемости для восьмой линии равен 8, так как имеем индексы hkl = (222).

    По тому же принципу для ОЦК решётки структурный фактор равен , а фактор повторяемости 12, так как имеем hkl = (220).

    Тогда количество фазы с ОЦК структурой будет равно:

    Следовательно, ГЦК фазы 72,8%.

    Аналогично проведём расчёт пиков 3 (200) и 2 (110):

    При расчёте 2 и 3- его пиков получили, что ГЦК фазы 66,2%. Больше пиков с похожей интенсивностью нет, значит возьмём среднее количество фазы между 27,2% и 33.8%, это 30%. Значит в нашем порошке примерно 30% хрома и 70% меди.

    3. Определение параметра решётки

    Для ГЦК структуры

    Зная параметр решётки и её структуру, можем предположить, что это медь.

    Для ОЦК структуры

    Для получения рентгеновских лучей. Простейшая рентгеновская трубка состоит из стеклянного баллона с впаянными металлическими электродами – катодом и анодом . В баллоне создаётся глубокий вакуум. К электродам приложено напряжение от 1 до 500 кВ (в зависимости от требуемых характеристик рентгеновского излучения). Электроны, испускаемые катодом, ускоряются сильным электрическим полем в пространстве между электродами и бомбардируют . При ударе электронов об анод их кинетическая частично преобразуется в энергию рентгеновского излучения и большей частью в тепловую энергию.

    Рентгеновские трубки бывают диагностические, терапевтические, для дефектоскопии, рентгеновского анализа. По способу получения свободных электронов различают ионные и электронные рентгеновские трубки. Исторически первыми появились ионные рентгеновские трубки с холодным катодом. Позднее они были вытеснены более совершенными высоковакуумными рентгеновскими трубками с накаленным катодом.

    Одно из важнейших свойств рентгеновских лучей – их способность вызывать почернение светочувствительного слоя фотоплёнки или фотобумаги. Рентгеновские лучи имеют высокую проникающую способность. Однако, проходя через вещество, их энергия уменьшается тем сильнее, чем плотнее встречающийся на их пути материал. На этих свойствах основаны многие способы практического использования рентгеновских лучей, напр. рентгенодиагностика – распознавание болезней в медицине, непрозрачных материалов и др.

    Энциклопедия «Техника». - М.: Росмэн . 2006 .


    Смотреть что такое "рентгеновская трубка" в других словарях:

      Электровакуумный прибор, служащий источником рентгеновского излучения, к рое возникает при вз ствии испускаемых катодом эл нов с в вом анода (антикатода). В Р. т. энергия эл нов, ускоренных электрич. полем, частично переходит в энергию рентг.… … Физическая энциклопедия

      рентгеновская трубка - трубка Рентгеновский прибор для получения рентгеновского излучения бомбардировкой мишени потоком электронов, ускоренных разностью потенциалов между анодом и катодом [ГОСТ 20337 74] рентгеновская трубка Вакуумная трубка, обычно содержащая нить… … Справочник технического переводчика

      Большой Энциклопедический словарь

      РЕНТГЕНОВСКАЯ ТРУБКА, вакуумная трубка, служащая источником РЕНТГЕНОВСКИХ ЛУЧЕЙ, используемых в медицинских и иных целях. Состоит из электронной трубки, испускающей пучок ЭЛЕКТРОНОВ, ударяющий в АНОД, рабочая часть которого сделана из тяжелого… … Научно-технический энциклопедический словарь

      РЕНТГЕНОВСКАЯ ТРУБКА - электровакуумный прибор для получения рентгеновских (см.); представляет собой стеклянный сосуд с впаянными в него электродами (катодом и анодом), к которым подводится высокое напряжение. Электроны, испускаемые катодом, ускоряются сильным… … Большая политехническая энциклопедия

      Электровакуумный прибор для получения рентгеновских лучей. Простейшая рентгеновская трубка состоит из стеклянного баллона с впаянными электродами катодом и анодом (антикатодом). Электроны, испускаемые катодом, ускоряются сильным электрическим… … Энциклопедический словарь

      Рентгеновская трубка электровакуумный прибор, предназначенный для генерации рентгеновского излучения. Принцип действия и устройство Излучающий элемент представляет собой вакуумный сосуд с тремя электродами: катодом, накал катода и анодом … Википедия

      рентгеновская трубка - электровакуумный прибор источник рентгеновкого излучения, например, в камерах для РСА (Смотри также Рентгеноструктурный анализ); Смотри также: Трубка центровая трубка острофокусная рентгеновская трубка стоп … Энциклопедический словарь по металлургии

    Кафедра онкологии, лучевой терапии и лучевой диагностики

    Зав. кафедрой: проф., д.м.н. Редькин Александр Николаевич

    Преподаватель: к.м.н. Черкасова Ирина Ивановна

    Реферат на тему: «Устройство рентгеновской трубки и рентгендиагностических аппаратов. Аналоговые и цифровые технологии. Виды рентгенологических комплексов.»

    Выполнила: Васильева Ирина Александровна


    Устройство рентгеновской трубки.

    Принципы получения рентгеновских лучей.

    Классификация рентгеновских трубок

    1. По назначению

    1. Диагностические

    2. Терапевтические

    3. Для структурного анализа

    4. Для просвечивания

    1. По конструкции

    1. По фокусности

    § Однофокусные (на катоде одна спираль, а на аноде одно фокусное пятно)

    § Двухфокусные (на катоде две спирали разного размера, а на аноде два фокусных пятна)

    2. По типу анода

    § Стационарный (неподвижный)

    § Вращающийся

    § Открытый или закрытый анод

    § Выносимый анод

    1. По мощности: от 0,2 до 100 кВт;
    2. По способу охлаждения:

    · с водяным охлаждением

    · калориферным

    · непроточным масляным

    · с комбинированными видами охлаждения (лучеиспускание и масляное, проточное водяное и масляное).

    Генератором рентгеновых лучей является рентгеновская трубка. Современная электронная трубка конструируется по единому принципу и имеет следующее устройство.

    Основой является стеклянная колба в виде шара или цилиндра, в концевые отделы которой впаяны электроды: анод и катод. В трубке создается вакуум, что способствует вылету электронов из катода и быстрейшему их перемещению. Катод представляет собой спираль из вольфрамовой (тугоплавкой) нити, которая укрепляется на молибденовых стержнях и помещается в металлический колпак, направляющий поток электронов в виде узкого пучка в сторону анода. Анод делается из меди (быстрее отдает тепло и сравнительно легко охлаждается), имеет массивные размеры. Конец, обращенный к катоду, косо срезается под углом 45-70°. В центральной части скошенного анода имеется вольфрамовая пластинка, на которой находится фокус анода - участок 10-15 мм2, где в основном и образуются рентгеновы лучи.



    Процесс образования рентгеновых лучей . Нить накала рентгеновской трубки - вольфрамовая спираль катода при подведении к ней тока низкого напряжения (4-15 В, 3-5А) накаливается, образуя свободные электроны вокруг нити. Включение тока высокого напряжения создает на полюсах рентгеновской трубки разность потенциалов, в результате чего свободные электроны с большой скоростью устремляются к аноду в виде потока электронов - катодных лучей, которые, попав на фокус анода, резко тормозятся, вследствие чего часть кинетической энергии электронов превращается в энергию электромагнитных колебаний с очень малой длиной волны. Это и будет рентгеновское излучение (лучи торможения). По желанию врача и техника можно регулировать как количество рентгеновых лучей (интенсивность), так и качество их (жесткость). Повышая степень накала вольфрамовой нити катода можно добиться увеличения количества электронов, что обусловливает интенсивность рентгеновых лучей. Повышение напряжения, подаваемого к полюсам трубки, ведет к увеличению скорости полета электронов, что является основой проникающего качества лучей. Выше уже было отмечено, что фокус рентгеновской трубки - это тот участок на аноде, куда попадают электроны и где генерируются рентгеновы лучи. Величина фокуса влияет на качество рентгеновского изображения: чем меньше фокус, тем резче и структурней рисунок и наоборот, чем он больше, тем более расплывчатым становится изображение исследуемого объекта. Практикой доказано, чем острее фокус, тем быстрее трубка приходит в негодность - происходит расплавление вольфрамовой пластинки анода. Поэтому в современных аппаратах трубки конструируются с несколькими фокусами: малым и большим, или линейным в виде узкой полосы с коррекцией угла скошенности анода в 71°, что позволяет получать оптимальную резкость изображения при наибольшей электрической нагрузке на анод. Удачной конструкцией рентгеновской трубки является генератор с вращающимся анодом, что позволяет делать фокус незначительных размеров и удлинить тем самым срок эксплуатации аппарата. Из потока катодных лучей только около 1% энергии превращается в рентгеновы лучи, остальная энергия переходит в тепло, что приводит к перегреванию анода.

    Для целей охлаждения анода используются различные способы: водяное охлаждение, калориферно-воздушное, масляное охлаждение под давлением и комбинированные способы.

    Рентгеновская трубка помещается в специальный просвинцованный футляр или кожух с отверстием для выхода рентгеновского излучения из анода трубки.

    На пути выхода рентгеновского излучения из трубки устанавливаются фильтры из различных металлов (алюминиевые,медные,железные,комбинированные) , которые отсеивают мягкие лучи и делают более однородным излучение рентгеновского аппарата. Во многих конструкциях рентгеновских аппаратов в футляр наливается трансформаторное масло, которое со всех сторон обтекает рентгеновскую трубку.

    Все это: металлический футляр, масло, фильтры экранируют персонал кабинета и больных от воздействия рентгеновского облучения.

    Изобретение относится к источникам рентгеновского излучения для селективного получения рентгеновского излучения с различными длинами волн. Рентгеновская трубка постоянного излучения состоит из цилиндрического анода, кольцевого катода, состоящего из нескольких нитей накала, фокусирующего электрода, окна для вывода рентгеновского излучения и герметичного корпуса. Кольцевой катод, состоящий из двух и более нитей накала, изолирован от корпуса трубки и фокусирующего электрода, что позволяет путем подачи управляющего напряжения на катод относительно корпуса и фокусирующего электрода изменять размеры фокусного пятна. Анод выполнен в виде массивного медного цилиндра, на торец которого закреплена пайкой или сваркой мишень из материала, необходимого для генерации соответствующего рентгеновского излучения. Фокусирующий электрод установлен таким образом, чтобы продукты испарения катода не попадали на торцевую поверхность анода. Внутренняя часть корпуса трубки является дополнительным элементом фокусировки, конфигурация внутренней поверхности корпуса трубки, обращенная к катоду и фокусирующему электроду, рассчитана таким образом, чтобы обеспечить фокусировку электронов на поверхности анода. В конструкцию трубки добавлен выходной коллиматор, размеры которого выбираются такими, чтобы продукты испарения катода не попадали на поверхность выходного окна. Технический результат: упрощение конструкции, уменьшение габаритов, увеличение ресурса работы трубки, возможность регулировки фокусного пятна путем изменения потенциала катода относительно фокусирующего электрода. 1 ил.

    Изобретение относится к источникам рентгеновского излучения для селективного получения рентгеновского излучения с различными длинами волн.

    Известен источник рентгеновского излучения для селективного получения пучков рентгеновского излучения с различными длинами волн (А.с. 1434508 СССР, МКИ 3 В5J 17/00. Кузнецов В.Л., Соколов О.Б. и др. 1988 г.), состоящий из анода, фокусирующего электрода, окна для вывода рентгеновского излучения и герметичного корпуса. Анод выполнен в виде полого цилиндра, на торцевую поверхность которого нанесен рабочий слой в виде нескольких секторных мишеней. Фокусирующий электрод выполнен в виде электрически изолированных друг от друга секций полого цилиндра, с зазором охватывающих анод. Количество секций фокусирующего электрода равно количеству секторных мишеней анода. В своей верхней части секции фокусирующего электрода снабжены разделительными экранирующими перегородками, расположенными над торцевой поверхностью анода параллельно стыкам его секторных мишеней и прикрепленными к соответствующим секциям. Катодный узел содержит нити накала, количество которых равно количеству секторных мишеней анода. Анод, катодный узел и фокусирующий электрод размещены в герметичном корпусе с окном для вывода рентгеновского излучения.

    Задачей изобретения является упрощение конструкции, уменьшение габаритов, появляется возможность регулировки размеров фокусного пятна путем изменения потенциала катода относительно фокусирующего электрода, что расширяет функциональные возможности трубки, наличие нескольких нитей накала увеличивает ресурс работы рентгеновской трубки.

    Указанная задача решается следующим образом.

    Предлагается рентгеновская трубка постоянного излучения, состоящая из цилиндрического анода, кольцевого катода, состоящего из нескольких нитей накала, фокусирующего электрода, окна для вывода рентгеновского излучения и герметичного корпуса. В отличие от известного технического решения кольцевой катод, состоящий из двух и более нитей накала, изолирован от корпуса трубки и фокусирующего электрода, что позволяет путем подачи управляющего напряжения на катод относительно корпуса и фокусирующего электрода изменять размеры фокусного пятна, анод выполнен в виде массивного медного цилиндра, на торец которого закреплена пайкой или сваркой мишень из материала, необходимого для генерации соответствующего рентгеновского излучения, что упрощает его конструкцию. Фокусирующий электрод установлен таким образом, чтобы продукты испарения катода не попадали на торцевую поверхность анода. Внутренняя часть корпуса трубки является дополнительным элементом фокусировки, конфигурация внутренней поверхности корпуса трубки, обращенная к катоду и фокусирующему электроду, рассчитана таким образом, чтобы обеспечить фокусировку электронов на поверхности анода. В конструкцию трубки добавлен выходной коллиматор, размеры которого выбираются такими, чтобы продукты испарения катода не попадали на поверхность выходного окна.

    На чертеже представлена схема рентгеновской трубки, где:

    1 - цилиндрический анод;

    2 - кольцевой катодный узел, состоящий из двух или более нитей накала;

    3 - фокусирующий электрод;

    4 - окно для вывода рентгеновского излучения;

    5 - герметичный корпус;

    6 - выходной коллиматор;

    7 - мишень;

    8 - изолятор;

    9 - область распыления материала катода;

    10 - траектории электронов.

    Рентгеновская трубка работает следующим образом.

    Посредством токопроводящих проводов электрический ток поступает на нить или одну из нитей накала катодного узла 2, вокруг нагретой нити накала 2 образуется электронное облако, которое при наличии нулевого по отношению к нити накала 2 потенциала на фокусирующем электроде 3 перехватывается положительным по отношению к катодному узлу электрическим полем анода 1 и ускоряется в направлении мишени 7. При торможении электронов на мишени 7 генерируется рентгеновское излучение с длиной волны, определяемой материалом мишени, которое через выходное окно 4 направляется на исследуемый объект. При подаче положительного по отношению к фокусирующему электроду потенциала на катодный узел 2 электроны попадают в область тормозящего электрического поля, создаваемого фокусирующим электродом 3 и внутренней поверхностью корпуса 5, изменяющего траектории движения электронов 10, что обеспечивает изменение размеров фокусного пятна на мишени. Коллиматор 6 защищает выходное окно 4 от продуктов испарения материала катода, а фокусирующий электрод 3 защищает от продуктов испарения материала катода поверхность мишени 7. Область напыления 9 не захватывает поверхность выходного окна 4 за счет наличия коллиматора 6 и поверхность мишени 7 благодаря выступающей кромке фокусирующего электрода 3. Тем самым продукты испарения нитей накала не увеличивают со временем коэффициент поглощения выходного окна 4 и не оседают на поверхности мишени 7.

    Литература

    1. А.с. 1434508 СССР, МКИ 3 В5J 17/00 (Кузнецов В.Л., Соколов О.Б. и др. 1988 г.).

    2. Иванов С.А., Щукин Г.А. Рентгеновские трубки технического назначения. Л., Энергоатомиздат, Ленинградское отд., 1989 г., 201 с.

    Рентгеновская трубка постоянного излучения, состоящая из цилиндрического анода, кольцевого катода, состоящего из нескольких нитей накала, фокусирующего электрода, окна для вывода рентгеновского излучения и герметичного корпуса, отличающаяся тем, что кольцевой катод, состоящий из двух и более нитей накала, изолирован от корпуса трубки и фокусирующего электрода, анод выполнен в виде массивного медного цилиндра, на торец которого закреплена пайкой или сваркой мишень из материала, необходимого для генерации соответствующего рентгеновского излучения, фокусирующий электрод установлен таким образом, чтобы продукты испарения катода не попадали на торцевую поверхность анода, внутренняя часть корпуса трубки является дополнительным элементом фокусировки, конфигурация внутренней поверхности корпуса трубки, обращенная к катоду и фокусирующему электроду, рассчитана таким образом, чтобы обеспечить фокусировку электронов на поверхности анода, в конструкцию трубки добавлен выходной коллиматор, размеры которого выбираются такими, чтобы продукты испарения катода не попадали на поверхность выходного окна.

    Похожие патенты:

    Изобретение относится к рентгеновским трубкам, содержащим автокатод, выполненный на основе углеродных материалов, и может быть использовано в качестве источника рентгеновского излучения в приборах дефектоскопии, досмотровой аппаратуре, медицинских рентгеновских аппаратах, диагностических установках рентгеновской спектроскопии.

    Изобретение относится к миниатюрным импульсным рентгеновским трубкам (диаметр 12 мм, длина 24 мм), предназначенным для использования в медицине при внутриполостных облучениях опухолевых тканей и в технике для рентгенографирования сложных механизмов и устройств при внутреннем размещении источника излучения.

    Изобретение относится к ускорительной технике и может быть использована при разработке импульсных рентгеновских трубок, предназначенных для облучения медицинских или промышленных объектов

    Группа изобретений относится к устройству и способу для генерации мощного оптического излучения, в частности, в области экстремального УФ (ЭУФ) или мягкого рентгеновского излучения в диапазоне длин волн примерно от 1 нм до 30 нм. Область применения включает ЭУФ - литографию при производстве интегральных схем или метрологию. Технический результат-повышение мощности пучка оптического излучения. В устройстве и способе для генерации излучения из разрядной плазмы осуществляют лазерно-инициируемый разряд между первым и вторым электродами с вводом энергии импульсного источника питания в плазму разряда и генерацией из плазмы разряда излучения наряду с побочным продуктом в виде нейтральных и заряженных загрязняющих частиц (debris), при этом за счет выбора места облучения электрода лазерным лучом, геометрии электродов и разрядного контура формируют асимметричный разряд преимущественно изогнутой/бананообразной формы, собственное магнитное поле которого непосредственно вблизи разряда имеет градиент, определяющий направление преимущественного движения потока разрядной плазмы от электродов в область менее сильного магнитного поля. 2 н. и 6 з.п. ф-лы, 4 ил.

    Изобретение относится к области рентгенотехники. Переносная рентгеновская система (200) имеет воспринимающее средство, чтобы обнаруживать, прикреплена ли отсеивающая решетка (230) к переносному детектору (240) или нет. Система выполнена с возможностью изменения автоматическим образом настроек (265а, 265b, 265с, 265d) по умолчанию экспозиции, когда решетка (230) удаляется или прикрепляется к переносному детектору (240). Технический результат - снижение риска недо- или переэкспозиции изображения. 4 н. и 12 з.п. ф-лы, 2 ил.

    Изобретение относится к области рентгеновской техники и может найти применение в медицине, научных исследованиях и оптоэлектронике. Рентгеновская трубка с модулируемым излучением содержит вакуумную оболочку с выводным окном, прозрачным для рентгеновского излучения, и размещенные внутри вакуумной оболочки источник электронов, фокусирующую электронную систему и анод, на поверхность которого нанесен слой металла мишени. При этом в заявленном изобретении в качестве источника электронов применяется микроканальная пластина, на вход которой подается ультрафиолетовое излучение полупроводникового фотодиода или лазера. Техническим результатом является обеспечение возможности модуляции излучения рентгеновской трубки. 1 ил.

    Источник мягкого рентгеновского излучения на основе разборной рентгеновской трубки относится к области рентгеновской техники и предназначен для использования в качестве источника мягкого рентгеновского излучения с различными длинами волн для калибровки приемников излучения. Источник включает корпус, к которому крепится основание с расположенными на нем анодом и термокатодным узлом с электродами и нитью накала, высоковольтный и низковольтный вводы для соединения с источниками питания, а также фокусирующий электрод и систему охлаждения. Система охлаждения выполнена в виде петли трубопровода, электрически связанного с высоковольтным вводом, анод выполнен сплошным в форме параллелепипеда и зафиксирован непосредственно на трубопроводе с помощью крепежных элементов. Термокатодный узел снабжен упругодеформируемой деталью, закрепленной одним концом на одном из электродов термокатодного узла и связанной с нитью накала силовой связью с возможностью перемещения свободного конца и натяжения нити накала в процессе ее разогрева при подаче напряжения. Фокусирующий электрод выполнен в виде детали, частично охватывающей нить накала. Технический результат - упрощение конструкции и обеспечение стабильности параметров излучения. 3 з.п. ф-лы, 2 ил.

    Изобретение относится к области рентгеновской техники и может быть использовано при разработке импульсных рентгеновских трубок для использования в малогабаритных рентгеновских аппаратах, в частности, для медицинской диагностики и лечения заболеваний, а также в других областях техники. Технический результат - получение излучения мягкого диапазона, обеспечивающего высокий контраст изображения при работе с объектами разной оптической плотности с сохранением рентгенооптических параметров в процессе наработки. Импульсная рентгеновская трубка содержит металлический корпус в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора, выполненного в виде полого усеченного конуса и расположенного вне корпуса, а другое основание корпуса соединено с окном для вывода рентгеновского излучения и катодом, закрепленным на держателе, которые имеют осесимметричные отверстия относительно анода, выполненного в виде цилиндрического стержня переходящего в конус и направленного в сторону окна, вывод анода, проходящий по оси прибора в полости изолятора и соединенный с его меньшим основанием. Держатель выполнен в форме чаши, в цилиндрической части которой равномерно по ее периметру и перпендикулярно дну сформированы сквозные пазы, переходящие в пропилы в дне чаши, а катод выполнен из полиакрилонитрильных углеродных волокон, расположенных радиально относительно оси прибора и закрепленных на дне чаши, например, тонким металлическим кольцом точечной сваркой, при этом торцы одних концов полиакрилонитрильных углеродных волокон образуют границу отверстия катода, а другие концы зажаты в пропилах между дном чаши и внутренней поверхностью корпуса. 1 ил.

    Изобретение относится к области рентгеновской техники и может быть использовано при разработке импульсных рентгеновских трубок для использования в малогабаритных рентгеновских аппаратах, в частности, для медицинской диагностики и лечения заболеваний, а также в других областях техники. Технический результат - повышение контрастности изображения при работе с объектами разной оптической плотности. Импульсная рентгеновская трубка содержит металлический корпус в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора, выполненного в виде полого усеченного конуса и расположенного вне корпуса, а другое основание корпуса соединено с окном для вывода рентгеновского излучения и катодом с осесимметричным отверстием относительно анода, выполненного в виде стержня, переходящего в конус и направленного в сторону окна, вывод анода, проходящий по оси прибора в полости изолятора и соединенный с его меньшим основанием. Вершина конусной части анода выполнена с заострением под углом не более 60° и размещена ниже плоскости расположения катода на расстоянии не более 2 мм. 1 ил., 1 табл.

    Изобретение относится к измерительной технике и может быть использовано, например, для контроля металлических и газовых дефектных включений в полимерной кабельной изоляции с использованием рентгеновского излучения электрического газового барьерного разряда (ЭГБР). Металлический электрод выполнен отражающим, конической формы, с заданными углом конусности и толщиной. Выходное окно для рентгеновского ЭГБР излучения выполнено в цилиндрической стеклянной колбе на одном конце, а на другом конце - сквозное отверстие, в котором установлен патрубок для напуска в рентгеновскую трубку рабочего газа. В качестве рабочего газа использован аргон или азот с активирующей добавкой летучего в ЭГБР 0,1 мг/см3 мелкодисперсного порошка РbO2. Технический результат - повышение контрастности изображения металлических и газовых включений за счет мягкого рентгеновского излучения в диапазоне от 1 до 10 нм, что повышает точность их фотографической регистрации. 3 з.п. ф-лы, 3 ил.

    Изобретение относится к рентгеновской технике, в частности к миниатюрным маломощным рентгеновским излучателям, и может быть использовано для создания устройств экспрессной диагностики и локального воздействия в медицине, технике, быту. Излучатель выполнен как стеклянный баллон вида таблетки, состоящий из двух стеклянных крышки-окна и крышки, склеенных вакуумплотно по краю низкоплавким свинцовым стеклом. Внутри баллона мишень и анод совмещены и выполнены в виде плёнки электропроводящего подбираемого материала, нанесённого на окно-крышку. Катод выполнен как автоэмиссионный катод в виде покрытия порошкового материала на плёнку газопоглотителя, нанесённого на крышку. Управляющий электрод выполнен в виде двух металлических сеток с расположенной между ними микроканальной стеклопластиной. Управляющий электрод усиливает поток эмитированных из катода электронов и отражает рентгеновское излучение со стороны катода к аноду. Технический результат - увеличение полезного выхода рентгеновского излучения; уменьшение электрических нагрузок на анод и катод и, как следствие, увеличение долговечности и стабильности работы прибора; расширение функциональных возможностей устройства за счет обеспечения безвредности окружающей среде. 2 ил.

    Изобретение относится к источникам рентгеновского излучения для селективного получения рентгеновского излучения с различными длинами волн

    Прибор рентгеновская трубка — это электровакуумное устройство, у которого обязательно есть источник облучения (катод) и цель торможения (анод). Также в приборе присутствует генератор — устройство, расположенное в накальном трансформаторе, которое способствует подаче сильного напряжения в катод по минусовому высоковольтному проводнику.

    Лучи появляются благодаря тому, что катод-спираль при сильном напряжении накаливается и выбрасывает поток электронов, задерживающихся на пластине анода, сделанной из вольфрама. Анод способствует превращению энергии в тепловую, в результате чего анод разогревается до температуры выше 2000°С. Это и есть причина снижения мощности, повышения длительности экспозиции.

    Устройство размещается в особом свинцовом чехле. Фартук наполнен специальным маслом. Строение чехла включает в себя высоковольтные проводники и окно выхода, через которое и удаляется скопленное излучение. Современный электровакуумный прибор устроен таким образом, чтобы человек получал минимальную порцию лучей.

    Строение электровакуумного прибора

    Схема рентгеновской трубки выглядит так:

    • стандартная колба;
    • горловина анода;
    • двигающийся диск анода;
    • фокус-пятно анода;
    • спираль накаливания катода;
    • система фокуса катода.

    Сегодня электровакуумные приборы оснащены двумя фокусами большого и малого размеров, на них и распределяются электроны. Для этого в окно встроен прибор коллимации, который должен находиться в постоянном движении, чтобы рентгеновская трубка не повредилась. В этих целях снизу устроена система передвижения анода.

    Некоторые справки об РТ

    Электровакуумный прибор 0.2БДМ7-50 применяется в дентальном рентген-устройстве, 5Д 2РТ 1.6 БДМ 13-90 используется для функционирования с точкой заземления. Работа прибора должна быть при напряжении не больше 110 кВт, а моноблок в обязательном порядке необходимо наполнять специальным маслом. Для работы близкого фокуса применяют РТ 1БТВ4-100. Аппарат 1.7БДМ18-100 используют для работы РТ в передвижном приборе. 2-20БД14-15 и 2-20БД14-150 применим в диагностических целях. Для работы рентгеновской трубки 2.5-30БД29-150 существует устройство «Проскан». 4БПМ8-250 применяется в медицине для проведения исследований и диагностики.

    Принцип работы прибора

    РТ — это устройство, которое функционирует как диод, но способно осуществлять свои задачи в режиме пространственного заряда.

    Принцип работы достаточно прост: эмиссия производится в результате повышенного напряжения. Именно вследствие этого РТ должна располагаться в фартуке из свинца. Благодаря последнему не происходит лишнего . В результате выводится исключительно невредный лучевой поток. Далее неопасные лучи ограничиваются с помощью стационарного либо двигающегося коллиматора. Он хоть и не является деталью фартука, но делать рентген без него нельзя, так как произойдет утечка вредного излучения.

    Кроме того, фартук способствует защите от высоких напряжений, которые создаются между анодом и катодом. Заряд проходит по кабелю, который идет из повышающей трансформаторной будки с генератором. Образуется рентгеновское излучение с огромными затратами энергии, в основном обращенными на прогрев элементов, расположенных внутри рентгеновской трубки. Мельчайшие доли секунды энергия концентрируется на фокусе, далее она размещается по всему фокусному пятну.

    Дольше происходит перевод энергии на непроводящее масло, которое находится в фартуке РТ. В это же время энергия как горячее излучение перемещается на фартук, выполненный из металла. И, наконец, уже из стенок происходит высвобождение энергии в качестве конвенции либо вентиляции. Во время такого теплообмена рентгеновская трубка нагревается до определенного предела — экстремальной температуры, которая и не должна ни в коем случае выйти за рамки необходимых показателей. Иначе произойдет разрушение рентгеновской трубки. Температурный режим фокуса и его пятна подлежит контролю при помощи того, что устанавливаются определенный временной режим и напряжение, подаваемые с генератора под минимальным, ограниченным заполняющим фактором. Последний вычисляется при помощи разработанной таблицы характеристик нагрузки.

    Анодный температурный режим определяется верной экспозицией. Делается это для того, чтобы было соблюдено время соотношения перепада энергии.

    Время охлаждения контролируется приборами с родным ПО с помощью специальной схемы моделирования скопленного тепла. Если же такая функция отсутствует, то контроль осуществляется с помощью спланированного расписания, которое составил рабочий персонал, основываясь на смене волн нагрева и охлаждения анода. Температурный режим фартука контролируется так же переменой нагрева и охлаждения. В данном случае он должен выполняться с длительными промежутками во времени: по половине дня на охлаждение и нагревание. Регулируется температура в кожухе с помощью 3 устройств:

    • переключатель температур внешний;
    • переключатель температур внутренний;
    • микропереключатель.

    Струйный материал фильтрует полезные лучи. У РТ им служит:

    • стекло;
    • масло;
    • пластик.

    Но такой фильтрации, конечно, недостаточно для того, чтобы ограничить низкую энергию мягких лучей. Последние приносят вред человеческому организму, а изображение не передают. По этой причине на приборе располагаются дополнительные фильтры на безвредных лучах. Оценка пользы и вреда рентгеновского облучения сложна. Работу на рентгеновском оборудовании должен осуществлять только обученный квалифицированный специалист. Данные устройства не предназначаются для работы вручную или замещения автоматического управления временным показателем охлаждения. Однако без них нельзя говорить о полной безопасности аппарата. В обычной работе такие устройства не применяются. Следует обратить внимание, что сама РТ не имеет данных устройств для создания границ температурного режима. Исходя из чего необходимо контролировать цикл энергии, которая идет с генератора. Это поможет не навредить пациенту. Калибровка накаливания на одном уровне осуществляется при помощи дополнительного программирования системы, содержащей необходимую информацию.