• Скачать схему цветомузыки. Цветомузыкальные приставки. Что нам нужно


    Данная схема цветомузыки представляет собой типичную аналоговую цветомузыкальную приставку, вроде тех что пользовались большой популярностью в 80-90-х годах, и на мой взгляд, незаслуженно забыты сегодня.
    Входной сигнал через раздельный трансформатор поступает на восемь активных фильтров, разделяющих сигнал на восемь частотных каналов. Наличие трансформатора обеспечивает гальваническую развязку приставки с работающей с ней аудиоаппаратурой. На выходах фильтров включены выпрямители, вырабатывающие постоянное напряжение, пропорциональное величине сигнала в полосе работы данного фильтра. Это напряжение поступает на затвор тиристора и достигнув необходимой величины открывает его.

    Теперь подробнее. Сигнал с выхода УНЧ поступает в схему цветомузыки через разделительный трансформатор Т1. В качестве данного трансформатора используется дроссель на Ш-образном сердечнике с двумя обмотками. Обмотки одинаковые, небольшого сопротивления (по 200-300 витков). Аналогичные дроссели используются во многих источниках питания бытовой теле, видео, аудиотехники, а так же компьютерной. Дроссель готовый, но при необходимости его можно намотать и самому.

    Так как обмотки Т1 низкоомные подключать вход СМУ нужно к выходу УМЗЧ, то есть, параллельно или вместо акустической системы, либо к телефонному выходу для подключения наушников (если при этом не происходит автоматического отключения основных акустических систем). Если же необходимо подавать сигнал исключительно с линейного выхода аппаратуры нужно сделать дополнительный УМЗЧ для работы с светомузыкальной приставкой, например, на основе популярной микросхемы К174УН14 или любой другой УМЗЧ.

    Без трансформатора подавать сигнал на вход схемы цветмузыки нельзя потому что лампами управляют тиристоры, и вся схема цветомузыки оказывается под потенциалом электросети, что может привести как поражению током через аудиоаппаратуру, так и к повреждению аудиоаппаратуры.
    Подстроечный резистор R1 служит для общей регулировки уровня сигнала. Плюс, перед каждым полосовым фильтром есть свой дополнительный регулятор (резисторы R2-R9), регулирующий уровень сигнала в своем частотном канале. С помощью этих резисторов можно корректировать чувствительность каналов в зависимости от желания, практически можно сказать что ими регулируется «цветовой тембр», если можно так выразиться.
    Все активные фильтры построены по одинаковым схемам полосовых фильтров. Они выделяют полосы с центральными частотами, подписанными на схеме. Средняя частота полосы каждого фильтра зависит от емкостей двух конденсаторов, которые должны быть одинаковыми. В остальном все номиналы деталей фильтров совпадают.

    Фильтры выполнены на операционных усилителях, а они, как известно, требуют двухполярного питания. К сожалению, в выбранной схеме источника питания организовать двухполярное питание хотя и возможно, но все же проблематично. Поэтому решено было питать ОУ от однополярного источника напряжением 12V, а для того чтобы обеспечить их нормальную работу подать на положительный вход половину напряжения питания, полученную с помощью делителя напряжения R40-R41.
    Таким образом, в схеме цветомузыки есть восемь операционных усилителей, а именно две микросхемы LM324, содержащих по четыре операционного усилителя.

    После ОУ сигналы выделенных полос поступают на диодные детекторы, каждый на двух диодах, включенных по схеме с удвоением напряжения. На выходных конденсаторах (С4, С8, С12, С15, С19, С23, С27, С31) этих детекторов выделяется постоянное напряжение, поступающее на управляющий электрод тиристоров. Изначально предполагалось параллельно каждому из этих конденсаторов включить по одному резистору сопротивлением 10-50 кОм, но при налаживании выяснилось что при использовании тиристоров MCR106-8 в этом нет никакой необходимости. И резисторы эти были убраны из схемы цветомузыки. Поэтому на схеме нет резисторов с позиционными обозначениями R13, R17, R20, R24, R28, R32, R35 и R39. Если же вы будете использовать другие тиристоры, которые возможно «не захотят» закрываться, эти резисторы придется вернуть на место (одни были подключены параллельно конденсаторам С4, С8, С12, С15, С19, С23, С27, С31), и подобрать экспериментально их сопротивления.

    При использовании тиристоров MCR106-8 максимальная мощность нагрузки каждого канала может достигать 900W. При мощности до 200W радиатор не требуется, а при более высокой мощности он нужен, так как тиристоры будут перегреваться.
    Выходные каскады можно сделать и по другим схемам, например, на оптосимисторах. В этом случае напряжения с конденсаторов С4, С8, С12, С15, С19, С23, С27, С31 нужно подавать на базы дополнительных транзисторных ключей, в коллекторных цепях которых будут включены светодиоды оптосимисторов (через необходимые токоограничительные резисторы). Кстати, если в этом случае питать «электронику» от источника напряжением 12V, выполненного на трансформаторе, то в этом случае, так же, нет никакой необходимости во входном трансформаторе, а сигнал можно будет подавать с линейного выхода аппаратуры непосредственно на R1.


    Источник питания ОУ выполнен по бестрансформаторной схеме на диодах VD17-VD18, конденсаторах С32 и СЗЗ, а так же стабилитроне VD19 (стабилитрон на напряжение 12V и мощность 1W).
    Все кроме тиристоров собрано на одной печатной плате из одностороннего фольгированного стеклотекстолита. На плате есть одна перемычка.
    На основе этой же схемы цветомузыки можно сделать цветомузыкальное устройство, работающее от 12-вольтового источника (например, автомобильной бортовой сети), а экран сделать из разноцветных сверхярких светодиодов. На следующем рисунке приводится четырехканальный вариант схемы цветомузыки. Конечно можно сделать и восемь каналов, но по цвету в свободной продаже есть только четыре типа светодиодов, – красные, желтые, зеленые и синие, так что имеет смысл ограничиться четырьмя каналами. Так как каналов меньше, соответственно изменены частоты и широты полос.

    Входной сигнал подается без разделительного трансформатора, так как схема цветомузыки низковольтная и может питаться от того источника, что и источник сигнала. Выходные каскады выполнены по схеме усиленных транзисторных ключей. В каждом канале работает по девять сверхярких светодиодов.
    В схеме цветомузыки можно использовать сверхяркие светодиоды любые, но на прямое напряжение не более 3,5V, при большем номинальном напряжении падения они могут не гореть при питании от источника 12V.
    Для каждого канала – отдельный цвет светодиодов.
    Если окажется что яркость свечения светодиодов разных цветов сильно различается, это можно компенсировать подбором сопротивлений резисторов R29-R40.

    Пошаговая сборка несложной конструкции светодиодной цветомузыки, с попутным изучением радиолюбительских программ

    Доброго дня уважаемые радиолюбители!
    Приветствую вас на сайте “ “

    Собираем светодиодную светомузыку (цветомузыку).
    Часть 1.

    На сегодняшнем занятии в Школе начинающего радиолюбителя мы начнем собирать светодиодную светомузыку . В ходе этого занятия мы не только соберем светомузыку, но и изучим очередную радиолюбительскую программу “Cadsoft Eagle” – несложное, но в тоже время мощное комплексное средство для разработки печатных плат и научимся изготавливать печатные платы с использованием пленочного фоторезиста. Сегодня мы выберем схему, рассмотрим как она работает, подберем детали.

    Светомузыкальные (цветомузыкальные) устройства были очень популярны во времена Советского Союза. Были они, в основном, трехцветными (красный, зеленый или желтый и синий) и собирались чаще всего по простейшим схемам на более-менее доступных тиристорах КУ202Н (которые, если мне не изменяет память, в магазинах стоили более 2 рублей, т.е. были довольно дорогими) и простейших входных фильтрах звуковой частоты на катушках намотанных на отрезках ферритовых стержней от радиоприемников. Выполнялись они в основном в двух вариантах – в виде трехцветных прожекторов на лампочках освещения 220 вольт, или делался специальный корпус в виде коробки, где внутри располагалось по некоторому количеству лампочек каждого цвета, а спереди ящик закрывался матовым стеклом, что позволяло получать на таком экране причудливое световое сопровождение музыки. Так-же, для экрана применяли обычное стекло, а сверху на него наклеивали для лучшего рассеивания света мелкие осколки автомобильных стекол. Вот такое было трудное детство. Зато сегодня, в век развития непонятного капитализма в нашей стране, есть возможность собрать светомузыкальное устройство на любой вкус, чем мы и займемся.

    За основу мы возьмем схему светодиодной светомузыки опубликованной на сайте:

    К этой схеме мы добавим еще два элемента:

    1. . Так как у нас на входе будет стереосигнал, и чтобы не терять звук с какого-то канала, или не соединять два канала напрямую между собой, мы применим вот такой входной узел (взят с другой схемы светомузыки):

    2. Блок питания устройства . Схему светомузыки мы дополним блоком питания собранным на микросхемном стабилизаторе КР142ЕН8:

    Вот приблизительно такой комплект деталей мы должны собрать:

    Светодиоды для этого устройства можно использовать любого типа, но обязательно сверхяркие и разного цвета свечения. Я буду использовать сверхяркие узконаправленные светодиоды, свет от которых будет направлен на потолок. Вы, естественно, можете применить другой вариант светового отображения звукового сигнала и использовать другой тип светодиодов:

    Как работает данная схема . Стереосигнал с источника звука поступает на входной узел, который суммирует сигналы с левого и правого канала и подает его на переменные сопротивления R6, R7, R8 которыми регулируется уровень сигнала для каждого канала. Далее сигнал поступает на три активных фильтра, собранных по идентичной схеме на транзисторах VT1-VT3, которые отличаются только номиналами конденсаторов. Смысл работы этих фильтров заключается в том, что они пропускают через себя только строго определенную полосу звукового сигнала, отсекая сверху и снизу ненужный диапазон частот звукового сигнала. Верхний (по схеме) фильтр пропускает полосу 100-800 Гц, средний – 500-2000 Гц и нижний – 1500-5000 Гц. С помощью подстроечных резисторов R5, R12 и R16 можно сдвигать в любую сторону пропускаемую полосу. Если вы хотите получить другие полосы пропускания сигнала фильтров, то можно поэкспериментировать с номиналами конденсаторов, входящих в фильтры. Далее сигналы с фильтров поступают на микросхемы А1-А3 – LM3915. Что это за микросхемы.

    Микросхемы LM3914, LM3915 и LM3916 фирмы National Semiconductors позволяют строить светодиодные индикаторы с различными характеристиками - линейной, растянутой линейной, логарифмической, специальной для контроля аудиосигнала. При этом LM3914 – для линейной шкалы, LM3915 – для логарифмической шкалы, а LM3916 – для специальной шкалы. Мы используем микросхемы LM3915 – с логарифмической шкалой контроля аудиосигнала.

    Начальная страница даташита микросхемы:

    (327.0 KiB, 4,065 hits)

    Вообще, я вам советую, сталкиваясь с новым, неизвестным радиокомпонентом, ищите на просторах интернета его даташит и изучайте его, тем более, что встречаются и переведенные на русский язык даташиты.

    К примеру, что мы можем подчерпнуть с первого листа даташита LM3915 (даже с минимальным знанием английского языка, а в крайнем случае с использованием словаря):
    - эта микросхема – индикатор уровня аналогового сигнала с логарифмической шкалой отображения и шагом 3 dB;
    – можно подключать как светодиоды, так и LCD индикаторы;
    – индикацию можно осуществлять в двух режимах: “точка” и “столбик”;
    – максимальный выходной ток на каждый светодиод – 30 мА;
    – и так далее…

    Кстати, чем отличается “точка” от “столбика”. В режиме “точка”, при включении следующего светодиода, предыдущий гаснет, а в режиме”столбик” гашение предыдущих светодиодов не происходит. Для переключения в режим “точка” достаточно отсоединить вывод 9 микросхемы от “+” источника питания, или подключить его к “земле”. Кстати, на этих микросхемах можно собирать очень полезные и интересные схемы.

    Продолжим. Так как на входы микросхем подается переменное напряжение, то светящийся столбик из светодиодов будет с неравномерной яркостью, т.е. с увеличением уровня входного сигнала будут не просто зажигаться очередные светодиоды, но и меняться яркость их свечения. Ниже привожу таблицу порогового включения каждого светодиода для разных микросхем в вольтах и децибелах:

    Характеристики и цоколевка транзистора КТ315:

    На этом первую часть занятия по сборке светодиодной светомузыки заканчиваем и начинаем собирать детали. В следующей части занятия мы изучим программу для разработки печатных плат “Cadsoft Eagle” и изготовим печатную плату для нашего устройства с использованием пленочного фоторезиста.

    Цветомузыкальное оборудование, меняющее цвет, интенсивность, эффекты и ритм – неотъемлемого атрибута хорошей гулянки, способный поднять и задвигаться в такт музыке самого ленивого и меланхоличного из участников мероприятия. В этой статье мы обсудим нюансы цветомузыки на светодиодах, возможности сделать её своими руками и варианты применения в различных условиях.

    С насыщением рынка светодиодным осветительным оборудованием, сферы его применения расширяются взрывными скачками и уже не ограничиваются исключительно дизайнерскими изысками в освещении интерьеров, лаконичностью и эффективностью при освещении офисов и рабочих освещений, или желанием сделать долговечную и качественную подсветку экстерьера зданий. Светодиодные лампы проникли во все сферы, где их колоссальный технологический отрыв, энергоэффективность, минимальные размеры при максимальной отдаче, могут сослужить добрую службу и принести пользу или эстетическое удовольствие – тюнинг автомобилей, фитолампы для выращивания домашних огородов, и, конечно, цветомузыки.

    Цветомузыка на led-компонентах обладает рядом существенных преимуществ перед аналогами на устаревших лампах:

    • Маленький размер светодиодов в совокупности с энергоэффективностью порождают обилие возможных форм для создания светомузыкального оборудования, и речь идет не только о внешних форм-факторах, но и о возможностях применения светодиодов в самых различных эффектах при работе со светом и различными его цветами, ведь led-элемент может давать точечный поток света. Стробоскопы, прожекторы, дискошары и многое другое доступно для использования даже в домашних условиях.
    • Безопасность использования цветомузыки ни светодиодных излучателях максимальна, по сравнению с устаревшими лампами – диапазон рабочих температур led-элементов не превышает 60 градусов по Цельсию, а значит, опасений о возгорании каких-либо элементов домашнего декора или материалов просто не должно возникать. Пусть цвета заполнят ваш дом вместе с музыкой без каких-либо тревог, связанных с использованием светомузыкального оборудования.
    • Длительный срок эксплуатации цветомузыки для дома делает покупку такого оборудования целесообразной, ведь она рассчитана на 8000-10000 тысяч часов работы, то есть целый год бесперебойной службы. А с учетом того, что количество включений и выключений никак не сказывается на потребительских свойствах led-элементов, и большинство людей не устраивают круглосуточные вечеринки ежедневно, домашняя цветомузыка способна долгие годы радовать своего обладателя и его гостей.
    • Качество цвето- и светопередачи. Светодиодное освещение обладает самым широким спектром цветов и оттенков, что является одним из главных плюсов для цветомузыки как таковой, ведь разнообразие цветов играет важную роль в создании атмосферы. Так же, в отличие от лазерной цветомузыки, светодиодное оборудование безвредно для глаз и не способно повредить зрение при прямом попадании светового потока на сетчатку глаза.

    Варианты создания светомузыкального освещения в домашних условиях

    1. Самый простой вариант – купить специальную переносной светильник или лампу, которые будут менять цвета или использовать сразу несколько цветов, с одним или несколькими эффектами. Таких вариантов очень много, они весьма распространены и бюджетны. Для начального уровня, чтобы порадовать себя и друзей незатейливой, но приятной игрой с ярким светом и цветами под музыку – будет вполне достаточно.
    1. Самый качественный вариант, если не сделать самому по самым сложным схемам – приобрести готовое решение, так называемые ЦМУ (Цветомузыкальные установки) . Это готовое решение, включающее в себя контролёр, который будет обрабатывать звуковой сигнал, превращая его в светомузыкальное представление, меняющие интенсивность и цвета потоки света, создавая эффект полноценной дискотеки, и непосредственно панели с диодами. ЦМУ просты в инсталляции, и если вы хотите создать дискотеку дома своими руками – это вполне хороший вариант. В основе таких ЦМУ может быть спектральное разложение по частотам, когда каждой частоте будет соответствовать какой-либо цвет, либо заданные регулировки с всевозможными эффектами и их чередованием, которые можно настроить с помощью комплектного пульта ДУ.

    1. Третий вариант – собрать цветомузыку самостоятельно. В интернете очень много подробных схем, по которым человек, имеющий опыт работы с электроникой, сможет сделать цветомузыку для дома своими руками. Можно обойтись и без схем, использовав приобретенный отдельно цветомузыкальный контролёр, и, допустим, несколько отрезков RGB-ленты. На самом деле, что касается осветительных приборов для эффектов дискотеки, созданных своими руками – их может быть реально огромное множество. Схем очень много, а также и видео инструкций, как по этим схемам собрать оборудование. Есть схемы с использованием внешних микрофонов, собранные по этим схемам осветительные приборы будут менять цвет и эффекты в точности под играющую мелодию.

    Предлагаемые в интернете схемы для того, чтобы сделать цветомузыку своими руками, максимально разнообразны – от простейших, когда будет меняться цвет RGB-ленты, до самых сложных, со множеством эффектов, затуханий и переливов. В зависимости от навыков, можно подобрать подходящий вариант, найти нужную схему и создать нечто уникальное, светооборудование, которое будет радовать вас и ваших гостей переливами всех цветов. Если вы не готовы сделать цветомузыку на светодиодах самостоятельно, своими руками, то можно обратиться к рынку готовых решений и наполнить свой дом разнообразием цветов и радостью.

    простая схема цветомузыки на лампах 220в

    Все знают и почти каждый собирает это устройство мерцающее и мигающее под музыку-цветомузыка.В интернете многие ищут по разным запросам схемы цветомузыки и везде они разные.Вашему вниманию я представляю схему ниже внешний вид которой вы видите на картинки.И так, схема рабочей цветомузыки на 220 Вольт на теристорах

    Простая схема цветомузыки


    Деталей для неё понадобится самый минимум.

    Покупаем цветные лампы накаливания на 220В
    Учитывая, что выходной каскад у цветомузыки выполнен на тиристорах, то он обладает большой мощностью. Если тиристоры поставить на теплоотводы, то можно нагрузить на каждый канал по 1000 ватт. Но для дома вполне хватит ламп по 60-100 ватт.

    Рисунок печатной платы для светомузыки

    Я не стал использовать лазерно-утюжную технологию для такого простого рисунка платы. Я просто распечатал картинку зеркально и наложил её на фольгу.


    Что бы бумага не смещалась, закрепляем ее скотчем или еще чем то фиксируем и накерниваем места будущих отверстий

    Сами дорожки рисуем нитрокраской


    В качестве трансформатора подойдет любой трансформатор из китайского блока питания, хоть от радиотелефона, хоть еще от чего то.

    И смотрим полностью спаянную плату


    Патроны прикрепляем к алюминиевому уголку



    В дополнение фото присланное

    Практически у каждого начинающего радиолюбителя, да и не только, возникало желание собрать цветомузыкальную приставку или бегущий огонь, чтобы разнообразить прослушивание музыки в вечернее время или в праздничные дни. В этой статье речь пойдет о простой цветомузыкальной приставке, собранной на светодиодах , которую под силу собрать даже начинающему радиолюбителю.

    1. Принцип действия цветомузыкальных приставок.

    Работа цветомузыкальных приставок (ЦМП , ЦМУ или СДУ ) основана на частотном разделении спектра звукового сигнала с последующей передачей его по отдельным каналам низких , средних и высоких частот, где каждый из каналов управляет своим источником света, яркость которого определяется колебаниями звукового сигнала. Конечным результатом работы приставки является получение цветовой гаммы, соответствующей воспроизводимому музыкальному произведению.

    Для получения полной гаммы цветов и максимального количества цветовых оттенков в цветомузыкальных приставках используются, как минимум, три цвета:

    Разделение частотного спектра звукового сигнала происходит с помощью LC- и RC-фильтров , где каждый фильтр настроен на свою сравнительно узкую полосу частот и пропускает через себя только колебания этого участка звукового диапазона:

    1 . Фильтр низких частот (ФНЧ) пропускает колебания частотой до 300 Гц и цвет его источника света выбирают красным;
    2 . Фильтр средних частот (ФСЧ) пропускает 250 – 2500 Гц и цвет его источника света выбирают зеленым или желтым;
    3 . Фильтр высших частот (ФВЧ) пропускает от 2500 Гц и выше, и цвет его источника света выбирают синим.

    Каких-либо принципиальных правил для выбора полосы пропускания или цвета свечения ламп не существует, поэтому каждый радиолюбитель может применять цвета исходя из особенностей своего восприятия цвета, а также по своему усмотрению изменять число каналов и ширину полосы частот.

    2. Принципиальная схема цветомузыкальной приставки.

    На рисунке ниже предоставлена схема простой четырехканальной цветомузыкальной приставки, собранной на светодиодах. Приставка состоит из усилителя входного сигнала, четырех каналов и блока питания, обеспечивающего питание приставки от сети переменного тока.

    Сигнал звуковой частоты подается на контакты ПК , ЛК и Общий разъема Х1 , и через резисторы R1 и R2 попадает на переменный резистор R3 , являющийся регулятором уровня входного сигнала. От среднего вывода переменного резистора R3 звуковой сигнал через конденсатор С1 и резистор R4 поступает на вход предварительного усилителя, собранного на транзисторах VT1 и VT2 . Применение усилителя позволило использовать приставку практически с любым источником звукового сигнала.

    С выхода усилителя звуковой сигнал подается на верхние выводы подстроечных резисторов R7 ,R10 , R14 , R18 , являющиеся нагрузкой усилителя и выполняющие функцию регулировки (подстройки) входного сигнала отдельно по каждому каналу, а также устанавливают нужную яркость светодиодов канала. От средних выводов подстроечных резисторов звуковой сигнал поступает на входы четырех каналов, каждый из которых работает в своей полосе звукового диапазона. Схематично все каналы выполнены одинаково и различаются лишь RC-фильтрами.

    На канал высших R7 .
    Полосовой фильтр канала образован конденсатором С2 и пропускает только спектр верхних частот звукового сигнала. Низкие и средние частоты через фильтр не проходят, так как сопротивление конденсатора для этих частот велико.

    Проходя конденсатор, сигнал верхних частот детектируется диодом VD1 и подается на базу транзистора VT3 . Появляющееся на базе транзистора отрицательное напряжение открывает его, и группа синих светодиодов HL1 HL6 , включенных в его коллекторную цепь, зажигаются. И чем больше амплитуда входного сигнала, тем сильнее открывается транзистор, тем ярче горят светодиоды. Для ограничения максимального тока через светодиоды последовательно с ними включены резисторы R8 и R9 . При отсутствии этих резисторов светодиоды могут выйти из строя.

    На канал средних частот сигнал подается от среднего вывода резистора R10 .
    Полосовой фильтр канала образован контуром С3R11С4 , который для низких и высших частот оказывает значительное сопротивление, поэтому на базу транзистора VT4 поступают лишь колебания средних частот. В коллекторную цепь транзистора включены светодиоды HL7 HL12 зеленого цвета.

    На канал низких частот сигнал подается со среднего вывода резистора R18 .
    Фильтр канала образован контуром С6R19С7 , который ослабляет сигналы средних и высших частот и поэтому на базу транзистора VT6 поступают лишь колебания низких частот. Нагрузкой канала являются светодиоды HL19 HL24 красного цвета.

    Для разнообразия цветовой гаммы в цветомузыкальную приставку добавлен канал желтого цвета. Фильтр канала образован контуром R15C5 и работает в частотном диапазоне ближе к низким частотам. Входной сигнал на фильтр поступает с резистора R14 .

    Питается цветомузыкальная приставка постоянным напряжением . Блок питания приставки состоит из трансформатора Т1 , диодного моста, выполненного на диодах VD5 VD8 , микросхемного стабилизатора напряжения DA1 типа КРЕН5, резистора R22 и двух оксидных конденсаторов С8 и С9 .

    Переменное напряжение, выпрямленное диодным мостом, сглаживается оксидным конденсатором С8 и поступает на стабилизатор напряжения КРЕН5. С вывода 3 микросхемы стабилизированное напряжение 9В подается в схему приставки.

    Для получения выходного напряжения 9В между минусовой шиной блока питания и выводом 2 микросхемы включен резистор R22 . Изменением величины сопротивления этого резистора добиваются нужного выходного напряжения на выводе 3 микросхемы.

    3. Детали.

    В приставке могут быть использованы любые постоянные резисторы мощностью 0,25 – 0,125 Вт. На рисунке ниже показаны номиналы резисторов, у которых для обозначения величины сопротивления используют цветные полоски:

    Переменный резистор R3 и подстроечные резисторы R7, R10, R14, R18 любого типа, лишь бы подходили под размер печатной платы. В авторском варианте конструкции использовался отечественный переменный резистор типа СП3-4ВМ, подстроечные резисторы импортного производства.

    Постоянные конденсаторы могут быть любого типа, и рассчитаны на рабочее напряжение не ниже 16 В. При возникновении трудности с приобретением конденсатора С7 емкостью 0,3 мкФ его можно составить из двух соединенных параллельно емкостью 0,22 мкФ и 0,1 мкФ.

    Оксидные конденсаторы С1 и С6 должны иметь рабочее напряжение не ниже 10 В, конденсатор С9 не ниже 16 В, а конденсатор С8 не ниже 25 В.

    Оксидные конденсаторы С1, С6, С8 и С9 имеют полярность , поэтому при монтаже на макетную или печатную плату это необходимо учитывать: у конденсаторов Советского производства на корпусе обозначают положительный вывод, у современных отечественных и импортных конденсаторов обозначают отрицательный вывод.

    Диоды VD1 – VD4 любые из серии Д9. На корпусе диода со стороны анода наносится цветная полоска, определяющая букву диода.

    В качестве выпрямителя, собранного на диодах VD5 – VD8, используется готовый миниатюрный диодный мост, рассчитанный на напряжение 50В и ток не менее 200 mA.

    Если вместо готового моста использовать выпрямительные диоды, придется немного подкорректировать печатную плату, или диодный мост вообще вынести за пределы основной платы приставки и собрать на отдельной небольшой плате.

    Для самостоятельной сборки моста диоды берутся с теми же параметрами, что и заводской мост. Также подойдут любые выпрямительные диоды из серии КД105, КД106, КД208, КД209, КД221, Д229, КД204, КД205, 1N4001 – 1N4007. Если использовать диоды из серии КД209 или 1N4001 – 1N4007, то мост можно собрать прямо со стороны печатного монтажа непосредственно на контактных площадках платы.

    Светодиоды обычные с желтым, красным, синим и зеленым цветом свечения. В каждом канале используется по 6 штук:

    Транзисторы VT1 и VT2 из серии КТ361 с любым буквенным индексом.

    Транзисторы VT3, VT4, VT5, VT6 из серии КТ502 с любым буквенным индексом.

    Стабилизатор напряжения типа КРЕН5А с любым буквенным индексом (импортный аналог 7805). Если использовать девятивольтовые КРЕН8А или КРЕН8Г (импортный аналог 7809), то резистор R22 не ставится. Вместо резистора на плате устанавливается перемычка, которая соединит средний вывод микросхемы с минусовой шиной, или при изготовлении платы этот резистор вообще не предусматривается.

    Для соединения приставки с источником звукового сигнала применен разъем типа «джек» на три контакта. Кабель взят от компьютерной мыши.

    Трансформатор питания – готовый или самодельный мощностью не менее 5 Вт с напряжением на вторичной обмотке 12 – 15 В при токе нагрузки 200 mA.

    В дополнение к статье посмотрите первую часть видеоролика, где показывается начальный этап сборки цветомузыкальной приставки

    На этом первая часть заканчивается.
    Если Вы соблазнились сделать цветомузыку на светодиодах , тогда подбирайте детали и обязательно проверьте исправность диодов и транзисторов, например, . А во произведем окончательную сборку и настройку цветомузыкальной приставки.
    Удачи!

    Литература:
    1. И. Андрианов «Приставки к радиоприемным устройствам».
    2. Радио 1990 №8, Б. Сергеев «Простые цветомузыкальные приставки».
    3. Руководство по эксплуатации радиоконструктора «Старт».