• Современные стандартные технологии локальных сетей. Создание стандартных технологий локальных сетей

    может производиться обмен данными. При разрыве соединения станция – инициатор разрыва отправляет другой стороне соответствующее уведомление.

    Датаграммные протоколы предоставляют услуги по ненадежной доставке данных. Данные отсылаются без предупреждения и протокол не отвечает за их доставку.

    Датаграммные протоколы работают достаточно быстро, т.к. не выполняет никаких действий при отправке данных.

    Передача данных на физическом уровне

    Различают два способа передачи информации: 1.Аналоговоя модуляция 2.Цифровое кодирование

    Аналоговая модуляция – используется при передаче данных по телефонным линиям связи (узкополосные каналы связи). Сигнал имеет синусоидальную форму. Для кодирования информации используются три способа:

    Амплитудная модуляция, т.е. изменение амплитуды сигнала несущей частоты

    Частотная модуляция, т.е. изменение частоты сигнала

    Фазовая модуляция, т.е. изменение фазы сигнала

    Цифровое кодирование – способ представления информации в виде прямоугольных импульсов. Различают два способа цифрового кодирования:

    Потенциальное кодирование – для представления нулей и единиц используются только значения потенциала сигнала, а его перепады игнорируются.

    Импульсное кодирование – позволяет представлять данные перепадом потенциала определенного направления.

    Литература:

    Тема 4. Технологии локальных сетей

    Вопросы для изучения:

    Стандарты IEEE 802

    Технология Ethernet

    Технология Token Ring

    Технология FDDI

    Стандарты IEEE 802

    В 1980г. В институте IEEE был организован комитет 802 целью которого была разработка стандартов локальных сетей. Эти стандарты описывают функционирование локальных сетей на физическом и канальном уровнях. Канальный уровень делится на два подуровня: уровень логического управления каналом(Logical Link Layer, LLC) и уровень управления доступом к среде передачи данных (Media Access Control, MAC).

    Уровень MAC выполняет синхронизацию доступа к совместной среде передачи данных и определяет в какой момент времени станция может начинать передавать имеющиеся данные.

    После того как получен доступ к среде, выполняется передача данных в соответствии со стандартами, которые определены на уровне LLC. Уровень LLC отвечает за связь с сетевым уровнем, а также выполняет передачу данных с заданной степенью надежности.

    На уровне LLC используются три процедуры передачи данных:

    1. LLC1 – передача данных с установлением соединения и подтверждением

    2. LLC2 – передача данных без установления соединения и подтверждения

    3. LLC3 – передача данных без установления соединения, но с подтверждением приема данных.

    Протоколы LLC и MAC взаимно независимы – каждый протокол уровня MAC может применяться с любым протоколом уровня LLC и наоборот.

    Стандарт 802.1 описывает общие понятия локальных сетей, определяет связь трех уровней стандартов 802 с семиуровневой моделью, а также стандарты построения сложных сетей на основе базовых топологий(internetworking). К этим стандартам относят стандарты, описывающие функционирование моста/коммутатора, стандарты объединения разнородных сетей при помощи транслирующего моста, стандарты построения виртуальных сетей(VLAN) на основе коммутаторов.

    Технология Ethernet

    Термин Ethernet относится к семейству протоколов локальных сетей, которые описываются стандартом IEEE 802.3 и используют метод доступа к среде CSMA/CD.

    В настоящий момент существует три основные разновидности технологии, которые функционируют на базе оптоволоконных кабелей или неэкранированной витой пары:

    1. 10 Mbps - 10Base-T Ethernet

    2. 100 Mbps - Fast Ethernet

    3. 1000 Mbps - Gigabit Ethernet

    10 – мегабитный Ethernet включает три стандарта физического уровня:

    1. 10Base – 5 («Толстый» коаксиал) – использует в качестве передающей среды коаксиальный кабель диаметром 0.5 дюйма, волновое сопротивление 50 Ом. Максимальная длина сегмента без повторителей – 500м. На один сегмент может подключаться не более 100 трансиверов. При построении сети используется правило «3-4- 5»(3 «нагруженных» сегмента, 4 повторителя, не более 5 сегментов). Повторитель подключается при помощи трансивера, т.о. в сети может быть не более 297 узлов. Для того чтобы предотвратить появление отраженных сигналов, используются терминаторы сопротивлением 50 Ом.

    2. 10 Base – 2 («Тонкий» коаксиал) – использует в качестве передающей среды коаксиальный кабель диаметром 0.25 дюйма, волновое сопротивление 50 Ом. Максимальная длина сегмента без повторителей – 185м. На один сегмент может подключаться не более 30 узлов. При построении сети используется правило «3-4-5»(3 «нагруженных» сегмента, 4 повторителя, не более 5 сегментов). Для того чтобы предотвратить появление отраженных сигналов, используются терминаторы сопротивлением 50 Ом.

    3. 10 Base – Т (Неэкранированная витая пара) – в качестве передающей среды используются две неэкранированные витые пары, узлы подключаются к концентратору и

    образуют топологию «звезда». Расстояние от повторителя до станции не более 100 метров для категории кабеля не ниже 3. Концентраторы могут соединяться между собой, увеличивая протяженность логического сегмента сети(домена коллизий). При построении сети используется правило 4-х хабов(между любыми двумя узлами сети должно быть не более 4-х повторителей), количество узлов в сети не должно превышать 1024.

    100 – мегабитный Ethernet(Fast Ethernet) включает следующие спецификации:

    1. 100Base – TX. Среда передачи данных - неэкранированная витая пара категории не ниже 5. Поддерживается функция автоопределения скорости. Возможна работа в полнодуплексном режиме.

    2. 100Base – FX Использует многомодовое оптоволокно.

    3. 100Base – T4 Использует 4 витые пары для передачи данных по кабелю 3 категории. Не поддерживает полнодуплексной передачи данных.

    В сетях 100-мегабитного Ethernet используются повторители двух классов (I иII ). Повторители классаI могут соединять каналы, отвечающие разным требованиям, например, 100Base-TX и 100Base-T4 или 100Base-FX. В пределах одного логического сегмента может быть применен только один повторитель классаI . Такие повторители часто имеют встроенные возможности управления с использованием протокола SNMP.

    Повторители класса II не выполняют преобразования сигналов, и могут объединять только однотипные сегменты. Логический сегмент может содержать не более двух повторителей классаII.

    При построении сети необходимо учитывать следующие ограничения:

    Все сегменты на витой паре не должны превышать 100 м. Оптоволоконные сегменты не должны превышать 412 м.Расстояние между концентраторами класса II не должно превышать 5м.

    1000 – мегабитный (Gigabit) Ethernet описан следующими стандартами:

    IEEE 802.3z(1000Base-TX, 1000Base-LX, 1000Base-SX)

    IEEE 802.3ab(1000Base-T)

    1000Base-TX: передающая среда – экранированный медный кабель длиной до 25м. 1000Base-LX : передающая среда – одномодовое оптоволокно, длина до 5000м. 1000Base-CX : передающая среда – многомодовое оптоволокно, длина до 550м. 1000Base-T : передающая среда – UTP CAT5/CAT5e, длина сегмента до 100м.

    При проектировании сетей Ethernet должно всегда выполняться требование корректного определения коллизий. Для этого время передачи кадра минимальной длины должно превышать или быть равным размеру интервала времени, за который кадр дважды пройдет расстояние между двумя самыми удаленными узлами сети.

    Технология Token Ring

    Была разработана фирмой IBM в 1984 году. Топология сети Token Ring представляет собой кольцо, где все станции соединениы отрезками кабеля.Способ доступа к сети – маркерный. Право передавать данные получает та станция, которая завладела маркером – кадром специального формата. Период времени в течение которого станция может вести передачу определяется временем удержания маркера.

    Данные передаются с двумя скоростями – 4 и 16 Мбит/с. Работа на разных скоростях в одном кольце не допускается. Для контроля состояния сети одна из станций при инициализации кольца выбирается на роль активного монитора.

    В сети Token Ring со скоростью передачи 4 Мбит станция передает кадр данных, который по кругу передается всеми станциями, пока его не получит станция – адресат. Станция – получатель копирует кадр в свой буфер, устанавливает признак того, что кадр был успешно принят, и передает его по кольцу дальше. Станция – отправитель кадра изымает кадр из сети, и, если время удержания маркера не истекло, то передает следующий кадр данных. В один момент времени в сети присутствует либо маркер либо кадр данных.

    В сети Token Ring со скоростью передачи 16 Мбит используется алгоритм раннего высвобождения маркера. Его суть заключается в том, что станция, передавшая кадр своих данных, передает следом кадр маркера, не дожидаясь возвращения кадра данных по кольцу. В этом случае по кольцу одновременно циркулируют кадры данных и маркера, но данные может передавать только станция, захватившая маркер.

    Для разных типов сообщений, кадрам могут присваиваться различные приоритеты

    – от 0 до 7. Кадр маркера имеет два поля в которых записываются текущее и резервируемое значения приоритета. Станция может захватить маркер только в том случае, если значение приоритета для ее данных выше или равно значению приоритета маркера. В противном случае она может записать значение приоритета своих данных в резервное поле приоритета маркера, зарезервировав его для себя во время следующего прохода(если это поле еще не зарезервировано для данных с более высоким уровнем приоритета). Станция, которая сумела захватить маркер, после завершения передачи своих данных переписывает биты поля резервного приоритета в поле приоритета маркера и обнуляет поле резервного приоритета. Механизм приоритетов используется только по требованию приложений.

    На физическом уровне узлы в сети Token Ring подключаются при помощи устройств многостанционного доступа(MSAU – Multistation Access Unit), которые объединяются кусками кабеля и образуют кольцо. Все станции в кольце работают на одной скорости.Максимальная длина кольца равна 4000м.

    Технология FDDI

    Fiber Distributed Data Interface – Оптоволоконный интерфейс распределенных данных, разработан институтом ANSI с 1986 по1988г. Является первой технологией локальных сетей, в которой используется оптоволокно. Для повышения безотказности FDDI строится на базе двух оптоволоконных колец, которые образуют основной и резервный пути прохождения данных. Для обеспечения надежности узлы подключают к обоим кольцам. В нормальном режиме работы данные проходят только по первичному кольцу. Если произошел отказ и часть первичного кольца не может передавать данные, то выполняется операция свертывания кольца – то есть объединение первичного кольца с вторичным и образование единого кольца.

    В сетях FDDI используется маркерный метод доступа к среде передачи данных, который работает на основе алгоритма с ранним освобождением маркера. Технология FDDI поддерживает передачу двух видов трафика – синхронного(звук, видео) и асинхронного(данные). Тип данных определяется станцией. Маркер всегда может быть захвачен на определенный итервал времени для передачи синхронных кадров и лишь в случае отсутствия перегрузок кольца – для передачи асинхронного кадра.

    Максимальное число станций с двойным подключением в кольце составляет 500, максимальная длина кольца – 100км. Максимальное расстояние между двумя соседними узлами равно 2км.

    Для того, чтобы разобраться как устроена локальная сеть , необходимо разобраться в таком понятии, как сетевая технология .

    Сетевая технология состоит из двух компонентов: сетевых протоколов и аппаратуры, обеспечивающей работу этих протоколов. Протоколом в свою очередь является набор «правил», с помощью которых компьютеры, находящиеся в сети, могут соединяться друг с другом, а также обмениваться информацией. С помощью сетевых технологий у нас есть Интернет, есть локальная связь между компьютерами, стоящими у вас дома. Еще сетевые технологии называют базовыми , но также имеют еще одно красивое название – сетевые архитектуры .

    Сетевые архитектуры определяют несколько параметров сети , о которых необходимо иметь небольшое представление, чтобы разобраться в устройстве локальной сети:

    1)Скорость передачи данных. Определяет, какое количество информации, которая обычно измеряется в битах, может быть передана через сеть за определенное время.

    2)Формат сетевых кадров. Информация, передаваемая через сеть, существует в виде так называемых «кадров» — пакетов информации. Сетевые кадры в разных сетевых технологиях имеют различные форматы передаваемых пакетов информации.

    3)Тип кодирования сигналов. Определяет каким образом с помощью электрических импульсов, информация кодируется в сети.

    4)Среда передачи. Это материал (обычно кабель), через который проходит поток информации – той самой, которая в итоге выводится на экраны наших мониторов.

    5)Топология сети. Это схема сети, в которой есть «ребра», представляющие собой кабеля и «вершины» — компьютеры, к которым эти кабеля тянутся. Распространены три основных вида схем сетей: кольцо, шина и звезда.

    6)Метод доступа к среде передачи данных. Используется три метода доступа к сетевой среде: детерминированный метод, случайный метод доступа и приоритетная передача. Наиболее распространен детерминированный метод, при котором при помощи специального алгоритма, время использования передающей среды делится между всеми компьютерами находящимися в среде. В случае случайного метода доступа к сети компьютеры состязаются в доступе сети. Такой метод имеет ряд недостатков. Одним из таких недостатков является потеря части передаваемой информации из-за столкновения пакетов информации в сети. Приоритетный доступ обеспечивает соответственно наибольший объем информации к установленной приоритетной станции.

    Набор этих параметров определяет сетевую технологию.

    В настоящее время широко распространена сетевая технология IEEE802.3/Ethernet . Широкое распространение она получила, благодаря простым и недорогим технологиям. Также популярна за счёт того, что обслуживание таких сетей проще. Топология Ethernet сетей обычно строится в виде «звезды», либо «шины». Средой передачи в таких сетях применяются как тонкие, так и толстые коаксиальные кабеля , а также витые пары и оптоволоконные кабеля . Протяженность сетей Ethernet обычно колеблется от 100 до 2000 метров. Скорость передачи данных в таких сетях обычно около 10 мбит/с. В сетях Ethernet обычно используется метод доступа CSMA/CD, относящийся к децентрализованным случайным методам доступа к сети.

    Существуют также высокоскоростные варианты сети Ethernet: IEEE802.3u/Fast Ethernet и IEEE802.3z/Gigabit Ethernet , обеспечивающие скорость передачи данных до 100 мбит/с и до 1000 мбит/с соответственно. В этих сетях в качестве среды передачи используется преимущественно оптоволокно , либо экранированная витая пара .

    Существуют также менее распространенные, но при этом повсеместно использующиеся сетевые технологии.

    Сетевая технология IEEE802.5/Token-Ring характерна тем, что все вершины или узлы (компьютеры) в такой сети объединены в кольцо, используют маркерный метод доступа к сети, поддерживают экранированную и неэкранированную витую пару , а также оптоволокно в качестве передающей среды. Скорость в сети Token-Ring до 16 мбит/с. Максимальное количество узлов, находящихся в таком кольце, составляет 260, а длина всей сети может достигать 4000 метров.

    Прочитайте по теме следующие материалы:

    Локальная сеть IEEE802.4/ArcNet особенна тем, что в ней для передачи данных используется метод доступа с помощью передачи полномочий. Эта сеть является одной из самых старейших и ранее популярных в мире. Такая популярность обусловлена надежностью и дешевизной сети. В наше время такая сетевая технология менее распространена, так как скорость в такой сети довольно низкая – около 2,5 мбит/с. Как и большинство других сетей в качестве передающей среды использует экранированные и неэкранированные витые пары и оптоволоконные кабеля, которые могут образовывать сеть длиной до 6000 метров и включать в себя до 255 абонентов.

    Сетевая архитектура FDDI (Fiber Distributed Data Interface) , базируется на IEEE802.4/ArcNet и имеет большую популярность из-за своей высокой надежности. Такая сетевая технология включает в себя два оптоволоконных кольца , протяженностью до 100 км. При этом также обеспечивается высокая скорость передачи данных в сети – около 100 мбит/с. Смысл создания двух оптоволоконных колец состоит в том, что по одному из колец проходит путь с резервными данными. Таким образом снижается шанс потери передаваемой информации. В такой сети может находиться до 500 абонентов, что также является преимуществом перед другими сетевыми технологиями.

    Архитектуры или технологии локальных сетей можно разделить на два поколения. К первому поколению относятся архитектуры, обеспечивающие низкую и среднюю скорость передачи информации: Ethernet 10 Мбит/с), Token Ring (16 Мбит/с) и ARC net (2,5 Мбит/с).

    Для передачи данных эти технологии используют кабели с медной жилой. Ко второму поколению технологий относятся современные высокоскоростные архитектуры: FDDI (100 Мбит/с), АТМ (155 Мбит/с) и модернизированные версии архитектур первого поколения (Ethernet): Fast Ethernet (100 Мбит/с) и Gigabit Ethernet (1000 Мбит/с). Усовершенствованные варианты архитектур первого поколения рассчитаны как на применение кабелей с медными жилами, так и на волоконно-оптические линии передачи данных. Новые технологии (FDDI и ATM) ориентированы на применение волоконно-оптических линий передачи данных и могут использоваться для одновременной передачи информации различных типов (видеоизображения, голоса и данных). Сетевая технология – это минимальный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения вычислительной сети. Сетевые технологии называют базовыми технологиями. В настоящее время насчитывается огромное количество сетей, имеющих различные уровни стандартизации, но широкое распространение получили такие известные технологии, как Ethernet, Token-Ring, Arcnet, FDDI.

    Методы доступа к сети

    Ethernet является методом множественного доступа с прослушиванием несущей и разрешением коллизий (конфликтов). Перед началом передачи каждая рабочая станция определяет, свободен канал или занят. Если канал свободен, станция начинает передачу данных. Реально конфликты приводят к снижению быстродействия сети только в том случае, когда работают 80–100 станций. Метод доступа Arcnet . Этот метод доступа получил широкое распространение в основном благодаря тому, что оборудование Arcnet дешевле, чем оборудование Ethernet или Token -Ring. Arcnet используется в локальных сетях с топологией «звезда». Один из компьютеров создает специальный маркер (специальное сообщение), который последовательно передается от одного компьютера к другому. Если станция должна передать сообщение, она, получив маркер, формирует пакет, дополненный адресами отправителя и назначения. Когда пакет доходит до станции назначения, сообщение «отцепляется» от маркера и передается станции. Метод доступа Token Ring . Этот метод разработан фирмой IBM; он рассчитан па кольцевую топологию сети. Данный метод напоминает Arcnet, так как тоже использует маркер, передаваемый от одной станции к другой. В отличие от Arcnet при методе доступа Token Ring предусмотрена возможность назначать разные приоритеты разным рабочим станциям.

    Базовые технологии лвс

    Технология Ethernet сейчас наиболее популярна в мире. В классической сети Ethernet применяется стандартный коаксиальный кабель двух видов (толстый и тонкий). Однако все большее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары, так как монтаж и обслуживание их гораздо проще. Применяются топологии типа “шина” и типа “пассивная звезда”. Стандарт определяет четыре основных типа среды передачи.

     10BASE5 (толстый коаксиальный кабель);

     10BASE2 (тонкий коаксиальный кабель);

     10BASE-T (витая пара);

     10BASE-F (оптоволоконный кабель).

    Fast Ethernet – высокоскоростная разновидность сети Ethernet, обеспечивающая скорость передачи 100 Мбит/с. Сети Fast Ethernet совместимы с сетями, выполненными по стандарту Ethernet. Основная топология сети Fast Ethernet - пассивная звезда.

    Стандарт определяет три типа среды передачи для Fast Ethernet:

     100BASE-T4 (счетверенная витая пара);

     100BASE-TX (сдвоенная витая пара);

     100BASE-FX (оптоволоконный кабель).

    Gigabit Ethernet – высокоскоростная разновидность сети Ethernet, обеспечивающая скорость передачи 1000 Мбит/с. Стандарт сети Gigabit Ethernet в настоящее время включает в себя следующие типы среды передачи:

     1000BASE-SX – сегмент на мультимодовом оптоволоконном кабеле с длиной волны светового сигнала 850 нм.

     1000BASE-LX – сегмент на мультимодовом и одномодовом оптоволоконном кабеле с длиной волны светового сигнала 1300 нм.

     1000BASE-CX – сегмент на электрическом кабеле (экранированная витая пара).

     1000BASE-T – сегмент на электрическом кабеле (счетверенная неэкранированная витая пара).

    В связи с тем, что сети совместимы, легко и просто соединять сегменты Ethernet, Fast Ethernet и Gigabit Ethernet в единую сеть.

    Сеть Token-Ring предложена фирмой IBM. Token-Ring предназначалась для объединение в сеть всех типов компьютеров, выпускаемых IBM (от персональных до больших). Сеть Token-Ring имеет звездно-кольцевую топологию. Сеть Arcnet - это одна из старейших сетей. В качестве топологии сеть Arcnet использует “шину” и “пассивную звезду”. Сеть Arcnet пользовалась большой популярностью. Среди основных достоинств сети Arcnet можно назвать высокую надежность, низкую стоимость адаптеров и гибкость. Основным недостаткам сети является низкая скорость передачи информации (2,5 Мбит/с). FDDI (Fiber Distributed Data Interface) – стандартизованная спецификация для сетевой архитектуры высокоскоростной передачи данных по оптоволоконным линиям. Скорость передачи – 100 Мбит/с. Основные технические характеристики сети FDDI следующие:

     Максимальное количество абонентов сети – 1000.

     Максимальная протяженность кольца сети – 20 км

     Максимальное расстояние между абонентами сети – 2 км.

     Среда передачи – оптоволоконный кабель

     Meтод доступа – маркерный.

     Скорость передачи информации – 100 Мбит/с.

    Технология Ethernet

    Ethernet – это самый распространенный на сегодняшний день стандарт локальных сетей .

    Ethernet – это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году.

    В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля, который стал последней версией фирменного стандарта Ethernet. Поэтому фирменную версию стандарта Ethernet называют стандартом Ethernet DIX, или Ethernet II, на основе которых был разработан стандарт IEEE 802.3.

    На основе стандарта Ethernet были приняты дополнительные стандарты: в 1995 году Fast Ethernet (дополнение к IEEE 802.3), в 1998 году Gigabit Ethernet (раздел IEEE 802.3z основного документа), которые во многом не являются самостоятельными стандартами.

    Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet, обеспечивающих пропускную способность 10 Мбит/с, используется манчестерский код (рис. 3.9).

    В манчестерском коде для кодирования единиц и нулей используется перепад потенциала, то есть фронт импульса. При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала, происходящими в середине каждого такта. Единица кодируется перепадом от низкого уровня сигнала к высокому (передним фронтом импульса), а ноль ‑ обратным перепадом (задним фронтом).

    Рис. 3.9. Дифференциальное манчестерское кодирование

    В стандарте Ethernet (в том числе Fast Ethernet и Gigabit Ethernet) используется один и тот же метод разделения среды передачи данных ‑ метод CSMA/CD.

    Каждый ПК работает в Ethernet согласно принципу «Слушай канал передачи, перед тем как отправить сообщения; слушай, когда отправляешь; прекрати работу в случае помех и попытайся еще раз».

    Данный принцип можно расшифровать (объяснить) следующим образом:

    1. Никому не разрешается посылать сообщения в то время, когда этим занят уже кто-то другой (слушай перед тем, как отправить).

    2. Если два или несколько отправителей начинают посылать сообщения примерно в один и тот же момент, рано или поздно их сообщения «столкнутся» друг с другом в канале связи, что называется коллизией.

    Коллизии нетрудно распознать, поскольку они всегда вызывают сигнал помехи, который не похож на допустимое сообщение. Ethernet может распознать помехи и заставляет отправителя приостановить передачу и подождать некоторое время, прежде, чем повторно отправить сообщение.

    Причины широкой распространенности и популярности Ethernet (достоинства):

    1. Дешевизна.

    2. Большой опыт использования.

    3. Продолжающиеся нововведения.

    4. Богатство выбора оборудования. Многие изготовители предлагают аппаратуру построения сетей, базирующуюся на Ethernet.

    Недостатки Ethernet:

    1. Возможность столкновений сообщений (коллизии, помехи).

    2. В случае большой загрузки сети время передачи сообщений непредсказуемо.

    Технология Token Ring

    Сети Token Ring, как и сети Ethernet, характеризует разделяемая среда передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо . Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером, или токеном (token) .

    Технология Token Ring был разработана компанией IBM в 1984 году, а затем передана в качестве проекта стандарта в комитет IEЕЕ 802, который на ее основе принял в 1985 году стандарт 802.5.

    Каждый ПК работает в Token Ring согласно принципу «Ждать маркера, если необходимо послать сообщение, присоединить его к маркеру, когда он будет проходить мимо. Если проходит маркер, снять с него сообщение и отправить маркер дальше».

    Сети Token Ring работают с двумя битовыми скоростями ‑ 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

    Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры ‑ посланный кадр всегда возвращается в станцию-отправитель.

    Рис. 3.10. Принцип технологии TOKEN RING

    В некоторых случаях обнаруженные ошибки в работе сети устраняются автоматически, например, может быть восстановлен потерянный маркер. В других случаях ошибки только фиксируются, а их устранение выполняется вручную обслуживающим персоналом.

    Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса. Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Сеть Token Ring может включать до 260 узлов.

    Концентратор Token Ring может быть активным или пассивным. Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключаемые к этим портам, образовали кольцо. Ни усиление сигналов, ни их ресинхронизацию пассивный MSAU не выполняет.

    Активный концентратор выполняет функции регенерации сигналов, и поэтому иногда называется повторителем, как в стандарте Ethernet.

    В общем случае сеть Token Ring имеет комбинированную звездно-кольцевую конфигурацию. Конечные узлы подключаются к MSAU по топологии звезды, а сами MSAU объединяются через специальные порты Ring In (RI) и Ring Out (RO) для образования магистрального физического кольца.

    Все станции в кольце должны работать на одной скорости либо 4 Мбит/с, либо 16 Мбит/с. Кабели, соединяющие станцию с концентратором, называются ответвительными (lobe cable), а кабели, соединяющие концентраторы, – магистральными (trunk cable).

    Технология Token Ring позволяет использовать для соединения конечных станций и концентраторов различные типы кабеля:

    – STP Type 1 ‑ экранированная витая пара (Shielded Twistedpair).
    В кольцо допускается объединять до 260 станций при длине ответвительных кабелей до 100 метров;

    – UTP Туре 3, UTP Туре 6 ‑ неэкранированная витая пара (Unshielded Twistedpair). Максимальное количество станций сокращается до 72 при длине ответвительных кабелей до 45 метров;

    – волоконно-оптический кабель.

    Расстояние между пассивными MSAU может достигать 100 м при использовании кабеля STP Туре 1 и 45 м при использовании кабеля UTP Type 3. Между активными MSAU максимальное расстояние увеличивается соответственно до 730 м или 365 м в зависимости от типа кабеля.

    Максимальная длина кольца Token Ring составляет 4000 м. Ограничения на максимальную длину кольца и количество станций в кольце в технологии Token Ring не являются такими жесткими, как в технологии Ethernet. Здесь эти ограничения в основном связаны со временем оборота маркера по кольцу.

    Все значения тайм-аутов в сетевых адаптерах узлов сети Token Ring можно настраивать, поэтому можно построить сеть Token Ring с большим количеством станций и с большей длиной кольца.

    Преимущества технологии Token Ring:

    · гарантированная доставка сообщений;

    · высокая скорость передачи данных (до 160% Ethernet).

    Недостатки технологии Token Ring:

    · необходимы дорогостоящие устройства доступа к среде;

    · технология более сложная в реализации;

    · необходимы 2 кабеля (для повышения надежности): один входящий, другой исходящий от компьютера к концентратору;

    · высокая стоимость (160-200% от Ethernet).

    Технология FDDI

    Технология FDDI (Fiber Distributed Data Interface) – оптоволоконный интерфейс распределенных данных ‑ это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Технология появилась в середине 80-х годов .

    Технология FDDI во многом основывается на технологии Token Ring, поддерживая метод доступа с передачей маркера.

    Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец – это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.

    В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим назван режимом Thru ‑ «сквозным», или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

    В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI.

    Рис. 3.11. ИВС с двумя циклическими кольцами в аварийном режиме

    Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному – в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

    Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

    Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца – token ring.

    Отличия метода доступа заключаются в том, что время удержания маркера в сети FDDI не является постоянной величиной. Это время зависит от загрузки кольца - при небольшой загрузке оно увеличивается, а при больших перегрузках может уменьшаться до нуля. Эти изменения в методе доступа касаются только асинхронного трафика, который не критичен к небольшим задержкам передачи кадров. Для синхронного трафика время удержания маркера по-прежнему остается фиксированной величиной.

    Технология FDDI в настоящее время поддерживает типа кабелей:

    – волоконно-оптический кабель;

    – неэкранированная витая пара категории 5. Последний стандарт появился позже оптического и носит название TP-PMD (Physical Media Dependent).

    Оптоволоконная технология обеспечивает необходимые средства для передачи данных от одной станции к другой по оптическому волокну и определяет:

    Использование в качестве основной физической среды многомодового волоконно-оптического кабеля 62,5/125 мкм;

    Требования к мощности оптических сигналов и максимальному затуханию между узлами сети. Для стандартного многомодового кабеля эти требования приводят к предельному расстоянию между узлами в 2 км, а для одномодового кабеля расстояние увеличивается до 10–40 км в зависимости от качества кабеля;

    Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам;

    Параметры оптических разъемов MIC (Media Interface Connector), их маркировку;

    Использование для передачи света с длиной волны в 1,3 нм;

    Максимальная общая длина кольца FDDI составляет 100 километров, максимальное число станций с двойным подключением в кольце ‑ 500.

    Технология FDDI разрабатывалась для применения в ответственных участках сетей ‑ на магистральных соединениях между крупными сетями, например сетями зданий, а также для подключения к сети высокопроизводительных серверов. Поэтому главные требования, у разработчиков были (достоинства ):

    ‑ обеспечение высокой скорости передачи данных,

    ‑ отказоустойчивость на уровне протокола;

    ‑ большие расстояния между узлами сети и большое количество подключенных станций.

    Все эти цели были достигнуты. В результате технология FDDI получилась качественной, но весьма дорогой (недостаток ). Даже появление более дешевого варианта для витой пары не намного снизило стоимость подключения одного узла к сети FDDI. Поэтому практика показала, что основной областью применения технологии FDDI стали магистрали сетей, состоящих из нескольких зданий, а также сети масштаба крупного города, то есть класса MAN.

    Технология Fast Ethernet

    Потребности в высокоскоростной и в то же время недорогой технологии для подключения к сети мощных рабочих станций привели в начале 90-х годов к созданию инициативной группы, которая занялась поисками нового Ethernet, такой же простой и эффективной технологии, но работающей на скорости 100 Мбит/с .

    Специалисты разбились на два лагеря, что в конце концов привело к появлению двух стандартов, принятых осенью 1995 года: комитет 802.3 утвердил стандарт Fast Ethernet, почти полностью повторяющий технологию Ethernet 10 Мбит/с.

    Технология Fast Ethernet сохранила в неприкосновенности метод доступа CSMA/CD, оставив в нем тот же алгоритм и те же временные параметры в битовых интервалах (сам битовый интервал уменьшился в 10 раз). Все отличия Fast Ethernet от Ethernet проявляются на физическом уровне.

    В стандарте Fast Ethernet определены три спецификации физического уровня:

    ‑ 100Base-TX для 2-х пар UTP категории 5 или 2-х пар STP Type 1 (метод кодирования 4В/5В);

    ‑ l00Base-FX для многомодового волоконно-оптического кабеля с двумя оптическими волокнами (метод кодирования 4В/5В);

    ‑ 100Base-T4, работающую на 4-х парах UTP категории 3, но использующую одновременно только три пары для передачи, а оставшуюся ‑ для обнаружения коллизии (метод кодирования 8В/6Т).

    Стандарты l00Base-TX/FX могут работать в полнодуплексном режиме.

    Максимальный диаметр сети Fast Ethernet равен приблизительно 200 м, а более точные значения зависят от спецификации физической среды. В домене коллизий Fast Ethernet допускается не более одного повторителя класса I (позволяющего транслировать коды 4В/5В в коды 8В/6Т и обратно) и не более двух повторителей класса II (не позволяющих выполнять трансляцию кодов).

    Технология Fast Ethernet при работе на витой паре позволяет за счет процедуры автопереговоров двум портам выбирать наиболее эффективный режим работы - скорость 10 Мбит/с или 100 Мбит/с, а также полудуплексный или полнодуплексный режим.

    Технология Gigabit Ethernet

    Технология Gigabit Ethernet добавляет новую, 1000 Мбит/с, ступень в иерархии скоростей семейства Ethernet. Эта ступень позволяет эффективно строить крупные локальные сети, в которых мощные серверы и магистрали нижних уровней сети работают на скорости 100 Мбит/с, а магистраль Gigabit Ethernet объединяет их, обеспечивая достаточно большой запас пропускной способности.

    Разработчики технологии Gigabit Ethernet сохранили большую степень преемственности с технологиями Ethernet и Fast Ethernet. Gigabit Ethernet использует те же форматы кадров, что и предыдущие версии Ethernet, работает в полнодуплексном и полудуплексном режимах, поддерживая на разделяемой среде тот же метод доступа CSMA/CD с минимальными изменениями.

    Для обеспечения приемлемого максимального диаметра сети в 200 м в полудуплексном режиме разработчики технологии пошли на увеличение минимального размера кадра в 8 раз (с 64 до 512 байт). Разрешается также передавать несколько кадров подряд, не освобождая среду, на интервале 8096 байт, тогда кадры не обязательно дополнять до 512 байт. Остальные параметры метода доступа и максимального размера кадра остались неизменными.

    Летом 1998 года был принят стандарт 802.3z, который определяет использование в качестве физической среды трех типов кабеля:

    ‑ многомодового оптоволоконного (расстояние до 500 м),

    ‑ одномодового оптоволоконного (расстояние до 5000 м),

    ‑ двойного коаксиального (twinax), по которому данные передаются одновременно по двум медным экранированным проводникам на расстояние до 25 м.

    Для разработки варианта Gigabit Ethernet на UTP категории 5 была создана специальная группа 802.3ab, которая уже разработала проект стандарта для работы по 4-м парам UTP категории 5. Принятие этого стандарта ожидается в ближайшее время.

    Стремительное развитие локальных сетей, получившее в наши дни дальнейшее воплощение в стандарте 10 Gigabit Ethernet и технологиях построения беспроводных сетей IEEE 802.11b/a, приковывает к себе все большее внимание. Для кабельных сетей в настоящее время стандартом де-факто стала технология Ethernet. И хотя в классическом виде технология Ethernet уже давно не встречается, те идеи, которые были изначально заложены в протоколе IEEE 802.3, получили свое логическое продолжение как в технологии Fast Ethernet, так и в Gigabit Ethernet. Ради исторической справедливости отметим, что заслуживают внимания и такие технологии, как Token Ring, ARCNET, 100VG-AnyLAN, FDDI и Apple Talk. Ну что ж. Восстановим историческую справедливость и вспомним технологии минувших дней.

    умаю, можно не рассказывать о стремительном прогрессе в полупроводниковой индустрии, наблюдавшемся в последнее десятилетие. Сетевое оборудование постигла судьба всей отрасли: лавинообразный рост производства, большие скорости и минимальные цены. В 1995 году, который считается переломным в истории развития Интернета, было продано около 50 млн. новых портов Ethernet. Неплохой задел для доминирования на рынке, которое за следующие пять лет стало подавляющим.

    Для специализированного телекоммуникационного оборудования такой уровень цен недоступен. Сложность устройства при этом не играет особой роли - вопрос, скорее, в количестве. Сейчас это кажется вполне естественным, но еще десять лет назад безусловное господство Ethernet было далеко не очевидным (например, в промышленных сетях до сих пор нет явного лидера).

    Однако только в сравнении с другими способами построения сетей можно выявить преимущества (или недостатки) сегодняшнего лидера.

    Основные способы доступа к среде к среде передачи

    изические принципы, в соответствии с которыми функционирует оборудование, не слишком сложны. По методу получения доступа к среде передачи их можно разделить на два класса: детерминированные и недетерминированные.

    При детерминированных методах доступа передающая среда распределяется между узлами с помощью специального механизма управления, гарантирующего передачу данных узла в течение некоторого промежутка времени.

    Наиболее распространенными (но далеко не единственными) детерминированными методами доступа являются метод опроса и метод передачи права. Метод опроса мало применим в локальных сетях, но широко используется в промышленности для управления технологическими процессами.

    Метод передачи права, наоборот, удобен для передачи данных между компьютерами. Принцип работы состоит в передаче по сети с кольцевой логической топологией служебного сообщения - маркера.

    Получение маркера предоставляет устройству право на доступ к разделяемому ресурсу. Выбор у рабочей станции в этом случае ограничен лишь двумя вариантами. В любом случае она должна отправить маркер следующему по очереди устройству. Причем сделать это можно после доставки данных адресату (при их наличии) или сразу (при отсутствии информации, нуждающейся в передаче). На время прохождения данных маркер в сети отсутствует, остальные станции не имеют возможности передачи, и коллизии невозможны в принципе. Для обработки возможных ошибок, в результате которых маркер может быть утерян, существует механизм его регенерации.

    Недетерминированными называют случайные методы доступа. Они предусматривают конкуренцию всех узлов сети за право передачи. Возможны одновременные попытки передачи со стороны нескольких узлов, в результате чего возникают коллизии.

    Наиболее распространенным методом такого типа является CSMA/CD (carrier-sense multiple access/collision detection) - множественный доступ с контролем несущей/обнаружением коллизий. Перед началом передачи данных устройство «прослушивает» сеть, чтобы убедиться, что никто больше ее не использует. Если среда передачи в этот момент кем-то используется, адаптер задерживает передачу, если же нет - начинает передавать данные.

    В случае когда два адаптера, обнаружив свободную линию, начинают передачу одновременно, происходит коллизия. При ее обнаружении обе передачи прерываются и устройства повторяют передачу через некоторое произвольное время (естественно, предварительно опять «прослушав» канал на предмет занятости). Для получения информации устройство должно принимать все пакеты в сети, чтобы определить, не оно ли является адресатом.

    Из истории Ethernet

    сли бы мы начали рассмотрение локальных сетей с какой-либо другой технологии, то не учли бы реального значения, которое Ethernet имеет в настоящее время в этой области. Волею ли сложившихся обстоятельств или вследствие технических преимуществ, но конкуренции он на сегодня не имеет, занимая около 95% рынка.

    Днем рождения Ethernet считается 22 мая 1973 года. Именно в этот день Роберт Меткалф (Robert Metcalfe) и Дэвид Боггс (David Boggs) опубликовали описание экспериментальной сети, построенной ими в Исследовательском центре Xerox. Базировалась она на толстом коаксиальном кабеле и обеспечивала скорость передачи данных 2,94 Мбит/с. Новая технология получила имя Ethernet (эфирная сеть), в честь радиосети Гавайского университета ALOHA, в которой был использован схожий механизм разделения среды передачи (радиоэфира).

    К концу 70-х годов под Ethernet была подведена солидная теоретическая база. А в феврале 1980 года фирма Xerox совместно с DEC и Intel представила разработку IEEE, которая спустя три года была утверждена в качестве стандарта 802.3.

    Метод получения доступа к среде передачи данных у Ethernet недетерминированный - это множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD). Проще говоря, устройства разделяют среду передачи хаотично, случайным образом. При этом алгоритм может приводить к далеко не равноправному разрешению соперничества станций за доступ к среде. Это, в свою очередь, может породить длительные задержки доступа, особенно в условиях перегрузки. В экстремальных случаях скорость передачи может упасть до нуля.

    Из-за такого неупорядоченного подхода долгое время считалось (и считается до сих пор), что Ethernet не обеспечивает качественной передачи данных. Предсказывали его вытеснение сначала маркерным Token Ring, потом АТМ, но в действительности все произошло наоборот.

    То, что Ethernet до сих пор доминирует на рынке, объясняется большими изменениями, которым он подвергся за время своего 20-летнего существования. Тот «гигабит» в полном дуплексе, который мы видим сейчас уже в сетях начального уровня, мало похож на родоначальника семейства 10Base 5. В то же время после введения 10Base-T совместимость сохраняется как на уровне взаимодействия устройств, так и на уровне кабельной инфраструктуры.

    Развитие от простого к сложному, рост вместе с потребностями пользователей - вот ключ невероятного успеха технологии. Судите сами:

    • март 1981 года - фирма 3Сom представляет Ethernet-трансивер;
    • сентябрь 1982 года - создан первый сетевой адаптер для персонального компьютера;
    • 1983 год - появилась спецификация IEEE 802.3, определена шинная топология сети 10Base 5 (толстый Ethernet) и 10Base 2 (тонкий Ethernet). Скорость передачи - 10 Мбит/с. Установлено предельное расстояние между точками одного сегмента - 2,5 км;
    • 1985 год - выпущена вторая версия спецификации IEEE 802.3 (Ethernet II), в которой небольшие изменения были внесены в структуру заголовка пакета. Сформирована жесткая идентификация Ethernet-устройств (МАС-адреса). Был создан список адресов, в котором любой производитель может зарегистрировать уникальный диапазон (сейчас это стоит всего 1250 долл.);
    • сентябрь 1990 года - IEEE утверждает технологию 10Вase-T (витая пара) с физической топологией «звезда» и концентраторами (hub). Логическая топология CSMA/CD не изменилась. В основу стандарта легли разработки SynOptics Communications под общим названием LattisNet;
    • 1990 год - фирма Kalpana (впоследствии она была быстро куплена вместе с разработанным коммутатором CPW16 будущим гигантом Cisco) предлагает технологию коммутации, основанную на отказе от использования разделяемых линий связи между всеми узлами сегмента;
    • 1992 год - начало применения коммутаторов (swich). Используя адресную информацию, содержащуюся в пакете (МАС-адрес), коммутатор организует независимые виртуальные каналы между парами узлов. Коммутация фактически незаметно для пользователя преобразует недетерминированную модель Ethernet (с конкурентной борьбой за полосу пропускания) в систему с адресной передачей данных;
    • 1993 год - спецификация IEEE 802.3x, появляется полный дуплекс и контроль соединения для 10Вase-T, спецификация IEEE 802.1p добавляет групповую адресацию и 8-уровневую систему приоритетов. Предложен Fast Ethernet;
    • в июне 1995 года введен Fast Ethernet, стандарт IEEE 802.3u (100Base-T).

    На этом краткую историю можно закончить: Ethernet принял вполне современные очертания, но развитие технологии, конечно, не остановилось - речь об этом пойдет немного позже.

    Незаслуженно забытый ARCNET

    ttached Resourse Computing Network (ARCNET) - сетевая архитектура, разработанная компанией Datapoint в середине 70-х годов. В качестве стандарта IEEE ARCNET принят не был, но частично соответствует IEEE 802.4 как сеть с передачей маркера (логическое кольцо). Пакет данных может иметь любой размер в пределах от 1 до 507 байт.

    Из всех локальных сетей ARCNET обладает самыми широкими возможностями в области топологий. Кольцо, общая шина, «звезда», «дерево» могут быть применены в одной сети. В дополнение к этому можно использовать весьма протяженные сегменты (до нескольких километров). Такие же широкие возможности касаются и среды передачи - подходят и коаксиальный, и оптоволоконный кабели, а также витая пара.

    Доминировать на рынке этому недорогому стандарту помешало низкое быстродействие - всего-то 2,5 Мбит/с. Когда в начале 90-х годов Datapoint разработала ARCNET PLUS со скоростью передачи до 20 Мбит/с, время было уже упущено. Fast Ethernet не оставил ARCNET ни малейшего шанса на широкое применение.

    Тем не менее в пользу большого (но так и не реализованного) потенциала этой технологии можно сказать, что в некоторых отраслях (обычно АСУТП) эти сети живут до сих пор. Детерминированный доступ, возможности автоконфигурирования, согласования скорости обмена в диапазоне от 120 Кбит/с до 10 Мбит/с в сложных условиях реального производства делают ARCNET просто незаменимой.

    Кроме того, ARCNET обеспечивает необходимую для систем управления возможность точно определять максимальное время доступа к любому устройству в сети при любой нагрузке по простой формуле: T = (TDP + TOBЅNb)ЅND, где TDP и TOB - соответственно время передачи пакета данных и одного байта, зависящее от выбранной скорости передачи, Nb - количество байтов данных, ND - количество устройств в сети.

    Token Ring - классический пример передачи маркера

    oken Ring - еще одна технология, берущая свое начало в 70-х годах. Эта разработка голубого гиганта - IBM, являющаяся основой стандарта IEEE 802.5, имела больше шансов на успех, чем многие другие локальные сети. Token Ring является классической сетью с передачей маркера. Логическая топология (и физическая в первых версиях сети) - кольцо. Более современные модификации построены на витой паре по топологии «звезда», и с некоторыми оговорками совместимы с Ethernet.

    Изначальная скорость передачи, описанная в IEEE 802.5, составляла 4 Мбит/с, однако существует более поздняя реализация на 16 Мбит/с. Из-за более упорядоченного (детерминированного) метода доступа к среде Token Ring на ранних этапах развития часто продвигалась как более качественная замена Ethernet.

    Несмотря на существование схемы приоритетного доступа (который назначался каждой станции в отдельности), обеспечить постоянный темп передачи битов (Constant Bit Rate, CBR) не удавалось по весьма простой причине: приложений, которые могли бы использовать преимущества этих схем, тогда не существовало. Да и в настоящее время их стало не намного больше.

    Учитывая это обстоятельство, можно было гарантировать только то, что производительность для всех станций сети снизится в равной мере. Но для победы в конкурентной борьбе этого было мало, и сейчас найти реально работающую сеть Token Ring практически невозможно.

    FDDI - первая локальная сеть на оптоволокне

    ехнология Fiber Distributed Data Interface (FDDI) была разработана в 1980 году комитетом ANSI. Это была первая компьютерная сеть, использовавшая в качестве среды передачи только оптоволоконный кабель. Причинами, побудившими производителей создать FDDI, были недостаточные в то время скорость (не более 10 Мбит/с) и надежность (отсутствие схем резервирования) локальных сетей. Кроме того, это была первая (и не слишком удачная) попытка вывести сети передачи данных на «транспортный» уровень, составив конкуренцию SDH.

    Стандарт FDDI оговаривает передачу данных по двойному кольцу оптоволоконного кабеля со скоростью 100 Мбит/с, что позволяет получить надежный (зарезервированный) и быстрый канал. Расстояния довольно значительные - до 100 км по периметру. Логически работа сети была построена на передаче маркера.

    Дополнительно предусматривалась развитая схема приоритезации трафика. Сначала рабочие станции разделялись на два вида: синхронные (имеющие постоянную полосу пропускания) и асинхронные. Последние, в свою очередь, распределяли среду передачи с помощью восьмиуровневой системы приоритетов.

    Несовместимость с сетями SDH не позволила FDDI занять сколько-нибудь значимую нишу в области транспортных сетей. Сегодня эта технология практически вытеснена АТМ . А высокая стоимость не оставила шансов FDDI в борьбе с Ethernet за локальную нишу. Не помогли стандарту и попытки прейти на более дешевый медный кабель. Технология CDDI, основанная на принципах FDDI, но с применением в качестве среды передачи витой пары, популярностью не пользовалась и сохранилась только в учебниках.

    Разработка AT&T и HP - 100VG-AnyLAN

    ту технологию, как и FDDI, можно отнести ко второму поколению локальных сетей. Создавалась она в начале 90-х годов совместными усилиями компаний AT&T и HP как альтернатива технологии Fast Ethernet. Летом 1995 года она практически одновременно со своим конкурентом получила статус стандарта IEEE 802.12. 100VG-AnyLAN имела неплохой шанс на победу благодаря своей универсальности, детерминированности и более полной, чем у Ethernet, совместимости с существующими кабельными сетями (витая пара категории 3).

    Схема квартетного кодирования Quartet Coding, использующая избыточный код 5В/6В, позволяла применять 4-парную витую пару категории 3, которая была тогда распространена едва ли не больше, чем современная 5-я категория. Переходный период, по сути, не затронул Россию, где из-за более позднего начала строительства коммуникационных систем сети были повсеместно проложены уже с использованием 5-й категории.

    Кроме использования старой проводки каждый концентратор 100VG-AnyLAN может быть настроен на поддержку кадров 802.3 (Ethernet) либо кадров 802.5 (Token Ring). Метод доступа к среде Demand Priority определяет простую двухуровневую систему приоритетов - высокий для мультимедийных приложений и низкий для всех остальных.

    Надо сказать, это была серьезнейшая заявка на успех. Подвела высокая стоимость, обусловленная большей сложностью и в немалой мере закрытостью технологии от тиражирования сторонними производителями. К этому прибавилось уже знакомое по Token Ring отсутствие реальных приложений, использующих преимущества системы приоритетов. В результате 100Вase-T удалось надолго и окончательно захватить лидерство в отрасли.

    Новаторские технические идеи немного позже нашли применение сначала в 100Base-T2 (IEEE 802.3у), а затем и в «гигабитном» Ethernet 1000Вase-T.

    Apple Talk, Local Talk

    Apple Talk - стек протоколов, предложенный компанией Apple в начале 80-х годов. Изначально протоколы Apple Talk применялись для работы с сетевым оборудованием, объединяемым названием Local Talk (адаптеры, встроенные в компьютеры Apple).

    Топология сети строилась как общая шина или «дерево», максимальная длина ее составляла 300 м, скорость передачи - 230,4 Кбит/с. Среда передачи - экранированная витая пара. Сегмент Local Talk мог объединять до 32 узлов.

    Малая пропускная способность быстро вызвала необходимость разработки адаптеров для сетевых сред с большей пропускной способностью: Ether Talk, Token Talk и FDDI Talk для сетей стандарта Ethernet, Token Ring и FDDI соответственно. Таким образом, Apple Talk пошел путем универсальности на канальном уровне и может подстраиваться под любую физическую реализацию сети.

    Как и большинство других изделий компании Apple, эти сети живут внутри «яблочного» мира и практически не пересекаются с PC.

    UltraNet - сеть для суперкомпьютеров

    Еще одним практически неизвестным в России видом сетей является UltraNet. Она активно использовалась для работы с вычислительными системами класса суперкомпьютеров и мэйнфреймами, но в настоящее время активно вытесняется Gigabit Ethernet.

    UltraNet использует топологию «звезда» и способна обеспечить скорость обмена информацией между устройствами до 1 Гбит/с. Эта сеть отличается весьма сложной физической реализацией и очень высокими, под стать суперкомпьютерам, ценами. Для управления UltraNet используются компьютеры РС, которые подключаются к центральному концентратору. Дополнительно в состав сети могут входить мосты и роутеры для соединения с сетями, построенными по технологиям Ethernet или Token Ring.

    В качестве среды передачи могут использоваться коаксиальный кабель и оптоволокно (на расстояния до 30 км).

    Промышленные и специализированные сети

    Следует отметить, что сети передачи данных используются не только для связи между компьютерами или для телефонии. Есть еще довольно большая ниша промышленных и специализированных устройств. Например, достаточно популярна технология CANBUS, созданная для замены одной общей шиной толстых и дорогих жгутов проводов в автомобилях. В этой сети нет большого выбора физических соединений, ограничена длина сегмента, небольшая (до 1 Mбит/с) скорость передачи. Однако CANBUS - это удачное сочетание необходимых для малой и средней автоматизации показателей качества и низкого ценового уровня реализаций. К подобным системам можно также отнести ModBus, PROFIBUS, FieldBus.

    Сегодня интересы разработчиков CAN-контроллеров постепенно смещаются в сторону домашней автоматизации.

    ATM как универсальная технология передачи данных

    Описание стандарта АТМ не зря помещено в конец статьи. Это, пожалуй, одна из последних, но безуспешных попыток дать бой Ethernet на его поле. Эти технологии являются полной противоположностью друг другу по истории создания, ходу внедрения и идеологии. Если Ethernet поднимался «снизу вверх, от частного к общему», увеличивал скорость и качество, следуя за потребностью пользователей, то АТМ развивался совсем иначе.

    В середине 80-х годов Американский национальный институт стандартов (ANSI) и Международный консультативный комитет по телефонии и телеграфии (CCITT, МККТТ) начали разработку стандартов ATM (Asynchronous Transfer Mode - Асинхронный режим передачи) как набора рекомендаций для сети B-ISDN (Broadband Integrated Services Digital Network). Только в 1991 году усилия академической науки увенчались созданием АТМ-Форума, который до сих пор определяет развитие технологии. Первым же крупным проектом, сделанным с использованием этой технологии в 1994 году, стала магистраль известной сети NSFNET, до этого использовавшей канал Т3.

    Суть работы АТМ очень проста: нужно смешать все виды трафика (голос, видео, данные), уплотнить и передать по одному каналу связи. Как уже отмечалось выше, достигается это не путем каких-либо технических прорывов, а скорее многочисленными компромиссами. В чем-то это похоже на способ решения дифференциальных уравнений. Непрерывные данные разбиваются на интервалы, которые достаточно малы и с которыми можно проводить операции по коммутации.

    Естественно, такой подход сильно усложнил и без того непростую задачу разработчиков и производителей реального оборудования и недопустимо для рынка задержал сроки внедрения.

    На размер минимальной порции данных (ячеек - в терминологии АТМ) влияют несколько факторов. С одной стороны, увеличение размера снижает требования к скорости процессора-коммутатора ячеек и повышает эффективность использования канала. С другой стороны, чем меньше ячейка, тем скорее возможна передача.

    Действительно, пока одна ячейка передается, вторая (пусть самая первоочередная) ждет. Сильная математика, механизм очередей и приоритетов может немного сгладить эффект, но не устранить причину. После достаточно долгих экспериментов в 1989 году для ячейки был определен размер в 53 байта (5 байт служебных и 48 - данных). Очевидно, что для разной скорости этот размер может быть различным. Если для скоростей от 25 до 155 Мбит/с подходит размер в 53 байта, то для гигабита 500 байт будут ничем не хуже, а для 10 гигабит годятся и 5000 байт. Но в этом случае проблема совместимости становится неразрешимой. Рассуждения носят отнюдь не академический характер - именно ограничение на скорость коммутации поставило технический предел повышению скорости АТМ более 622 Мбит и резко повысило стоимость на меньших скоростях.

    Второй компромисс АТМ - технология с установлением соединения. Перед сеансом передачи на канальном уровне устанавливается виртуальный канал отправитель-получатель, который не может использоваться другими станциями, тогда как в традиционных технологиях статистического уплотнения соединение не устанавливается, а в среду передачи помещаются пакеты с указанным адресом. Для этого в таблицу коммутации заносятся номер порта и идентификатор соединения, который присутствует в заголовке каждой ячейки. Впоследствии коммутатор обрабатывает поступающие ячейки, основываясь на идентификаторах соединения в их заголовках. Опираясь на этот механизм, можно регламентировать для каждого соединения пропускную способность, задержку и максимальную потерю данных - то есть обеспечить определенное качество обслуживания.

    Все перечисленные свойства плюс хорошая совместимость с иерархией SDH позволили АТМ сравнительно быстро стать стандартом магистральных сетей передачи данных. Но с полной реализацией всех возможностей технологии возникли большие проблемы. Как это бывало не раз, локальные сети и клиентские приложения не поддерживали функций АТМ, а без этого мощная технология с большим потенциалом оказывалась только лишним преобразованием между мирами IP (по сути Ethernet) и SDH. Сложилась весьма неприятная ситуация, которую сообщество АТМ попыталось исправить. К сожалению, не обошлось без стратегических просчетов. Несмотря на все преимущества волоконной оптики по сравнению с медными кабелями, высокая цена интерфейсных плат и портов коммутаторов делала ATM на 155 Мбит/с чрезвычайно дорогой для использования в этом сегменте рынка.

    Предприняв попытку определить низкоскоростные решения для настольных систем, ATM Forum ввязался в разрушительные споры по поводу того, на какие скорость и тип соединения следует ориентироваться. Производители разделились на два лагеря: сторонников медного кабеля со скоростью 25,6 Мбит/с и сторонников оптического кабеля со скоростью 51,82 Мбит/с. После ряда громких конфликтов (первоначально была выбрана скорость 51,82 Мбит/с) ATM Forum провозгласил 25 Мбит/с в качестве стандарта. Но драгоценное время было потеряно безвозвратно. На рынке технологии пришлось встретиться уже не с «классическим» Ethernet с его разделяемой средой передачи, а с Fast Ethernet и коммутируемым 10Вase-T (с надеждой на скорое появление коммутируемого 100Вase-T). Высокая цена, небольшое количество производителей, необходимость в более квалифицированном обслуживании, проблемы с драйверами и т.п. только усугубили ситуацию. Надежды на внедрение в сегмент корпоративных сетей рухнули, и достаточно слабая промежуточная позиция АТМ на некоторое время закрепилась. Таково ее положение в отрасли и сегодня.

    КомпьютерПресс 10"2002