• Стандарты мощности и другие понятия звукотехники. Подробная расшифровка некоторых характеристик акустики Скорость распространения звука

    В статье вы узнаете, что такое звук, каков его смертельный уровень громкости, а также скорость в воздухе и других средах. Также поговорим про частоту, кодирование и качество звука.

    Еще рассмотрим дискретизацию, форматы и мощность звука. Но сначала дадим определение музыки, как упорядоченному звуку — противоположность неупорядоченному хаотическому, который мы воспринимаем, как шум.

    — это звуковые волны, которые образуются в результате колебаний и изменения атмосферы, а также объектов вокруг нас.

    Даже при разговоре вы слышите своего собеседника потому, что он воздействует на воздух. Также, когда вы играете на музыкальном инструменте, бьете ли вы по барабану или дергаете струну, вы производите этим колебания определенной частоты, которой в окружающем воздухе производит звуковые волны.

    Звуковые волны бывают упорядоченные и хаотические . Когда они упорядоченные и периодические (повторяются через какой-то промежуток времени), мы слышим определенную частоту или высоту звука.

    То есть мы можем определить частоту, как количество повторения события в заданный промежуток времени. Таким образом, когда звуковые волны хаотичны, мы воспринимаем их как шум .

    Но когда волны упорядочены и периодически повторяются, то мы можем измерить их количеством повторяющихся циклов в секунду.

    Частота дискретизации звука

    Частота дискретизации звука — это количество измерений уровня сигнала за 1 секунду. Герц (Гц) или Hertz (Hz) — это научная единица измерения, определяющая количество повторений какого-то события в секунду. Эту единицу мы будем использовать!

    Частота дискретизации звука

    Наверное, вы очень часто видели такую аббревиатуру — Гц или Hz. Например, в плагинах эквалайзеров. В них единицами измерения являются герцы и килогерцы (то есть 1000 Гц).

    Обычно человек слышит звуковые волны от 20 Гц до 20 000 Гц (или 20 кГц). Все, что меньше 20 Гц — это инфразвук . Все, что больше 20 кГц — это ультразвук .

    Давайте я открою плагин эквалайзера и покажу вам как это выглядит. Вам, наверное, знакомы эти цифры.


    Частоты звука

    С помощью эквалайзера вы можете ослаблять или усиливать определенные частоты в пределах слышимого человеком диапазона.

    Небольшой пример!

    Здесь у меня запись звуковой волны, которая была сгенерирована на частоте 1000 Гц (или 1 кГц). Если увеличить масштаб и посмотреть на ее форму, то мы увидим, что она правильная и повторяющиеся (периодическая).

    Повторяющиеся (периодическая) звуковая волна

    В одной секунде здесь происходит тысяча повторяющихся циклов. Для сравнения, давайте посмотрим на звуковую волну, которую мы воспринимаем как шум.


    Неупорядоченный звук

    Тут нет какой-то конкретной повторяющейся частоты. Также нет определенного тона или высоты. Звуковая волна не упорядочена. Если мы взглянем на форму этой волны, то увидим, что в ней нет ничего повторяющегося или периодического.

    Давайте перейдем в более насыщенную часть волны. Мы увеличиваем масштаб и видим, что она не постоянная.


    Неупорядоченная волна при масштабировании

    Из-за отсутствия цикличности мы не в состоянии услышать какую-то определенную частоту в этой волне. Поэтому мы воспринимаем ее как шум.

    Смертельный уровень звука

    Хочу немного упомянуть про смертельный уровень звука для человека. Он берет свое начало от 180 дБ и выше.

    Стоит сразу сказать, что по нормативным нормам, безопасным уровнем громкости шума считается не более 55 дБ (децибел) днем и 40 дБ ночью. Даже при длительном воздействии на слух, этот уровень не нанесет вреда.

    Уровни громкости звука
    (дБ) Определение Источник
    0 Совсем не лышно
    5 Почти не слышно
    10 Почти не слышно Тихий шелест листьев
    15 Еле слышно Шелест листвы
    20 — 25 Едва слышно Шепот человека на расстоянии 1 метр
    30 Тихо Тиканье настенных часов (допустимый максимум по нормам для жилых помещений ночью с 23 до 7 часов )
    35 Довольно слышно Приглушенный разговор
    40 Довольно слышно Обычная речь (норма для жилых помещений днем с 7 до 23 часов )
    45 Довольно слышно Разговор
    50 Отчетливо слышно Пишущая машинка
    55 Отчетливо слышно Разговор (европейская норма для офисных помещений класса А )
    60 (норма для контор )
    65 Громкий разговор (1м)
    70 Громкие разговоры (1м)
    75 Крик и смех (1м)
    80 Очень шумно Крик, мотоцикл с глушителем
    85 Очень шумно Громкий крик, мотоцикл с глушителем
    90 Очень шумно Громкие крики, грузовой железнодорожный вагон (7м)
    95 Очень шумно Вагон метро (в 7 метрах снаружи или внутри вагона)
    100 Крайне шумно Оркестр, гром (по европейским нормам, это максимально допустимое звуковое давление для наушников )
    105 Крайне шумно В старых самолетах
    110 Крайне шумно Вертолет
    115 Крайне шумно Пескоструйный аппарат (1м)
    120-125 Почти невыносимо Отбойный молоток
    130 Болевой порог Самолет на старте
    135 — 140 Контузия Взлетающий реактивный самолет
    145 Контузия Старт ракеты
    150 — 155 Контузия, травмы
    160 Шок, травма Ударная волна от сверхзвукового самолета
    165+ Разрыв барабанных перепонок и легких
    180+ Смерть

    Скорость звука в км в час и метры в секунду

    Скорость звука — это скорость распространения волн в среде. Ниже даю таблицу скоростей распространения в различных средах.

    Скорость звука в воздухе намного меньше чем в твердых средах. А скорость звука в воде намного выше, чем в воздухе. Составляет она 1430 м/с. В итоге, распространение идет быстрее и слышимость намного дальше.

    Мощность звука — это энергия, которая передается звуковой волной через рассматриваемую поверхность за единицу времени. Измеряется в (Вт). Бывает мгновенное значение и среднее (за период времени).

    Давайте продолжим работать с определениями из раздела теория музыки!

    Высота и нота

    Высота — это музыкальный термин, который обозначает почти тоже самое, что и частота. Исключение составляет то, что она не имеет единицы измерения. Вместо того чтобы определять звук количеством циклов в секунду в диапазоне 20 — 20 000 Гц, мы обозначаем определенные значения частот латинскими буквами.

    Музыкальные инструменты производят периодические звуковые волны правильной формы, которые мы называем тонами или нотами.

    То есть другими словами, — это своего рода моментальный снимок периодической звуковой волны определенной частоты. Высота этой ноты говорит нам о том, насколько нота высока или низка по своему звучанию. При этом более низкие ноты имеют более длинные волны. А высокие, более короткие.

    Давайте посмотрим на звуковую волну в 1 кГц. Сейчас я увеличу масштаб, и вы увидите каково расстояние между циклами.

    Звуковая волна в 1 кГц

    Теперь давайте взглянем на волну в 500 Гц. Тут частота в 2 раза меньше и расстояние между циклами больше.

    Звуковая волна в 500 Гц

    Теперь возьмем волну в 80 Гц. Тут будет еще шире и высота намного ниже.

    Звук в 80 Гц

    Мы видим взаимосвязь между высотой звука и формой его волны.

    Каждая музыкальная нота основана на одной основополагающей частоте (основном тоне). Но помимо тона в музыке состоит и из дополнительных резонансных частот или обертонов.

    Давайте я покажу вам еще один пример!

    Ниже волна в 440 Гц. Это стандарт в мире музыке для настройки инструментов. Соответствует он ноте ля.

    Чистая звуковая волна в 440 Гц

    Мы слышим только основной тон (чистую звуковую волну). Если увеличить масштаб, то увидим, что она периодическая.

    А теперь давайте посмотрим на волну той же частоты, но сыгранную на пианино.

    Периодический звук пианино

    Посмотрите, она тоже периодическая. Но в ней есть небольшие дополнения и нюансы. Все они в совокупности и дают нам понятие о том, как звучит пианино. Но помимо этого, обертона обуславливают и тот факт, что одни ноты будут иметь большее сродство к данной ноте чем другие.

    Для примера можно сыграть туже ноту, но на октаву выше. По звучанию будет совсем иначе. Однако она будет родственной предыдущей ноте. То есть это та же нота, только сыгранная на октаву выше.

    Такая родственная связь двух нот в разных октавах обусловлена наличием обертонов. Они постоянно присутствуют и определяют насколько близко или отдаленно определенные ноты связаны друг с другом.


    Основные термины и определения

    Звук – разновидность кинетической энергии, которая называется « » и представляет собой пульсацию давления, возникающую в физической среде при прохождении звуковой волны.

    Интенсивность звука – сила звука, средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны в единицу времени.

    Громкость звука – субъективная величина слухового ощущения, которая зависит от интенсивности звука и его частоты. При неизменной частоте громкость звука растет с увеличением интенсивности. При одинаковой интенсивности наибольшей громкостью обладают звуки в диапазоне частот 700-6000 Гц. Ну- левой уровень громкости звука соответствует звуковому давлению 20 мкПа и силе звука 10-12 Вт/м2 при частоте 1 кГц.

    Звуковое давление – звуковая энергия, которая попадает на единицу площади, расположенную в заданном направлении от источника звука и удаленную от него на определенное расстояние (как правило, на 1 м). Звуковое давление измеряется в паскалях (Па).

    Децибел – логарифмическая единица уровней, затуханий и усилений, безразмерная носительная характеристика, позволяющая сравнивать между собой нужные величины:

    Величина в децибелах = 10 lg (вычисляемая величина/опорная (базисная) величина).

    Элементарные сведения о звуке


    В звуке можно выделить следующие определяющие элементы: высота (высокий/низкий), интенсивность (слабый/сильный), тембр (мягкий, ясный и т.д.). Тембр определяемый гармониками, формирует слуховые ощущения, то есть, позволяет отличать один музыкальный инструмент или голос от другого. Скорость, с которой распространяется звук, строго связана с характером (природой) упругих сред. Далее мы будем рассматривать прохождение звука только через воздух. Скорость звука в воздухе составляет примерно 340 м/с и меняется с изменением температуры. Для расчета скорости звука при различных температурах, используется следующая формула:

    V – скорость звука в м/с

    °C – температура воздуха в градусах Цельсия

    Если частота звуковых колебаний находится между 20 и 20000 раз в секунду (Гц), то данные вибрации производят у человека слуховое ощущение. Считается, что человек слышит звуки в диапазоне частот от 16 Гц до 20 кГц, но практически слышимый диапазон находится в пределах от 100 Гц до 10 кГц (низкий мужской голос 400Гц, женское сопрано 9 кГц). Отношение скорости звука к его частоте есть расстояние, пройденное звуковой волной за один период, по другому называется длиной звуковой волны:


    где
    λ длина волны
    V – скорость звука, м/с
    f – частота, Гц

    Полный период колебания волны (звукового давления) состоит из полупериода сжатия (повышения давления) и последующего полупериода разряжения молекул воздуха (понижения давления). Звуки с большей амплитудой (громкие) вызывают более сильное сжатие и разряжение молекул воздуха, чем звуки с меньшей амплитудой (тихие).

    В зависимости от контекста существует множество различных определений звука:

    Звук – это упругие волны, продольно распространяющиеся в среде и создающие в ней механические колебания. Чтобы понять, как распространяются данные волны, дополним это определение:
    Звук – это процесс последовательной передачи колебательного состояния в упругой среде.

    В современной физике утвердился взгляд, при котором многие процессы отождествляют с энергией.

    Звук – это разновидность кинетической энергии, которая называется «акустической» и представляет собой пульсацию давления, возникающую в физической среде при прохождении звуковой волны. Звук распространяется по волновым законам, следовательно, к нему применимы такие общие физические понятия, как интерференция и дифракция. Результатом интерференции может быть как усиление, так и уменьшение уровня звука, например, при сложении одного и того же сигнала, но с различной фазировкой. При расчете параметров звукового поля на открытых пространствах следует учитывать множество различных факторов, например, влажность, ветер, температуру, например, при высокой температуре звук распространяется вверх, а при низкой температуре – вниз.

    Частотный и динамический диапазоны


    На рис. 2.3 приведены частотные и динамические диапазоны различных звуковых источников. Из рисунка видно, что динамический диапазон человеческой речи лежит в пределах от 30 до 100 дБ. Уровень 30 дБ соответствует тихому разговору, 100 дБ сильному крику. Под порогом слышимости подразумевают минимальные значения звукового давления, при которых звук еще воспринимается человеком. Принято считать, что человек слышит сигналы от 1 до 130 дБ. Уровень 1 дБ называется порогом слышимости, 130 дБ – это болевой порог.


    Рис. 2.3 Частотный и динамический диапазоны
    различных звуковых источников

    Уровень шума

    Одним из наиболее важных параметров при расчете уровня звукового давления является уровень шума. Установлено, что человек способен (слышать) улавливать звуки с уровнем 1 дБ (20 мкПа, 10-12 Вт/м2), который называется порогом слышимости. Но это возможно только при хорошем слухе и в отсутствии шума. Так как в реальных условиях, шум всегда присутствует, то различить полезную (звуковую) информацию на фоне шума можно при условии, что уровень звука превышает уровень шума, как минимум на 3 дБ (в 2 раза). Для хорошей разборчивости данная разница должна состав-лять минимум 6 дБ (в 4 раза). В нормативной же документации данный запас составляет 15 дБ.


    Рис. 2.4 Уровни шума для различных пространств

    Анализ окружающей среды

    Окружающая среда, в которой функционирует СОУЭ, должна рассматриваться как компонент системы. Тщательный анализ этой среды, является определяющим фактором в выборе элементов формируемой цепи. Для анализа окружающей среды наиболее часто используются два инструмента: измеритель уровня звука, которым оценивается окружающий уровень шума, и измеритель нелинейности, который показывает уровень искажения и деградации, которой подвергнут звуковой сигнал. Последний имеет передатчик и приемник, работающие с шифрованными сигналами (RASTI метод) для обеспечения величины разборчивости за несколько секунд с учетом реверберации окружающей среды. Данная величина характеризуется "индексом разборчивости" (между 0 и 1). Для объектов, специфика которых не критична с точки зрения акустики (торговые центры, офисы, дома) необходимость в применении более сложных измерителях отсутствует.

    Реверберация

    В акустике присутствует множество различных факторов, которые необходимо учитывать при выборе и расстановке звукового оборудования и . Одним из таких факторов является реверберация. Звук в закрытых или открытых пространствах распространяется по разному. Стены комнаты отражают звуковые волны, тогда как на открытой площадке волны проходят практически без столкновений с какими-либо препятствиями. В закрытом пространстве за счет отражений уровень звука выше. В открытом пространстве звук распространяется практически по прямой. Прямой звук идентичен оригиналу по качеству и форме. Отраженный звук, наоборот, сильно зависит от отражающей способности места (после неопределенного числа отражений, достигает слушателя со всех сторон, и слушатель не может точно установить точку его происхождения). Распространение звука в этом случае происходит через первичные и вторичные отражения исходного звука от горизонтальных и вертикальных поверхностей помещения. Уровень отражения в большой степени зависит от характера стен, типа материала, из которого они сделаны, их гладкости, поглощающих свойств и изменения поглощения на раз-личных частотах. Мебель также может играть решающую роль в распространении звука – в зависимости от ее расстановки и поглощающей способности. Слушателю приходится воспринимать как прямой, так и отраженный звук. Время, с момента, в который звуковой источник прекращает излучать до момента, в который звук больше не воспринимается, определяется как время реверберации. Замечено, что любая среда характеризуется собственной "музыкальной окраской", связанной с распространением отраженных звуков и временем реверберации, которое и характеризует эту среду. Единственной переменной в уже существующей структуре остается мебель. Наилучшие результаты могут быть получены, когда принимается во внимание конструкция мебели, материал, из которого она сделана и ее расстановка в помещении.

    Реверберация – это явление, которое возникает, когда слышен не прямой звук от источника, а отраженный от встречающихся на пути звуковой волны препятствий или помех различного характера. Для предотвращения нежелательного воздействия отраженного звука на прямой необходимо, чтобы последний, при задержке более чем на 50 мс, достигал слушателя уменьшенным не более чем на 10 дБ. Время реверберации пропорционально объему окружающего пространства и обратно пропорционально суммарному поглощению поверхностей, составляющих ее. Отраженный звук, который достигает уха слушателя через 40-50 мс после прямого, расценивается как усиление, окраска первоначального звука. Отраженные звуки, которые доходят с задержкой 50-80 мс, наоборот, искажают первоначальный сигнал и могут стать причиной потери разборчивости.

    Общие сведения о звуковом давлении

    Звуковое давление – звуковая энергия, которая попадает на единицу площади, расположенную в заданном направлении от источника звука и удаленную от него на определенное расстояние (как правило, на 1 м). Звуковое давление измеряется в паскалях (Па).

    Уровень звукового давления (англ. SPL, Sound Pressure Level) – значение звукового давления, измеренное по относительной шкале, отнесённое к опорному давлению Рspl = 20 мкПа, соответствующему порогу слышимости синусоидальной звуковой волны частотой 1 кГц. SPL измеряется в децибелах (дБ). Децибелы, в отличие от паскалей, чаще применяются на практике из-за большего удобства. Считается, что человек слышит в диапазоне 0-120 дБ (20 - 20000000 мкПа). В таблице 2.2 приведена зависимость между звуковым давлением в мкПа и уров-нем звука в дБ.

    Звуковое давление (мкПа) Уровень звука (дБ)
    20 0
    60 10
    200 20
    600 30
    2.000 40
    6.000 50
    20.000 60
    60.000 70
    200.000 80
    600.000 90
    2.000.000 100
    6.000.000 110
    20.000.000 120


    Таблица 2.2

    Зависимость уровня звукового давления от подводимой мощности

    Слух, как и другие человеческие ощущения, воспринимает воздействие по логарифмическому закону (см. рис. 2.6). Для того чтобы удвоить звуковое давление, не достаточно удваивать число источников звука или электрическую мощность громкоговорителей, а необходимо удесятерять. Увеличение акустического давления может быть получено установкой нескольких громкоговорителей, расположенных близко друг к другу и ориентированных в одном направлении или при каждом удвоении мощности громкоговорителей, в любом случае, увеличение (или уменьшение) акустического давления будет ±3 дБ (в дальнейшем мы сформируем более точное правило). Для построения зависимости уровня звукового давления от подводимой мощности обратимся к теории. Мгновенное значение звукового давления в точке среды изменяется как со временем, так и при переходе к другим точкам среды, поэтому практический интерес представляет среднеквадратичное значение данной величины, называемое интенсивностью звука.

    Интенсивность – это поток энергии в какой-либо точке среды в единицу времени, прошедший через единицу поверхности (1 м2), являющейся нормалью к направлению распространения звуковой волны (измеряется в Вт/м2). Интенсивность иначе называют силой звука. Интенсивность определяет громкость звука, которую мы слышим. Мы не можем померить ее непосредственно (особенно в закрытых помещениях), поэтому на практике данную величину связывают с мощностью источника логарифмическим соотношением.

    Шумы создаются звуковыми волнами , возникающими при расширении и сжатии в воздухе и других средах. В системах кондиционирования и вентиляции шумы могут возникать и распространяться в воздухе, корпусах воздуховодов, передвигающихся по трубам жидкостях и т.д.

    Шумы могут иметь различную частоту и интенсивность.

    Скорость распространения звука

    Шум распространяется с гораздо меньшей скоростью, чем световые волны. Скорость звука в воздухе - примерно 330 м/с. В жидкостях и твердых телах скорость распространения шума выше, она зависит от плотности и структуры вещества.

    Пример: скорость звука в воде равна 1.4 км/с, а в стали - 4.9 км/с.

    Частота шума

    Основной параметр шума - его частота (число колебаний в секунду). Единица измерения частоты - 1 герц (Гц), равный 1 колебанию звуковой волны в секунду.

    Человеческий слух улавливает колебания частот от 20 Гц до 20000Гц. При работе систем кондиционирования учитывают обычно спектр частот от 60 до 4000Гц.

    Для физических расчетов слышимая полоса частот делится на 8 групп волн. В каждой группе определена средняя частота: 62 Гц, 125 Гц, 250 Гц, 500 Гц, 1000 Гц, 2 кГц, 4 кГц и 8 кГц. Любой шум раскладывается по группам частот, и можно найти распределение звуковой энергии по различным частотам.

    Мощность звука

    Мощность звука какой-либо установки - это энергия, которая выделяется установкой в виде шума за единицу времени. Измерять силу шума в стандартных единицах мощности неудобно, т.к. спектр звуковых частот очень широк, и мощность звуков отличается на много порядков.

    Пример: сила шума при поступлении в помещение воздуха под низким давлением равна одной стомиллиардной ватта, а при взлете реактивного самолета сила шума достигает 1000 Вт.

    Поэтому уровень мощности звука измеряют в логарифмических единицах - децибелах (дБ). В децибелах сила шума выражается двух- или трехзначными числами, что удобно для расчетов.

    Уровень мощности звука в дБ - функция отношения мощности звуковых волн возле источника шума к нулевому значению W 0 , равному 10 -12 Вт. Уровень мощности рассчитывается по формуле:

    L w = 10lg(W/W0)

    Пример: если мощность звука вблизи источника равна 10 Вт, то уровень мощности составит 130 дБ, а если мощность звука равна 0.001 Вт, то уровень мощности - 90 дБ.

    Мощность звука и уровень мощности независимы от расстояния до источника шума. Они связаны лишь с параметрами и режимом работы установки, поэтому важны для проектирования и сравнения различных систем кондиционирования и вентиляции.

    Уровень мощности нельзя измерить непосредственно, он определяется косвенно специальным оборудованием.

    Уровень давления звука

    Уровень давления звука L p - это ощущаемая интенсивность шума, измеряемая в дБ.

    L p = P/P0

    Здесь P - давление звука в измеряемом месте, мкПа, а P 0 = 2 мкПа - контрольная величина.

    Уровень звукового давления зависит от внешних факторов: расстояния до установки, отражения звука и т.д. Наиболее простой вид имеет зависимость уровня давления от расстояния. Если известен уровень мощности шума L w , то уровень звукового давления L p в дБ на расстоянии r (в метрах) от источника вычисляется так:

    L p = L w - lgr - 11

    Пример: мощность звука холодильного блока равна 78 дБ. Уровень звукового давления на расстоянии 10 м от него равен: (78 - lg10 - 11) дБ = 66 дБ.

    Если известен уровень звукового давления L p1 на расстоянии r1 от источника шума, то уровень звукового давления L p2 на расстоянии r2 будет вычисляться так:

    L p2 = L p1 - 20*lg(r2/r1)

    Пример: Уровень звукового давление на расстоянии 1 м от установки равно 65 дБ. Тогда уровень звукового давления на расстоянии 10 м от нее равен: (65 - 20*lg10) дБ = (65 - 20) дБ = 45 дБ..

    Вообще, в открытом пространстве уровень звукового давления снижается на 6 дБ при увеличении расстояния до источника шума в 2 раза. В помещении зависимость будет сложнее из-за поглощения звука поверхностью пола, отражения звука и т.д.

    Громкость шума

    Чувствительность человека к звукам разной частоты неодинакова. Она максимальна к звукам частотой около 4 кГц, стабильна в диапазоне от 200 до 2000 Гц, и снижается при частоте менее 200 Гц (низкочастотные звуки).

    Громкость шума зависит от силы звука и его частоты. Громкость звука оценивают, сравнивая ее с громкостью простого звукового сигнала частотой 1000Гц. Уровень силы звука частотой 1000Гц, столь же громкого, как измераемый шум, называется уровнем громкости данного шума. На приведенной ниже диаграмме показана зависимость силы звука от частоты при постоянной громкости.

    При малом уровне громкости человек менее чувствителен к звукам очень низких и высоких частот. При большом звуковом давлении ощущение звука перерастает в болевое ощущение. На чатоте 1 кГц болевой порог соответствует давлению 20 Па и силе звука 10 Вт/кв.м.

    Диаграмма кривых равной громкости

    Шумовые характеристики оборудования

    Шумовые характеристики оборудования представляют в виде таблиц, где содержатся:
    1. уровень мощности шума в дБ с разбивкой по полосам частот
    2. общий уровень звукового давления
    Звуковое давление в помещениях нормируется санитарными нормативами, допустимые значения различны для разных частот. Шум, создаваемый системами вентиляции и кондиционирования, принимают на 5 дБ ниже допустимого уровня шума в помещении (СНиП 11-12-77).

    Суммирование источников шума

    Шум от нескольких источников не соответствует сумме шумов от каждого источника в отдельности. Для двух находящихся рядом установок шум определяется следующим образом:
    1. Если показатели уровня шума одинаковы , то суммарный уровень шума на 3 дБ превышает уровень шума каждой установки.
    2. Если разница уровней шума превышает 10 дБ , суммарный уровень шума равен величине большего из двух шумов.

      Например, общий шум от двух установок с уровнями 30 и 60 дБ, равен 60 дБ.

    3. Если разница уровней шума не более 10 дБ , нужно воспользоваться приведенной ниже таблицей. Вычисляем разность уровней шума установок.
    Например, L 1 = 52 дБ, а L 2 = 48 дБ. Разность равна 4 дБ. В верхней строке таблицы найдем 4 дБ, тогда в нижней строке видим показатель 1.5 дБ. Прибавим этот показатель к большему уровню шума: 52 дБ + 1.5 дБ = 53.5 дБ . Это и будет общий уровень шума от двух установок.

    Если источников шума более двух, метод расчета не меняется, и источники рассматриваются парами, начиная с самых слабых.

    Например, есть четыре установки с уровнями шума 25 дБ, 38 дБ, 43 дБ и 50 дБ.

    Сначала делаем подсчет для двух слабейших установок: 38 - 25 = 13 дБ. Разница больше 10 дБ, и эту установку вообще не учитываем.

    Для установок 38 и 43 дБ: 43 - 38 = 5 дБ, поправка из таблицы равна 1.2 дБ. Суммарный шум трех установок: 43 + 1.2 = 44.2 дБ.

    Теперь найдем полный шум всех установок. 50 - 44.2 = 5.8 дБ. Округляя разность уровней шума до 6 дБ, по таблице находим поправку 1.0 дБ.

    Итак, общий уровень шума четырех установок равен 50 + 1 = 51 дБ.

    Единицей абсолютной шкалы громкости является фон . Громкость в 1 фон - это громкость непрерывного чистого синусоидального тона частотой 1 кГц , создающего звуковое давление 2 мПа .

    Уровень громкости звука - относительная величина. Она выражается в фонах и численно равна уровню звукового давления (в децибелах - дБ), создаваемого синусоидальным тоном частотой 1 кГц такой же громкости, как и измеряемый звук (равногромким данному звуку).

    Зависимость уровня громкости от звукового давления и частоты

    На рисунке справа изображено семейство кривых равной громкости, называемых также изофонами . Они представляют собой графики стандартизированных (международный стандарт ISO 226 ) зависимостей уровня звукового давления от частоты при заданном уровне громкости. С помощью этой диаграммы можно определить уровень громкости чистого тона какой-либо частоты, зная уровень создаваемого им звукового давления.

    Средства звукового наблюдения

    Например, если синусоидальная волна частотой 100 Гц создаёт звуковое давление уровнем 60 дБ, то, проведя прямые, соответствующие этим значениям на диаграмме, находим на их пересечении изофону, соответствующую уровню громкости 50 фон. Это значит, что данный звук имеет уровень громкости 50 фон.

    Изофона «0 фон», обозначенная пунктиром, характеризует порог слышимости звуков разной частоты для нормального слуха.

    На практике часто представляет интерес не уровень громкости, выраженный в фонах, а величина, показывающая, во сколько данный звук громче другого. Представляет интерес также вопрос о том, как складываются громкости двух разных тонов. Так, если имеются два тона разных частот с уровнем 70 фон каждый, то это не значит, что суммарный уровень громкости будет равен 140 фон.

    Зависимость громкости от уровня звукового давления (и интенсивности звука) является сугубо нелинейной кривой, она имеет логарифмический характер. При увеличении уровня звукового давления на 10 дБ громкость звука возрастёт в 2 раза. Это значит, что уровням громкости 40, 50 и 60 фон соответствуют громкости 1, 2 и 4 сона.

    Звук Громкость, соны:
    Уровень громкости, фоны:
    Порог слышимости 0 0
    Тиканье наручных часов ~ 0.02 10
    Шепот ~ 0.15 20
    Звук настенных часов ~ 0.4 30
    Приглушенный разговор ~ 1 40
    Тихая улица ~ 2 50
    Обычный разговор ~ 4 60
    Шумная улица ~ 8 70
    Опасный для здоровья уро­вень ~ 10 75
    Пневматический молоток ~ 32 90
    Кузнечный цех ~ 64 100
    Громкая музыка ~ 128 110
    Болевой порог ~ 256 120
    Сирена ~ 512 130
    Реактивный самолет ~ 2048 150
    Смертельный уровень ~ 16384 180
    Шумовое оружие ~ 65536 200

    Примечания


    Wikimedia Foundation . 2010 .

    Смотреть что такое "Громкость звука" в других словарях:

      Величина, характеризующая слуховое ощущение для данного звука. Г. з. сложным образом зависит от звукового давления (или интенсивности звука), частоты и формы колебаний. При неизменной частоте и форме колебаний Г. з. растёт с увеличением звук.… … Физическая энциклопедия

      Величина слухового ощущения, зависящая от интенсивности звука и его частоты. При неизменной частоте громкость звука растет с увеличением интенсивности. При одинаковой интенсивности наибольшей громкостью обладают звуки в диапазоне частот 700 6000… … Большой Энциклопедический словарь

      громкость звука - Величина слухового ощущения, зависящая от интенсивности звука и его частоты [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики шум, звук EN sound loudnesssound volume DE Lautstärke FR intensité de sonvolume… … Справочник технического переводчика

      Величина слухового ощущения, зависящая от интенсивности звука и его частоты. При неизменной частоте громкость звука растёт с увеличением интенсивности. При одинаковой интенсивности наибольшей громкостью обладают звуки в диапазоне частот 700… … Энциклопедический словарь

      Мера силы слухового ощущения, вызываемого звуком. Г. з. зависит от эффективного звукового давления и частоты звука (см. рис.). Для сравнения Г. з. пользуются величиной LN, к рая наз. уровнем Г. з. и равна: LN = 20 lg(p*эфф /р*0), где р*0 = 20… … Большой энциклопедический политехнический словарь

      громкость звука - garsumas statusas T sritis radioelektronika atitikmenys: angl. volume of sound vok. Lautheit, f; Lautstärke, f; Tonstärke, f rus. громкость звука, f pranc. volume sonore, m … Radioelektronikos terminų žodynas

      Величина, характеризующая слуховое ощущение для данного звука. Г. з. сложным образом зависит от звукового давления (См. Звуковое давление) (или интенсивности звука (См. Интенсивность звука)), частоты и формы колебаний. При неизменной… … Большая советская энциклопедия

      громкость звука - rus интенсивность (ж) (сила) звука, громкость (ж) звука eng sound intensity fra intensité (f) acoustique, intensité (f) sonore, intensité (f) du son deu Schallintensität (f), Schallstärke (f) spa intensidad (f) sonora, intensidad (f) acústica … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

      Величина слухового ощущения, зависящая от интенсивности звука и его частоты. При неизменной частоте Г. з. растёт с увеличением интенсивности. При одинаковой интенсивности наиб. громкостью обладают звуки в диапазоне частот 700 6000 Гц. Нулевой… … Естествознание. Энциклопедический словарь

      Величина слухового ощущения, зависящая от интенсивности звука и его частоты (Болгарский язык; Български) сила на звука (Чешский язык; Čeština) hlasitost zvuku (Немецкий язык; Deutsch) Lautstärke (Венгерский язык; Magyar) hangosság (Монгольский… … Строительный словарь

    Книги

    • Комплект таблиц. Физика. Механические волны. Акустика (8 таблиц) , . Учебный альбом из 8 листов. Артикул - 5-8665-008. Волновой процесс. Продольные волны. Поперечные волны. Периодические волны. Отражение волн. Стоячие волны. Звуковые волны. Высота звука.…

    Звуком называют механические колебания частиц упругой среды (воздух, вода, металл и т. п.), субъективно воспринимаемые органом слуха. Звуковые ощущения вызываются колебаниями среды, происходящими в диапазоне частот от 16 до 20 000 гц. Звуки с частотами, лежащими ниже этого диапазона, называются инфразвуком, а выше - ультразвуком.

    Звуковое давление - переменное давление в среде, обусловленное распространением в ней звуковых волн. Величина звукового давления оценивается силой действия звуковой волны на единицу площади и выражается в ньютонах на квадратный метр (1 н/метр квадартный=10 бар).

    Уровень звукового давления - отношение величины звукового давления к нулевому уровню, за который принято звуковое давление н/квадратный метр:

    Скорость звука зависит от физических свойств среды, в которой распространяются механические колебания. Так, скорость звука в воздухе равна 344 м/сек при T=20°С, в воде 1 481 м/сек (при T=21,5°С), в дереве 3 320 м/сек и в стали 5 000 м/сек.

    Сила звука (или интенсивность) - количество звуковой энергии, проходящей за единицу времени через единицу площади; измеряется в ваттах на квадратный метр (вт/м2).

    Следует отметить, что звуковое давление и сила звука связаны между собой квадратичной зависимостью, т. е. при увеличении звукового давления в 2 раза сила звука возрастает в 4 раза.

    Уровень силы звука - отношение силы данного звука к нулевому (стандартному) уровню, за который принята сила звука вт/м2, выраженное в децибелах:

    Уровни звукового давления и силы звука, выраженные в децибелах, совпадают по величине.

    Порог слышимости - наиболее тихий звук, который еще способен слышать человек на частоте 1000 гц, что соответствует звуковому давлению н/м2.

    Громкость звука - интенсивность звукового ощущения, вызванная данным звуком у человека с нормальным слухом Громкость зависит от силы звука и его частоты, изменяется пропорционально логарифму силы звука и выражается количеством децибел, на которое данный звук превышает по интенсивности звук, принятый за порог слышимости. Единица измерения громкости - фон.

    Порог болевого ощущения - звуковое давление или сила звука, воспринимаемые как болевое ощущение. Порог болевого ощущения мало зависит от частоты и наступает при звуковом давлении порядка 50 н/м2.

    Динамический диапазон - диапазон громкостей звука, или разность уровней звукового давления самого громкого и самого тихого звуков, выраженная в децибелах.

    Дифракция - отклонение от прямолинейного распространения звуковых волн.

    Рефракция - изменение направления распространения звуковых волн, вызванное различиями в скорости на разных участках пути.

    Интерференция - сложение волн одинаковой длины, приходящих в данную точку пространства по нескольким различным путям, вследствие чего амплитуда результирующей волны в разных точках оказывается различной, причем максимумы и минимумы этой амплитуды чередуются между собой.

    Биения - интерференция двух звуковых колебаний, мало отличающихся по частоте. Амплитуда возникающих при этом колебаний периодически увеличивается или уменьшается во времени с частотой, равной разности интерферирующих колебаний.

    Реверберация - остаточное «после-звучание» в закрытых помещениях. Образуется вследствие многократного отражения от поверхностей и одновременного поглощения звуковых волн. Реверберация характеризуется промежутком времени (в секундах), в течение которого сила звука уменьшается на 60 дб.

    Тон - синусоидальное звуковое колебание. Высота тона определяется частотой звуковых колебаний и растет с увеличением частоты.

    Основной тон - наиболее низкий тон, создаваемый источником звука.

    Обертоны - все тоны, кроме основного, создаваемые источником звука. Если частоты обертонов в целое число раз больше частоты основного тона, то их называют гармоническими обертонами (гармониками).

    Тембр - «окраска» звука, которая определяется количеством, частотой и интенсивностью обертонов.

    Комбинационные тоны - дополнительные тоны, возникающие вследствие нелинейности амплитудной характеристики усилителей и источников звука. Комбинационные тоны появляются при воздействии на систему двух или большего числа колебаний с различными частотами. Частота комбинационных тонов равна сумме и разности частот основных тонов и их гармоник.

    Интервал - отношение частот двух сравниваемых звуков. Наименьший различимый интервал между двумя соседними по частоте музыкальными звуками (каждый музыкальный звук имеет строго определенную частоту) называется полутоном, а интервал частот с отношением 2:1 - октавой (музыкальная октава состоит из 12 полутонов); интервал с отношением 10: 1 называют декадой.