• Таким образом, все вышеперечисленные недостатки файл-серверной схемы устраняются в архитектуре клиент-сервер. Технология «клиент-сервер

    Ранее были рассмотрены локальные базы данных, когда и БД, и взаимодейст­вующее с ней приложение располагаются на одном компьютере. В данном разделе будут рассмотрены некоторые особенности работы с удаленными БД, используе­мыми в сети, где приложение и БД располагаются на разных компьютерах.

    В принципе локальную БД тоже можно использовать для коллективного доступа т. е. в сетевом варианте. В этом случае файлы базы данных и приложение для ра­боты с ней располагаются на сервере сети. Пользователь запускает со своего ком­пьютера находящееся на сервере приложение, при этом у него запускается копия приложения. Можно установить приложение и непосредственно на компьютере пользователя, в этом случае приложению должно быть известно местонахождение общей БД, заданное, например, через псевдоним. Подобный сетевой вариант использования локальной БД соответствует архитектуре "файл-сервер".

    Достоинствами сетевой архитектуры "файл-сервер" являются простота разработ­ки и эксплуатации БД и приложения. Разработчик фактически создает локальную БД и приложение, которые затем просто используются в сетевом варианте. При этом не требуется дополнительное программное обеспечение для организации работы с БД. Однако архитектуре "файл-сервер" свойственны и существенные недостатки. Для работы с данными используется навигационный способ доступа, при этом по сети циркулируют большие объемы данных. В результате сеть оказы­вается перегруженной, что является причиной ее низкого быстродействия и плохой производительности при работе с БД. Требуется синхронизация работы отдельных пользователей, связанная с бло­кировкой в таблицах тех записей, которые редактирует другой пользователь. Приложения не только обрабатывают данные, но и управляют самой базой данных. В связи с тем, что управление БД осуществляется с разных компью­теров, затрудняются управление доступом, соблюдение конфиденциальности и поддержание целостности БД.

    Из-за этих недостатков архитектура "файл-сервер", как правило, используется в небольших сетях. Для сетей с большим количеством пользователей предпочти­тельным вариантом (а порой и единственным возможным) является архитектура "клиент-сервер".В сетевой архитектуре "клиент-сервер" БД размешается на компьютере-сервере сети (сервере или удаленном сервере) и называется также удаленной БД. Приложение, осуществляющее работу с этой БД, находится на компьютере пользо­вателя. Приложение пользователя является клиентом, его также называют приложением-клиентом. Клиент и сервер взаимодействуют следующим образом. Клиент формирует и отсылает запрос серверу, на котором размешена БД. Сервер вы­полняет запрос и выдает клиенту в качестве результатов требуемые данные. Таким образом, в архитектуре "клиент-сервер" клиент посылает запрос и полу­чает только те данные, которые ему действительно нужны. Вся обработка запро­са выполняется на удаленном сервере. К достоинствам такой архитектуры отно­сятся следующие факторы. Для работы с данными используется реляционный способ доступа, что сни­жает нагрузку на сеть. Приложения не управляют напрямую базой, управлением занимается только сервер. В связи с этим можно обеспечить высокую степень защиты данных. В приложении отсутствует код, связанный с управлением БД, поэтому приложения упрощаются.

    Отметим, что сервером называют не только компьютер, но и специальную про­грамму, которая управляет БД. Так как в основе организации обмена данными между клиентом и сервером лежит язык SQL такую программу еще называют SQL-сервером, а базу данных - базой данных SQL. В широком смысле слова под сервером понимают компьютер, программу и саму базу данных. SQL-серверами являются промышленные СУБД, такие как InterBase, Oracle и др. Каждый из серверов имеет свои преимущества и осо­бенности, связанные, например, со структурой БД и реализацией языка SQL, которые необходимо учитывать при разработке приложения. Далее мы будем понимать под сервером программу (т. е. SQL -сервер), а установленную на компьютере-сервере базу данных будем называть удаленной БД.

    При работе в архитектуре "клиент-сервер" приложение должно:

    · устанавливать соединение с сервером и завершать его;

    · формировать и отсылать запрос серверу, получая от него результаты выпол­нения запроса;

    · обрабатывать полученные данные.

    При этом обработка данных не имеет принципиальных отличий по сравнению с обработкой данных в локальных БД.

    Удаленная БД, как и локальная, представляет собой совокупность взаимосвязанных таблиц. Однако данные этих таблиц, как правило, содержатся в одном общем файле. Как и в случае с локальной БД, для таблиц удаленной БД могут устанавливаться связи (отношения), ограничения ссылочной целостности, огра­ничения на значения столбцов и т. д. Для удаленных БД поле называется столбцом. Для управления БД сервер использует:

    · триггеры;

    · генераторы;

    · хранимые процедуры;

    · функции, определяемые пользователем;

    · механизм транзакций;

    · механизм кэшированных изменений;

    Многие из перечисленных элементов обеспечиваются возможностями языка SQL сервера, в котором, по сравнению с локальной версией, имеются сущест­венные особенности, рассматриваемые ниже.

    Система Delphi обеспечивает разработку приложений для различных серверов, предоставляя для этого соответствующие средства. Отметим, что многие опи­санные ранее принципы разработки приложений и средства для работы с ло­кальными БД относятся и к работе с удаленными БД. В частности, для разра­ботки приложений используются такие компоненты, как источник данных DataSource,_наборыданныхTable,ADOTable, SQLTable, IBTable, Query, ADOQuery, SQLQuery, сетка DBGrid и др.

    Для реализации реляционного способа доступа к удаленной БД с помощью BDE не­обходимо использовать только средства языка SQL. Поэтому в качестве компонен­тов должны выбираться такие как Query, StoredProc, UpdateSQL. Кроме того, для набора данных нельзя использовать методы, характерные для навигационного способа доступа.

    Напомним, что если при выполнении модифицирующего БД запроса с помо­щью компонента Query не нужен результирующий набор данных, то этот за­прос предпочтительнее выполнять с помощью метода ExecSQL. Для работы с таблицами и запросами по-прежнему можно использовать такие программы, как Database Desktop и SQL Explorer.

    Средства Delphi, предназначенные для работы с удаленными БД, можно разде­лить на два вида: инструменты и компоненты.

    К инструментам относятся специальные программы и пакеты, обеспечивающие обслуживание БД вне разрабатываемых приложений. Среди них:

    · InterBase Server Manager - программа управления запуском сервера InterBase;

    · IBConsole - консоль сервера InterBase;

    · SQL Monitor - программа отслеживания порядка выполнения SQL-запросов к удаленным БД.

    Компоненты предназначены для создания приложений, выполняющих операции с удаленной БД. Перечислим наиболее важные из них:

    · Database (соединение с БД);

    · Session (текущий сеанс работы с БД);

    · StoredProc (вызов хранимой процедуры);

    · UpdateSQL (модификация набора данных, основанного на SQL-запросе);

    · DCOMConnection(DСОМ-соединение);

    · компоненты страниц АDО, dbExpress, Interbase Палитры компонентов.

    Отметим, что многие из названных компонентов, например, Database, Session, UpdateSQL, используются также при работе с локальными БД. Так, компонент Database позволяет, реализовать механизм транзакций при навигационном способе доступа к данным с помощью механизма ВDЕ. Однако наиболее часто эти компоненты применяются именно при работе с удаленными базами. Часть компонентов, например, клиентский набор данных ClientDataSet и со­единение с сервером DCOMConnection, предназначена для работы в трехуровне­вой (трехзвенной) архитектуре "клиент-сервер" ("тонкий" клиент) и используется для построения сервера приложений.

    В основе операций, выполняемых с удаленными БД как с помощью инструмен­тов, так и программно, лежит язык SQL. Например, при создании таблицы с помощью программы IBConsole необходимо набрать и выполнить SQL-запрос (инструкцию) Create Table. Если создание таблицы с помощью механизма ВDЕ осуществляется из приложения пользователя, то для этой цели используется набор данных Query, который выполняет такой же за­прос. Основное различие заключается в том, каким образом выполняется SQL-запрос к удаленной БД.

    Итак, для удаленных БД разница между средствами, используемыми в приложении, и инструментами намного меньше, чем для локальных баз данных.

    Сервер InterBase. Все серверы имеют похожие принципы организации данных и управления ими. В качестве примера рассмотрим работу с сервером InterBase 6.x, который явля­ется "родным" для_Delphi. Совместно с Delphi поставляются две части сервера InterBase 6.x: серверная и клиентская. Серверная часть InterBase является локальной версией сервера InterBase и ис­пользуется для отладки приложений, предназначенных для работы с удаленны­ми БД, позволяя на одном компьютере проверить их в сетевом варианте. После отладки на локальном компьютере приложение можно перенести на сетевые компьютеры без изменений, для чего нужно:

    · скопировать БД на сервер;

    · установить для приложения новые параметры соединения с удаленной БД.

    Скопировать БД можно с помощью программ типа Проводник Windows. Клиентская часть нужна для обеспечения доступа приложения к удаленной БД.При разработке БД и приложений с использованием локальной версии сервера InterBase нужно иметь в виду, что она имеет ряд ограничений и может не под­держивать, например, механизм событий сервера или определяемые пользовате­лем функции. Полнофункциональная версия сервера InterBase приобретается и устанавливается отдельно от Delphi.Как упоминалось, в основе работы с удаленной БД лежат возможности языка SQL, обеспечивающие соответствующие операции. Назначение и возможности языка SQL для удаленных БД в принципе совпадают с назначением и возмож­ностями этого языка для локальных БД.

    Бизнес-правила . Как отмечалось, бизнес-правила представляют собой механизмы управления БД и предназначены для поддержания БД в целостном состоянии. Кроме того, они нужны для реализации ограничений БД, а также для выполнения ряда других действий, например, накапливания статистики работы с БД.

    Бизнес-правила можно реализовывать на физическом и программном уровнях. В первом случае эти правила (например, ограничение ссылочной целостности для связанных таблиц) задаются при создании таблиц и входят в структуру БД. Для этого в синтаксис инструкции Create Table включаются соответствующие операнды, например, Default (значение по умолчанию). В дальнейшей работе нельзя нарушить или обойти ограничение, заданное на физическом уровне.

    На программном уровне бизнес-правила можно реализовать в сервере и в при­ложении. Причем эти бизнес-правила не должны быть определены на физиче­ском уровне. Для реализации бизнес-правил в сервере обычно используются триггеры. Достоинствами такого подхода является то, что вычислительная на­грузка по управлению БД целиком ложится на сервер, что снижает нагрузку на приложение и сеть, а также то, что действие ограничений распространяется на все приложения, осуществляющие доступ к БД. Однако одновременно снижается гибкость управления БД. Кроме того, нужно учитывать, что средства отладки триггеров и хранимых процедур сервера развиты недостаточно хорошо.

    Для программирования бизнес-правил в приложении используются компоненты и их средства. Достоинство такого подхода заключается в легкости изменения бизнес-правил и возможности определить правила "своего" приложения. Недос­татком является снижение безопасности БД, связанное с тем, что каждое при­ложение может устанавливать свои правила управления БД.

    Информация всей БД сервера InterBase хранится в одном файле с расширением gdb. Размер этого файла может составлять единицы и даже десятки гигабайт. Отметим, что аналогичный размер БД имеет СУБД Microsoft SOL Server, в то время как для более мощных СУБД Oracle и SyBase размер БД достигает десят­ков и сотен гигабайт.

    В отличие от локальной БД, структуру которой составляли таблицы (отдельные или связанные), удаленная БД имеет более сложную структуру, которая включа­ет в свой состав следующие элементы: таблицы, триггеры,индексы, функции пользователя. ограничения, хранимые процедуры, домены, просмотры, генераторы, исключения, привилегии.

    Элементы структуры удаленной БД также называют метаданными. Слово "мета" имеет смысл "над", т. е. метаданные представляют собой данные, которые опи­сывают структуру БД. Для InterBase максимальное число таблиц в БД равно 65 536, а максимальное число столбцов в таблице - 1000. Отметим, что таблицы InterBaseимеют мень­шее число допустимых типов столбцов (полей), чем таблицы локальных БД Paradox.

    Домен представляет собой именованное описание столбца. После определения домена его имя можно использовать для описания других столбцов.Аналогом домена является тип данных.

    Просмотр является логической (виртуальной) таблицей, записи в которую отобраны с помощью инструкции Select. Преимущество просмотра в том, что один раз отобрав записи их можно использовать в дальнейшем без повторного выполнения Select. Это выгодно при частом выполнении одинаковых запросов.

    Хранимая процедура представляет собой подпрограмму, расположенную на сервере и вызываемую из приложения клиента. Использование этих объектов увеличивает скорость доступа к БД по следующим причинам:

    · вместо текста запроса серверу передается по сети короткое обращение к хранимой процедуре;

    · хранимая процедура не требует предварительной синтаксической проверки.

    Триггер представляет собой процедуру, которая находится на сервере БД и вызывается автоматически при модификации записей БД, т.е. при изменении столбцов или при их удалении и добавлении. В отличие от хранимых процедур триггеры нельзя вызвать из приложения клиента, а также передавать им параметры и получать от них результаты.

    Функция, определяемая пользователем, представляет собой обычную функцию, написанную на алгоритмическом языке, например, Pascal. Созданная функция оформляется в виде динамической библиотеки DLL, откуда может быть вызвана обычным способом. Для обеспечения вызова функции системе Windows должен быть известен путь к соответствующей библиотеке. Использование таких функций расширяет состав функций языка SQL.

    Механизм кэшированных изменений заключается в том, что на компьютере клиента в кэше (буфере) создается локальная копия данных, и все изменения в данных выполняются в этой копии. Для хранения локальной копии используется специальный буфер (кэш). Сделанные изменения можно подтвердить, перенеся их в основную БД, хранящуюся на сервере, или отказаться от них. Этот меха­низм напоминает механизм транзакций, но, в отличие от него, снижает нагрузку на сеть, т. к. все изменения передаются в основную БД одним пакетом. Следует иметь к виду, что для всех записей локальной копии отсутствуют блокировки на изменение их значений. Блокировки могут быть установлены другими приложе­ниями для основной БД, находящейся на сервере.Механизм кэшированных изменений реализуется в приложении, для чего компоненты, в первую очередь Database, Table и Query (используемые при доступе с помощью BDE), имеют соответствующие средства. Кроме того, механизм кэшированных изменений поддерживается предназначенным для этого компонен­том UpdateSQL.Основные достоинства рассматриваемого механизма проявляются для удален­ных БД, но его можно использовать и при работе с локальными БД.

    Привилегии представляют собой права доступа к БД. Управление привилегиями заключается в их установке и удалении. После создания объекта БД (например, таблицы) доступ к ней разрешен только создателю и системному администрато­ру, имеющему имя SYSDBA. Для доступа к БД остальных пользователей им нуж­но назначить соответствующие привилегии. Сразу после появления нового пользователя, созданного например, с помощью программы InterBase Manager Server , этот пользователь имеет минимальные права доступа: ему разрешено только войти в БД (соединиться с ней), указав свое имя и пароль, однако ни один объект этой БД ему не доступен. Чтобы обеспечить возможность активной работы с БД, нужно определить (переопределить) привилегии.

    Установку привилегий выполняет инструкция Grant. Привилегии позволяют разграничить доступ к таблицам и просмотрам со сторо­ны пользователей. При этом под "пользователем" понимается любой объект, обращающийся к данным. Кроме собственно пользователя (приложения), таки­ми объектами могут быть таблицы, просмотры, хранимые процедуры и тригге­ры. Если привилегия предоставляется одновременно нескольким пользователям, то их имена перечисляются через запятую.

    В этом примере мы разработаем простой сервер и простую клиентскую программу, ведущих между собой "неспешный" диалог. Клиента построим по технике Windows Forms , а сервер - Windows Service . Сервер будет иметь набор готовых маркированных ответов, ждать маркированных запросов клиентов и отвечать им соответствующими сообщениями. Это настроит нас на создание еще более сложной системы - просмотру дистанционных рисунков из БД, которой мы займемся позже.

    Создание клиента

    Начнем с клиентской программы, которая может запускаться во многих экземплярах ("http://msdn.microsoft.com/ru-ru/library/system.net.sockets.tcplistener.accepttcpclient.aspx ")


    Таблица 19.7.
    Элемент Свойство Значение
    Form Text Client
    Size 300; 300
    ListBox (Name) listBox
    Dock Top
    Font Arial; 12pt
    Items
    1. Привет!
    2. Лелик
    3. Как жизнь
    4. Оттопыремся сегодня?
    5. Ну тогда пока!
    SelectionMode One
    Size 292; 119
    Button (Name) btnSubmit
    AutoSize True
    Font Arial; 10pt
    Location 96; 127
    Size 101; 29
    Text Отправить
    TextBox (Name) textBox
    Dock Bottom
    Location 0; 162
    Multiline True
    ScrollBars Vertical
    Size 292; 105

    Остальные нужные настройки элементов формы добавим программно.

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; // Дополнительные пространства имен using System.IO; using System.Net; using System.Net.Sockets; using System.Threading; namespace SimpleClient { public partial class Form1: Form { int port = 12000; String hostName = "127.0.0.1";// local TcpClient client = null;// Ссылка на клиента public Form1() { InitializeComponent(); // Выделить первый элемент списка listBox.SelectedIndex = 0; listBox.Focus(); // Контекстное меню для очистки TextBox ContextMenuStrip contextMenu = new ContextMenuStrip(); textBox.ContextMenuStrip = contextMenu; ToolStripMenuItem item = new ToolStripMenuItem("Очистить"); contextMenu.Items.Add(item); item.MouseDown += new MouseEventHandler(item_MouseDown); } // Отослать запрос и получить ответ private void btnSubmit_Click(object sender, EventArgs e) { if (listBox.SelectedIndices.Count == 0) { MessageBox.Show("Выделите сообщение"); return; } try { // Создаем клиента, соединенного с сервером client = new TcpClient(hostName, port); // Сами задаем размеры буферов обмена (Необязательно!) client.SendBufferSize = client.ReceiveBufferSize = 1024; } catch { MessageBox.Show("Сервер не готов!"); return; } // Записываем запрос в протокол AddString("Клиент: " + listBox.SelectedItem.ToString()); // Создаем потоки NetworkStream, соединенные с сервером NetworkStream streamIn = client.GetStream(); NetworkStream streamOut = client.GetStream(); StreamReader readerStream = new StreamReader(streamIn); StreamWriter writerStream = new StreamWriter(streamOut); // Отсылаем запрос серверу writerStream.WriteLine(listBox.SelectedItem.ToString()); writerStream.Flush(); // Читаем ответ String receiverData = readerStream.ReadLine(); // Записываем ответ в протокол AddString("Сервер: " + receiverData); // Закрываем соединение и потоки, порядок неважен client.Close(); writerStream.Close(); readerStream.Close(); } // Добавление строки, когда TextBox включен в режиме Multiline private void AddString(String line) { StringBuilder sb = new StringBuilder(textBox.Text); StringWriter sw = new StringWriter(sb); sw.WriteLine(line); textBox.Text = sw.ToString(); } // Очистка списка через контекстное меню void item_MouseDown(object sender, MouseEventArgs e) { textBox.Clear(); listBox.Focus(); } } }

    Получив соединение с сервером, мы создаем два потока NetworkStream и упаковываем их в оболочки, удобные для управления чтением/записью. Обмен с сервером отображаем в протоколе TextBox . Для очистки протокола динамически создали контекстное меню.

    Класс TcpClient , который мы использовали в коде, является высокоуровневой (и упрощенной) оболочкой сокета (класса Socket ). Если потребуется более низкоуровневое управление сокетом (более детальное), то ссылка на него хранится в свойстве TcpClient.Client . Но поскольку это свойство защищенное (protected ), то доступ к нему возможен только из производного от TcpClient класса.

    Если сейчас запустить приложение SimpleClient , то оно будет работать, но при попытке что-то отослать на сервер, будет выдаваться сообщение, что сервер не готов. Сервера-то еще пока вообще нет, создадим его.

    Создание сервера

    Серверную программу сделаем резидентной по шаблону Windows Service , как мы это делали в предыдущем примере, хотя можно сделать и с интерфейсом, главное, чтобы он был запущен в единственном экземпляре на локальном компьютере. Если программа-сервер включена в глобальную сеть, то с используемым IP и портом она должна быть единственной в этой сети. Поэтому на использование сетевого IP для глобальной сети нужно получать разрешение.



    using System; using System.ComponentModel; using System.Configuration.Install; using System.ServiceProcess; namespace SimpleServer { // Во время установки сборки следует вызвать установщик public partial class Installer1: Installer { private ServiceInstaller serviceInstaller; private ServiceProcessInstaller serviceProcessInstaller; public Installer1() { // Создаем настройки для Службы serviceInstaller = new ServiceInstaller(); serviceProcessInstaller = new ServiceProcessInstaller(); // Имя Службы для машины и пользователя serviceInstaller.ServiceName = "SimpleServerServiceName"; serviceInstaller.DisplayName = "SimpleServer"; serviceInstaller.StartType = ServiceStartMode.Manual;// Запуск вручную // Как будет запускаться Служба this.serviceProcessInstaller.Account = ServiceAccount.LocalService; this.serviceProcessInstaller.Password = null; this.serviceProcessInstaller.Username = null; // Добавляем настройки в коллекцию текущего объекта this.Installers.AddRange(new Installer { serviceInstaller, serviceProcessInstaller }); } } }

    using System; using System.Collections.Generic; using System.Text; // Дополнительные пространства имен using System.IO; using System.Net; using System.Net.Sockets; using System.Threading; using System.ServiceProcess; using System.Collections; namespace SimpleServer { class Service1: ServiceBase { TcpListener server = null;// Ссылка на сервер int port = 12000; String hostName = "127.0.0.1";// local IPAddress localAddr; String answers = { "1. Ты кто?", "2. Привет, Лелик!", "3. Лучше всех!", "4. Конечно, на полную катушку", "5. До вечера!" }; // Конструктор public Service1() { localAddr = IPAddress.Parse(hostName);// Конвертируем в другой формат Thread thread = new Thread(ExecuteLoop); thread.IsBackground = true; thread.Start(); } private void ExecuteLoop() { try { server = new TcpListener(localAddr, port);// Создаем сервер-слушатель server.Start();// Запускаем сервер String data; // Бесконечный цикл прослушивания клиентов while (true) { if (!server.Pending())// Очередь запросов пуста continue; TcpClient client = server.AcceptTcpClient();// Текущий клиент // Сами задаем размеры буферов обмена (Необязательно!) // По умолчанию оба буфера установлены размером по 8192 байта client.SendBufferSize = client.ReceiveBufferSize = 1024; // Подключаем NetworkStream и погружаем для удобства в оболочки NetworkStream streamIn = client.GetStream(); NetworkStream streamOut = client.GetStream(); StreamReader readerStream = new StreamReader(streamIn); StreamWriter writerStream = new StreamWriter(streamOut); // Читаем запрос data = readerStream.ReadLine(); // Отправляем ответ int index; if (int.TryParse(data.Substring(0, data.IndexOf(".")), out index)) data = answers; else data = data.ToUpper(); writerStream.WriteLine(data); writerStream.Flush(); // Закрываем соединение и потоки, порядок неважен client.Close(); readerStream.Close(); writerStream.Close(); } } catch (SocketException) { } finally { // Останавливаем сервер server.Stop(); } } } }

    Чтобы передать данные и получить ответ, клиентское приложение создает двунаправленный сокет (или два однонаправленных), в котором указывает адрес соединения с сокетом другого, серверного, приложения. Если соединение установлено (сервер работает), то клиентское приложение подключает к сокету сетевой поток NetworkStream и через него выполняет передачу и прием данных.

    На другой стороне соединения сервер TcpListener в бесконечном цикле прослушивает очередь соединений с клиентами. Если какой-то клиент с ним соединился (server.Pending()!=false ), то сервер извлекает этого клиента методом AcceptTcpClient() - создает сокет для приема/передачи с готовым обратным адресом, создает двунаправленный поток (или два однонаправленных), затем читает запрос и передает ответ.



    Обратите внимание, что если код работы нашей серверной программы не упаковать в отдельную нить Thread (поток выполнения), то в окне служб эта программа операционной системой запускаться не будет (попробуйте!). Причина в том, что в коде метода ExecuteLoop() в сервере используется бесконечный цикл прослушивания очереди запросов клиентов. Если этот цикл оставить в основном потоке выполнения (Thread ) приложения, то оно просто зациклится и не сможет само нормально завершиться. Поэтому код с циклом мы помещаем в отдельный поток (трэд) и делаем его фоновым, чтобы он закрывался вместе с основным потоком приложения (трэдом сервера).

    Важное замечание

    Поток NetworkStream является двухсторонним фиксированной длины. Методом GetStream() он только устанавливает адресное соединение между сокетами клиента и сервера. Но реальная его длина определяется сообщением отправляющей стороны. Можно для приема/передачи использовать один поток, но тогда длина сообщения, отправляемого сервером, не должна превышать длину сообщения, принятого им от клиента (чуть глаза не отсидел!). Поэтому мы и используем на каждой стороне два потока для раздельной однонаправленной передачи между двумя узлами сетевого соединения.

    Пример 3. Клиент-серверное приложение просмотра рисунков из БД

    На предыдущем простом примере мы познакомились (чуть-чуть) с пронципами создания сетевых приложений. А теперь построим более сложный пример, когда клиент запрашивает рисунки, а сервер извлекает их из хранилища и посылает клиенту. В Упражнении 7 нами было разработано три разных хранилища рисунков и три программы просмотра. В данном примере воспользуемся БД Pictures.my2.mdb с готовыми рисунками и на ее основе создадим сетевое приложение (для тех, кто не делал Упражнение 7 , БД прилагается в каталоге Source/Data ).

    Построение клиента

    Для клиента построим оконное приложение типа WPF с пользовательским интерфейсом, частично заимствованным из Примера 6 Упражнения 7 .


    Сервер не готов, ждите! Мы пытаемся связаться, извините за неудобства...

    Для вывода заставки с текстом о неготовности сервера мы применили элемент Viewbox , в который поместили еще один элемент Border с текстовым содержимым. Такой "огород" позволит увеличивать заставку пропорционально размеру окна. Однако введение элемента Viewbox начинает заметно притормаживать перерисовку интерфейса при перемещениях окна, потому что он пытается постоянно пересчитывать масштабы своих дочерних элементов. Имена мы присвоили только тем интерфейсным элементам, которыми собираемся управлять в процедурном коде.

    using System; using System.Collections.Generic; using System.Text; using System.Windows; using System.Windows.Controls; using System.Windows.Data; using System.Windows.Documents; using System.Windows.Input; using System.Windows.Media; using System.Windows.Media.Animation; using System.Windows.Media.Imaging; using System.Windows.Shapes; // Дополнительные пространства имен для Stream using System.IO; using IO = System.IO; // Псевдоним для адресации Path using System.Windows.Threading; // Для DispatcherTimer // Дополнительные пространства имен для Socket //using System.Net; using System.Net.Sockets; using System.Collections; // List namespace PicturesClientDB { public partial class Window1: Window { int port = 12000; String hostName = "127.0.0.1"; // local TcpClient client = null; // Ссылка на клиента String sendMessage = "!!!GetNames!!!"; // Запрос на список (позаковыристей) Char separator = { "#" }; // Для преобразования ответа в массив имен DispatcherTimer timer; // Таймер // Конструктор public Window1() { InitializeComponent(); // Создаем и запускаем таймер timer = new DispatcherTimer(); timer.Tick += new EventHandler(timer_Tick); timer.Interval = TimeSpan.FromSeconds(1); timer.Start(); } // Инициирует обращение к серверу void timer_Tick(object sender, EventArgs e) { Execute(listBox); } private void listBox_SelectionChanged(object sender, SelectionChangedEventArgs e) { Execute((ListBox)sender); } void Execute(ListBox lst) { // Заполняем список именами рисунков try { // Если сервер доступен, создаем клиента client = new TcpClient(hostName, port); } catch { // Сервер не готов, запускаем таймер и выходим if (Prompt.Visibility != Visibility.Visible) { Prompt.Visibility = Visibility.Visible; timer.Start(); } return; } switch (sendMessage) { case "!!!GetNames!!!": // Получаем и привязываем имена рисунков к списку lst.ItemsSource = GetNames(); // Выделяем первый элемент списка, чтобы вызвать SelectionChanged lst.SelectedIndex = 0; lst.Focus(); sendMessage = ""; break; default: // Скрываем сообщение и останавливаем таймер if (Prompt.Visibility == Visibility.Visible) { Prompt.Visibility = Visibility.Hidden; timer.Stop(); } // Получаем рисунок и отображаем пользователю кистью String name = lst.SelectedValue.ToString(); BitmapImage bi = new BitmapImage(); bi.BeginInit(); // Получаем от сервера рисунок и обертываем его в поток памяти bi.StreamSource = new MemoryStream(GetPicture(name)); bi.EndInit(); Pictures.picture.ImageSource = bi;// Передаем рисунок фону Border break; } } private String GetNames() { String names; // Создаем потоки сетевых соединений StreamReader readerStream = new StreamReader(client.GetStream()); StreamWriter writerStream = new StreamWriter(client.GetStream()); // Отсылаем запрос серверу writerStream.WriteLine(sendMessage); writerStream.Flush(); // Читаем ответ String receiverData = readerStream.ReadLine(); names = receiverData.Split(separator);// Преобразуем в строковый массив // Закрываем соединение и потоки, порядок неважен client.Close(); writerStream.Close(); readerStream.Close(); return names; } Byte GetPicture(String name) { // Создаем потоки сетевых соединений NetworkStream readerStream = client.GetStream(); StreamWriter writerStream = new StreamWriter(client.GetStream()); // Отсылаем запрос серверу writerStream.WriteLine(name); writerStream.Flush(); // Читаем ответ // ReceiveBufferSize - размер буфера для входящих данных // SendBufferSize - размер буфера для исходящих данных List list = new List(client.ReceiveBufferSize);// С приращением capacity Byte bytes = new Byte; // Размер буфера сокета int count = 0; // Порции входящих данных while ((count = readerStream.Read(bytes, 0, bytes.Length)) != 0) for (int i = 0; i < count; i++) list.Add(bytes[i]); // Преобразуем в массив результата bytes = new Byte; list.CopyTo(bytes); // Закрываем соединение и потоки, порядок неважен client.Close(); writerStream.Close(); readerStream.Close(); return bytes; } } // Для привязки к ресурсу class Pictures { // Поле public static ImageBrush picture = new ImageBrush(); static Pictures() { // Дежурный рисунок заставки picture.ImageSource = new BitmapImage(new Uri(@"flower2.jpg", UriKind.Relative)); picture.Stretch = Stretch.Fill; picture.Opacity = 1.0D; } // Привязываемое в интерфейсе свойство public static ImageBrush Picture { get { return picture; } } } }

    Обратите внимание, что при отображении рисунков мы отказались от традиционного элемента Image , как это делали в предыдущем упражнении. А для разнообразия поступили совершенно нетрадиционно (по турецки). Теперь мы рисунки будем отображать кистью ImageBrush в фоне прямоугольника Border через привязанный к нему объект Pictures . Конечно, в жизни так извращаться вряд ли придется, но и такой вариант где-нибудь может пригодиться.


    Заставка появится сразу же, как будет обнаружен факт отсутствия или остановки сервера. А после обнаружения сервера заставка исчезнет. Этот механизм немедленно сработает благодаря используемому нами системному таймеру . Однако, сервера пока еще совсем нет и следует его изготовить.

    Построение сервера БД как службу
    • Командой File/Add/New Project добавьте к решению NetworkStream новый проект с именем PicturesServerDB типа Windows Service


    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Diagnostics; using System.ServiceProcess; using System.Text; // Дополнительные пространства имен для ADO.NET using System.Data.OleDb; using System.Data.Common; // Дополнительные пространства имен using System.IO; using System.Net; using System.Net.Sockets; using System.Threading; using System.Collections; namespace PicturesServerDB { public partial class Service1: ServiceBase { int port = 12000; String hostName = "127.0.0.1"; // local IPAddress localAddr; TcpListener server = null; // Ссылка на сервер String separator = "#"; // Разделитель имен в строке ответа String connectionString; // Строка соединения с БД public Service1() { // Извлекаем в поле строку соединения с БД из файла App.config connectionString = System.Configuration.ConfigurationManager. ConnectionStrings["PicturesDB"].ConnectionString; // Конвертируем IP в другой формат localAddr = IPAddress.Parse(hostName); // Запускаем в новом потоке (ните) Thread thread = new Thread(ExecuteLoop); thread.IsBackground = true; thread.Start(); } private void ExecuteLoop() { try { server = new TcpListener(localAddr, port);// Создаем сервер-слушатель server.Start();// Запускаем сервер // Бесконечный цикл прослушивания клиентов while (true) { // Проверяем очередь соединений if (!server.Pending())// Очередь запросов пуста continue; TcpClient client = server.AcceptTcpClient();// Текущий клиент // Создаем потоки сетевых соединений StreamReader readerStream = new StreamReader(client.GetStream()); NetworkStream streamOut = client.GetStream(); StreamWriter writerStream = new StreamWriter(streamOut); // Читаем команду клиента String receiverData = readerStream.ReadLine(); // Распознаем и исполняем switch (receiverData) { case "!!!GetNames!!!":// Посылаем имена, разделенные сепаратором String names = GetNames(); writerStream.WriteLine(names); // Используем через оболочку writerStream.Flush(); break; default:// Посылаем рисунок Byte bytes = GetPicture(receiverData); streamOut.Write(bytes, 0, bytes.Length);// Используем напрямую streamOut.Flush(); break; } // Закрываем соединение и потоки, порядок неважен client.Close(); readerStream.Close(); writerStream.Close(); } } finally { // Останавливаем сервер server.Stop(); } } // Извлечение из БД имен рисунков и упаковка их в одну строку для пересылки клиенту string GetNames() { // Создаем и настраиваем инфраструктуру ADO.NET OleDbConnection conn = new OleDbConnection(connectionString); OleDbCommand cmd = new OleDbCommand("SELECT FileName FROM MyTable"); cmd.Connection = conn; conn.Open(); // Извлекаем имена рисунков OleDbDataReader reader = cmd.ExecuteReader(CommandBehavior.CloseConnection); // Формируем строку исходящих данных StringBuilder sb = new StringBuilder(); foreach (DbDataRecord record in reader)// Равносильно чтению reader.Read() sb.Append(((string)record["FileName"]).Trim() + separator); // Соединение здесь закроет сам объект DataReader после прочтения всех данных // в соответствии с соглашением при его создании CommandBehavior.CloseConnection // Удаляем лишний последний символ сепаратора sb.Replace(separator, String.Empty, sb.ToString(). LastIndexOf(separator), separator.Length); return sb.ToString(); } // Извлечение из БД самого рисунка для отправки клиенту byte GetPicture(String name) { // Создаем и настраиваем инфраструктуру ADO.NET OleDbConnection conn = new OleDbConnection(); conn.ConnectionString = connectionString; // Создаем и настраиваем объект команды, параметризованной по имени рисунка OleDbCommand cmd = new OleDbCommand(); cmd.Connection = conn; cmd.CommandType = CommandType.Text; // Необязательно! Установлено по умолчанию cmd.CommandText = "SELECT Picture FROM MyTable WHERE FileName=?"; cmd.Parameters.Add(new OleDbParameter()); cmd.Parameters.Value = name;// Имя рисунка OleDbDataAdapter adapter = new OleDbDataAdapter(cmd); // Извлекаем рисунок из БД DataTable table = new DataTable(); adapter.Fill(table); byte bytes = (byte)table.Rows["Picture"]; // Подключаемся к рисунку return bytes; } } }

    Под клиент-серверным приложением мы будем понимать информационную систему, основанную на использовании серверов баз данных (см. длинное замечание в конце раздела 2.1). Общее представление информационной системы в архитектуре "клиент-сервер" показано на рисунке 2.3.

    • На стороне клиента выполняется код приложения, в который обязательно входят компоненты, поддерживающие интерфейс с конечным пользователем, производящие отчеты, выполняющие другие специфичные для приложения функции (пока нас не будет занимать, как строится код приложения).
    • Клиентская часть приложения взаимодействует с клиентской частью программного обеспечения управления базами данных, которая, фактически, является индивидуальным представителем СУБД для приложения.

    (Здесь опять проявляются недостатки в терминологии. Обычно, когда компания объявляет о выпуске очередного сервера баз данных, то неявно понимается, что имеется и клиентская составляющая этого продукта. Сочетание "клиентская часть сервера баз данных" кажется несколько странным, но нам придется пользоваться именно этим термином.)

    Рис. 2.3. Общее представление информационной системы в архитектуре "клиент-сервер"

    Заметим, что интерфейс между клиентской частью приложения и клиентской частью сервера баз данных, как правило, основан на использовании языка SQL. Поэтому такие функции, как, например, предварительная обработка форм, предназначенных для запросов к базе данных, или формирование результирующих отчетов выполняются в коде приложения.

    Наконец, клиентская часть сервера баз данных, используя средства сетевого доступа, обращается к серверу баз данных, передавая ему текст оператора языка SQL.

    Здесь необходимо сделать еще два замечания.

    1. Обычно компании, производящие развитые серверы баз данных, стремятся к тому, чтобы обеспечить возможность использования своих продуктов не только в стандартных на сегодняшний день TCP/IP-ориентированных сетях, но в сетях, основанных на других протоколах (например, SNA или IPX/SPX). Поэтому при организации сетевых взаимодействий между клиентской и серверной частями СУБД часто используются не стандартные средства высокого уровня (например, механизмы программных гнезд или вызовов удаленных процедур), а собственные функционально подобные средства, менее зависящие от особенностей сетевых транспортных протоколов.
    2. Когда мы говорим об интерфейсе на основе языка SQL, нужно отдавать себе отчет в том, что несмотря на титанические усилия по стандартизации этого языка, нет такой реализации, в которой стандартные средства языка не были бы расширены. Необдуманное использование расширений языка приводит к полной зависимости приложения от конкретного производителя сервера баз данных.

    Мы остановимся на этих вопросах более подробно в четвертой части курса.

    Посмотрим теперь, что же происходит на стороне сервера баз данных. В продуктах практически всех компаний сервер получает от клиента текст оператора на языке SQL.

    • Сервер производит компиляцию полученного оператора. Не будем здесь останавливаться на том, какой целевой язык используется конкретным компилятором; в разных реализациях применяются различные подходы (примеры см. в части 4). Главное, что в любом случае на основе информации, содержащейся в таблицах-каталогах базы данных производится преобразование непроцедурного представления оператора в некоторую процедуру его выполнения.
    • Далее (если компиляция завершилась успешно) происходит выполнение оператора. Мы снова не будем обсуждать технические детали, поскольку они различаются в реализациях. Рассмотрим возможные действия операторов SQL.
      • Оператор может относиться к классу операторов определения (или создания) объектов базы данных (точнее и правильнее было бы говорить про элементы схемы базы данных или про объекты метабазы данных). В частности, могут определяться домены, таблицы, ограничения целостности, триггеры, привилегии пользователей, хранимые процедуры. В любом случае, при выполнении оператора создания элемента схемы базы данных соответствующая информация помещается в таблицы-каталоги базы данных (в таблицы метабазы данных). Ограничения целостности обычно сохраняются в метабазе данных прямо в текстовом представлении. Для действий, определенных в триггерах, и хранимых процедур вырабатывается и сохраняется в таблицах-каталогах процедурный выполняемый код. Заметим, что ограничения целостности, триггеры и хранимые процедуры являются, в некотором смысле, представителями приложения в поддерживаемой сервером базе данных; они составляют основу серверной части приложения (см. ниже).
      • При выполнении операторов выборки данных на основе содержимого затрагиваемых запросом таблиц и, возможно, с использованием поддерживаемых в базе данных индексов формируется результирующий набор данных (мы намеренно не используем здесь термин "результирующая таблица", поскольку в зависимости от конкретного вида оператора результат может быть упорядоченным, а таблицы, т.е. отношения неупорядочены по определению). Серверная часть СУБД пересылает результат клиентской части, и окончательная обработка производится уже в клиентской части приложения.
      • При выполнении операторов модификации содержимого базы данных (INSERT, UPDATE, DELETE) проверяется, что не будут нарушены определенные к этому моменту ограничения целостности (те, которые относятся к классу немедленно проверяемых), после чего выполняется соответствующее действие (сопровождаемое модификацией всех соответствующих индексов и журнализацией изменений). Далее сервер проверяет, не затрагивает ли данное изменение условие срабатывания какого-либо триггера, и если такой триггер обнаруживается, выполняет процедуру его действия. Эта процедура может включать дополнительные операторы модификации базы данных, которые могут вызвать срабатывание других триггеров и т.д. Можно считать, что те действия, которые выполняются на сервере баз данных при проверке удовлетворенности ограничений целостности и при срабатывании триггеров, представляют собой действия серверной части приложения.

    При выполнении операторов модификации схемы базы данных (добавления или удаления столбцов существующих таблиц, изменения типа данных существующего столбца существующей таблицы и т.д.) также могут срабатывать триггеры, т.е., другими словами, может выполняться серверная часть приложения.

    В целом, в файл-серверной архитектуре мы имеем "толстого" клиента и очень "тонкий" сервер в том смысле, что почти вся работа выполняется на стороне клиента, а от сервера требуется только достаточная емкость дисковой памяти (рисунок 2.2).

    Рис. 2.2. "Толстый" клиент и "тонкий" сервер в файл-серверной архитектуре

    Краткие выводы. Простое, работающее с небольшими объемами информации и рассчитанное на применение в однопользовательском режиме, файл-серверное приложение можно спроектировать, разработать и отладить очень быстро. Очень часто для небольшой компании для ведения, например, кадрового учета достаточно иметь изолированную систему, работающую на отдельно стоящем PC. Конечно, и в этом случае требуется большая аккуратность конечных пользователей (или администраторов, наличие которых в этом случае сомнительно) для надежного хранения и поддержания целостного состояния данных. Однако, в уже ненамного более сложных случаях (например, при организации информационной системы поддержки проекта, выполняемого группой) файл-серверные архитектуры становятся недостаточными.

    Являются неравноправными составляющими информационной сети. Одни владеют каким-то ресурсом, поэтому называются серверами, другие обращаются к этим ресурсам и называются клиентами. Рассмотрим, как же они взаимодействуют между собой и что собой представляет клиент-серверная архитектура.

    Клиент-серверная архитектура

    Архитектура «Клиент-Сервер» представляет собой взаимодействие структурных компонентов в сети на основе определенных данной сети, где структурными компонентами являются сервер и узлы-поставщики определенных специализированных функций (сервисов), а также клиенты, которые пользуются данным сервисом. Специфические функции принято делить на три группы на основе решения определенных задач:

    • функции ввода и представления данных предназначены для взаимодействия пользователя с системой;
    • прикладные функции - для каждой имеется собственный набор;
    • функции управления ресурсами предназначены для управления файловой системой, различными базами данных и прочими компонентами.

    Например, компьютер без сетевого подключения, представляет компоненты представления, прикладного назначения и управления на различных уровнях. Такого рода уровнями считаются операционная система, прикладное и служебное программное обеспечение, различные утилиты. Точно так же и в сети представлены все вышеуказанные компоненты. Главное - правильно обеспечить сетевое взаимодействие между этими составляющими.

    Принцип работы клиент-серверной архитектуры

    Клиент-серверная архитектура наиболее часто используется для создания корпоративных баз данных, в которых информация не только хранится, но и периодически поддается обработке различными методами. Именно база данных является главным элементом любой корпоративной информационной системы, а на сервере располагается ядро этой базы. Так, на сервере происходят наиболее сложные операции, касающиеся ввода, хранения, обработки и модификации данных. Когда пользователь (клиент) обращается к базе данных (серверу), происходит обработка запроса: непосредственно обращение к базе данных и возврат ответа (результата обработки). Результат обработки - это сообщение сети об успешном проведении операции или ошибке. Серверные компьютеры могут обрабатывать одновременно обращение нескольких клиентов к одному и тому же файлу. Такая работа и по сети позволяет ускорить работу используемых приложений.

    Клиент-серверная архитектура: применение технологии

    Данная архитектура используется для доступа к различным ресурсам с использованием сетевых технологий: баз данных, почтовые серверы, файрволы, прокси-серверы. Разработка клиент-серверных приложений позволяет повысить безопасность, надежность и производительность используемых приложений и сети в целом. Наиболее часто клиент-серверные приложения используются для автоматизации бизнеса.

    Современная СУБД должна удовлетворять ряду требований, важнейшее из которых - высокопроизводительный интеллектуальный сервер базы данных. Далее мы рассмотрим основные тенденции его развития и обсудим конкретные механизмы, в которых они находят свое воплощение.

    Процесс технического совершенствования сервера базы данных пока остается невидимым для большинства пользователей современных СУБД. Поэтому при выборе той или иной системы они, как правило, не учитывают ни технический уровень решений, заложенных в механизм его функционирования, ни влияние этих решений на общую производительность СУБД. Между тем ее качество определяется отнюдь не богатством интерфейсов с пользователем, не разнообразием средств поддержки разработок, а в первую очередь зависит от особенностей архитектуры сервера базы данных. Далее будут рассмотрены модели технологии "клиент-сервер", определено место сервера БД в этих моделях и кратко описаны важнейшие механизмы сервера БД - процедуры, правила (триггеры), события. Последние будут проиллюстрированы примерами, в которых использован диалект SQL, принятый в СУБД Ingres.

    Технология и модели "клиент-сервер".

    "Клиент-сервер" - это модель взаимодействия компьютеров в сети. Как правило, компьютеры не являются равноправными. Каждый из них имеет свое, отличное от других, назначение, играет свою роль. Некоторые компьютеры в сети владеют и распоряжается информационно-вычислительными ресурсами, такими как процессоры, файловая система, почтовая служба, служба печати, база данных. Другие же компьютеры имеют возможность обращаться к этим службам, пользуясь услугами первых. Компьютер, управляющий тем или иным ресурсом, принято называть сервером этого ресурса, а компьютер, желающий им воспользоваться - клиентом. Конкретный сервер определяется видом ресурса, которым он владеет. Так, если ресурсом являются базы данных, то речь идет о сервере баз данных , назначение которого - обслуживать запросы клиентов, связанные с обработкой данных; если ресурс - это файловая система, то говорят о файловом сервере , или файл-сервере, и т. д.

    В сети один и тот же компьютер может выполнять роль как клиента, так и сервера. Например, в информационной системе, включающей персональные компьютеры, большую ЭВМ и мини-компьютер под управлением UNIX, последний может выступать как в качестве сервера базы данных, обслуживая запросы от клиентов - персональных компьютеров, так и в качестве клиента, направляя запросы большой ЭВМ.

    Этот же принцип распространяется и на взаимодействие программ. Если одна из них выполняет некоторые функции, предоставляя другим соответствующий набор услуг, то такая программа выступает в качестве сервера. Программы, которые пользуются этими услугами, принято называть клиентами. Так, ядро реляционной SQL-ориентированной СУБД часто называют сервером базы данных, или SQL-сервером, а программу, обращающуюся к нему за услугами по обработке данных - SQL-клиентом.

    Первоначально СУБД имели централизованную архитектуру (рисунок 10). В ней сама СУБД и прикладные программы, которые работали с базами данных, функционировали на центральном компьютере (большая ЭВМ или мини-компьютер). Там же располагались базы данных. К центральному компьютеру были подключены терминалы, выступавшие в качестве рабочих мест пользователей. Все процессы, связанные с обработкой данных, как: поддержка ввода, осуществляемого пользователем, формирование, оптимизация и выполнение запросов, обмен с устройствами внешней памяти и т.д., выполнялись на центральном компьютере, что предъявляло жесткие требования к его производительности. Особенности СУБД первого поколения напрямую связаны с архитектурой систем больших ЭВМ и мини-компьютеров и адекватно отражают все их преимущества и недостатки. Однако нас больше интересует современное состояние многопользовательских СУБД, для которых архитектура "клиент-сервер" стала фактическим стандартом.

    Рисунок 10 – Системы с централизованной архитектурой

    Для более четкого представления об ее особенностях необходимо рассмотреть несколько моделей технологии "клиент-сервер", что и будет сделано.

    Если предполагается, что проектируемая информационная система (ИС) будет иметь технологию "клиент-сервер", то это означает, что прикладные программы, реализованные в ее рамках, будут иметь распределенный характер. Иными словами, часть функций прикладной программы (или, проще, приложения) будет реализована в программе-клиенте, другая - в программе-сервере, причем для их взаимодействия будет определен некоторый протокол.

    Основной принцип технологии "клиент-сервер" заключается в разделении функций стандартного интерактивного приложения на четыре группы, имеющие различную природу. Первая группа - это функции ввода и отображения данных. Вторая группа объединяет чисто прикладные функции, характерные для данной предметной области (например, для банковской системы - открытие счета, перевод денег с одного счета на другой и т.д.). К третьей группе относятся фундаментальные функции хранения и управления информационными ресурсами (базами данных, файловыми системами и т.д.). Наконец, функции четвертой группы - это служебные функции (играющие роль связок между функциями первых трех групп.

    В соответствии с этим в любом приложении выделяются следующие логические компоненты:

    Компонент представления, реализующий функции первой группы;

    Прикладной компонент, поддерживающий функции второй группы;

    Компонент доступа к информационным ресурсам, поддерживающий функции третьей групп, а также вводятся и уточняются соглашения о способах их взаимодействия (протокол взаимодействия).

    Различия в реализациях технологии "клиент-сервер" определяются четырьмя факторами. Во-первых, тем, в какие виды программного обеспечения интегрированы каждый из этих компонентов. Во-вторых, тем, какие механизмы программного обеспечения используются для реализации функций всех трех групп. Во-третьих, как логические компоненты распределяются между компьютерами в сети. В-четвертых, какие механизмы используются для связи компонентов между собой.

    Выделяются четыре подхода, реализованные в моделях:

    · модель файлового сервера (File Server - FS);

    · модель доступа к удаленным данным (Remote Data Access - RDA);

    · модель севера базы данных (DataBase Server - DBS);

    · модель сервера приложений (Application Server - AS).

    FS-модель является базовой для локальных сетей персональных компьютеров. Не так давно она была исключительно популярной среди отечественных разработчиков, использовавших такие системы, как FoxPRO, Clipper, Clarion, Paradox и т.д. Суть модели проста и всем известна. Один из компьютеров в сети считается файловым сервером и предоставляет услуги по обработке файлов другим компьютерам. Файловый сервер работает под управлением сетевой операционной системы (например, Novell NetWare) и играет роль компонента доступа к информационным ресурсам (то есть к файлам). На других компьютерах в сети функционирует приложение, в кодах которого совмещены компонент представления и прикладной компонент (рисунок 11). Протокол обмена представляет собой набор низкоуровневых вызовов, обеспечивающих приложению доступ к файловой системе на файл-сервере.

    Рисунок 11 – Модель файлового сервера

    FS-модель послужила фундаментом для расширения возможностей персональных СУБД в направлении поддержки многопользовательского режима. В таких системах на нескольких персональных компьютерах выполняется как прикладная программа, так и копия СУБД, а базы данных содержатся в разделяемых файлах, которые находятся на файловом сервере. Когда прикладная программа обращается к базе данных, СУБД направляет запрос на файловый сервер. В этом запросе указаны файлы, где находятся запрашиваемые данные. В ответ на запрос файловый сервер направляет по сети требуемый блок данных. СУБД, получив его, выполняет над данными действия, которые были декларированы в прикладной программе.

    К технологическим недостаткам модели относят высокий сетевой трафик (передача множества файлов, необходимых приложению), узкий спектр операций манипуляции с данными ("данные - это файлы"), отсутствие адекватных средств безопасности доступа к данным (защита только на уровне файловой системы) и т.д. Собственно, перечисленное не есть недостатки, но - следствие внутренне присущих FS-модели ограничений, определяемых ее характером. Недоразумения возникают, когда FS-модель используют не по назначению, например, пытаются интерпретировать как модель сервера базы данных. Место FS-модели в иерархии моделей "клиент-сервер" - это место модели файлового сервера, и ничего более. Именно поэтому обречены на провал попытки создания на основе FS-модели крупных корпоративных систем - попытки, которые предпринимались в недавнем прошлом и нередко предпринимаются сейчас.

    Более технологичная RDA-модельсущественно отличается от FS-модели характером компонента доступа к информационным ресурсам. Это, как правило, SQL-сервер. В RDA-модели коды компонента представления и прикладного компонента совмещены и выполняются на компьютере-клиенте. Последний поддерживает как функции ввода и отображения данных, так и чисто прикладные функции. Доступ к информационным ресурсам обеспечивается либо операторами специального языка (языка SQL, например, если речь идет о базах данных), либо вызовами функций специальной библиотеки (если имеется соответствующий интерфейс прикладного программирования - API).

    Клиент направляет запросы к информационным ресурсам (например, к базам данных) по сети удаленному компьютеру. На нем функционирует ядро СУБД, которое обрабатывает запросы, выполняя предписанные в них действия, и возвращает клиенту результат, оформленный как блок данных (рисунок 12). При этом инициатором манипуляций с данными выступают программы, выполняющиеся на компьютерах-клиентах, в то время как ядру СУБД отводится пассивная роль - обслуживание запросов и обработка данных.

    Рисунок 12 – Модель доступа к удаленным данным

    RDA-модель избавляет от недостатков, присущих как системам с централизованной архитектурой, так и системам с файловым сервером.

    Прежде всего перенос компонента представления и прикладного компонента на компьютеры-клиенты существенно разгружает сервер БД, сводя к минимуму общее число процессов операционной системы. Сервер БД освобождается от несвойственных ему функций; процессор или процессоры сервера целиком загружаются операциями обработки данных, запросов и транзакций. Это становится возможным благодаря отказу от терминалов и оснащению рабочих мест компьютерами, которые обладают собственными локальными вычислительными ресурсами, полностью используемыми программами переднего плана. С другой стороны, резко уменьшается загрузка сети, так как по ней передаются от клиента к серверу не запросы на ввод-вывод (как в системах с файловым сервером), а запросы на языке SQL, их объем существенно меньше.

    Основное достоинство RDA-модели - унификация интерфейса "клиент-сервер" в виде языка SQL. Действительно, взаимодействие прикладного компонента с ядром СУБД невозможно без стандартизованного средства общения. Запросы, направляемые программой ядру, должны быть понятны обоим. Для этого их следует сформулировать на специальном языке. Но в СУБД уже существует язык SQL, о котором уже шла речь. Поэтому целесообразно использовать его не только в качестве средства доступа к данным, но и стандарта общения клиента и сервера.

    Такое общение можно сравнить с беседой нескольких человек, когда один отвечает на вопросы остальных (вопросы задаются одновременно). Причем делает это он так быстро, что время ожидания ответа приближается к нулю. Высокая скорость общения достигается прежде всего благодаря четкой формулировке вопроса, когда спрашивающему и отвечающему не нужно дополнительных консультаций по сути вопроса. Беседующие обмениваются несколькими короткими однозначными фразами, им ничего не нужно уточнять.

    К сожалению, RDA-модель не лишена ряда недостатков. Во-первых, взаимодействие клиента и сервера посредством SQL-запросов существенно загружает сеть. Во-вторых, удовлетворительное администрирование приложений в RDA-модели практически невозможно из-за совмещения в одной программе различных по своей природе функций (функции представления и прикладные).

    Наряду с RDA-моделью все большую популярность приобретает перспективная DBS-модель(рисунок 13). Последняя реализована в некоторых реляционных СУБД (Informix, Ingres, Sybase, Oracle). Ее основу составляет механизм хранимых процедур - средство программирования SQL-сервера. Процедуры хранятся в словаре базы данных, разделяются между несколькими клиентами и выполняются на том же компьютере, где функционирует SQL-сервер. Язык, на котором разрабатываются хранимые процедуры, представляет собой процедурное расширение языка запросов SQL и уникален для каждой конкретной СУБД.

    Рисунок 13 – Модель сервера базы данных

    В DBS-модели компонент представления выполняется на компьютере-клиенте, в то время как прикладной компонент оформлен как набор хранимых процедур и функционирует на компьютере-сервере БД. Там же выполняется компонент доступа к данным, то есть ядро СУБД. Достоинства DBS-модели очевидны: это и возможность централизованного администрирования прикладных функций, и снижение трафика (вместо SQL-запросов по сети направляются вызовы хранимых процедур), и возможность разделения процедуры между несколькими приложениями, и экономия ресурсов компьютера за счет использования единожды созданного плана выполнения процедуры. К недостаткам модели можно отнести ограниченность средств, используемых для написания хранимых процедур, которые представляют собой разнообразные процедурные расширения SQL, не выдерживающие сравнения по изобразительным средствам и функциональным возможностям с языками третьего поколения, такими как C или Pascal. Сфера их использования ограничена конкретной СУБД, в большинстве СУБД отсутствуют возможности отладки и тестирования разработанных хранимых процедур.

    На практике часто используется смешанные модели, когда поддержка целостности базы данных и некоторые простейшие прикладные функции поддерживаются хранимыми процедурами (DBS-модель), а более сложные функции реализуются непосредственно в прикладной программе, которая выполняется на компьютере-клиенте (RDA-модель). Так или иначе современные многопользовательские СУБД опираются на RDA- и DBS-модели и при создании ИС, предполагающем использование только СУБД, выбирают одну из этих двух моделей либо их разумное сочетание.

    Рисунок 14.

    Модель сервера приложений.

    В AS-модели (рисунок 14) процесс, выполняющийся на компьютере-клиенте, отвечает, как обычно, за интерфейс с пользователем (то есть осуществляет функции первой группы). Обращаясь за выполнением услуг к прикладному компоненту, этот процесс играет роль клиента приложения (Application Client - AC ). Прикладной компонент реализован как группа процессов, выполняющих прикладные функции, и называется сервером приложения (Application Server - AS ). Все операции над информационными ресурсами выполняются соответствующим компонентом, по отношению к которому AS играет роль клиента. Из прикладных компонентов доступны ресурсы различных типов - базы данных, очереди, почтовые службы и др.

    RDA- и DBS-модели опираются на двухзвенную схему разделения функций. В RDA-модели прикладные функции приданы программе-клиенту, в DBS-модели ответственность за их выполнение берет на себя ядро СУБД. В первом случае прикладной компонент сливается с компонентом представления, во-втором - интегрируется в компонент доступа к информационным ресурсам. В AS-модели реализована трехзвенная схема разделения функций, где прикладной компонент выделен как важнейший изолированный элемент приложения, для его определения используются универсальные механизмы многозадачной операционной системы, и стандартизованы интерфейсы с двумя другими компонентами. AS-модель является фундаментом для мониторов обработки транзакций (Transaction Processing Monitors - TPM ), или, проще, мониторов транзакций, которые выделяются как особый вид программного обеспечения.

    В заключение отметим, что, часто, говоря о сервере базы данных, подразумевают как компьютер, так и программное обеспечение - ядро СУБД. При описании архитектуры "Клиент-сервер" под сервером базы данных мы имели в виду компьютер. Далее сервер базы данных будет пониматься как программное обеспечение - ядро СУБД.


    Похожая информация.