• Транзисторы. Что такое биполярный транзистор и как его проверить

    Биполярный транзистор – это полупроводниковый прибор с дву­мя взаимодействующими р- n -переходами и с тремя выводами (рис. 1.15). В зависимости от чередования легированных областей различают транзисторы n-p-n -типа (рис. 1.15, а ) и р- n-р -типа (рис, 1.15, б ).

    На рис. 1.15, в, г даны условные обозначения транзисторов п-р-п- и р- n-р- типов, соответственно. Выводы транзисторов обозначаются: Э – эмиттер, Б – база, К – коллектор.

    Эмиттерная и коллекторная области отличаются тем, что в эмиттерной об­ласти концентрация примесей много больше, чем в коллекторной об­ласти. Переход, возникающий между эмиттером и базой, называется эмиттерным переходом , а переход, возникающий между коллектором и базой – коллекторным .

    На рис. 1.16 приведена схема включения транзистора с подключен­ными источниками постоянного напряжения и коллекторным рези­стором. В этой схеме с корпусом соединен вывод базы транзистора. Поэтому эту схему называют схемой включения транзистора с общей базой (ОБ).

    Различают четыре режима работы биполярного транзистора :

    1) активный режим – открыт эмиттерный переход и закрыт коллекторный переход (рис. 1.16);

    2) режим отсечки – оба р- n -перехода закрыты, и существенного тока через транзистор нет.

    Для получения этого режима необходимо в схеме (см. рис. 1.16) изменить полярность источника Е Э на противоположную;

    1) режим насыщения – два р- n -перехода транзистора открыты и через них протекают прямые токи. Для получения этого ре­жима необходимо в схеме (см. рис. 1.16) изменить полярность источника Е К на противопо­ложную;

    2) инверсный режим – открыт коллекторный переход и за­крыт эмиттерный переход. Для получения этого режима не­обходимо в схеме (см. рис. 1.16) изменить на противоположные полярности источников Е К и Е Э .

    Для усиления и преобразования сигналов в основном используется активный режим работы. Работа биполярного транзистора в активном режиме основана на явлении диффузии, а также на эффекте дрейфа носителей заряда в электрическом поле.

    Работа транзи­стора в активном режиме

    Рассмотрим работу транзи­стора в активном режиме на примере транзистора р-n-р-типа (рис. 1.16). В этом режиме эмиттерный переход транзистора открыт. Откры­вающее напряжение равно Е Э = 0,4…0,7 В.

    Через открытый эмиттерный переход течет ток i Э (i Э = 0,1…10 мА для маломощного транзистора). Как правило, в эмиттерной области транзистора кон­центрация акцепторных примесей во много раз больше концентрации донорных примесей в базовой n- области транзистора. Поэтому кон­центрация дырок в области эмиттера много больше концентрации электронов в области базы, и практически весь ток эмиттера – это дырочный ток.

    В одиночном p-n -переходе при диффузии дырок в п -область происходит полная рекомбинация инжектированных дырок с электронами п -области. В эмиттерном переходе транзистора происходит такой же процесс. Благодаря этому процессу возникает ток базы i Б (см. рис. 1.16). Однако в транзисторе происходят более сложные процессы.

    Главной особенностью конструкции транзистора является относи­тельно тонкая базовая област ь. Ширина базы (W ) в транзисторе много меньше длины свободного пробега дырок (L ). У современных кремниевых транзисторов W » 1 мкм, а диффузионная длина L = 5…10 мкм. Следовательно, подавляющее большинство дырок достигают коллекторного перехода, не успев рекомбинировать с элек­тронами базы. Попадая в обратно смещенный коллекторный переход, дырки дрейфуют (и ускоряются) в имеющемся поле перехода.

    Пройдя коллекторный переход, дырки рекомбинируют с электронами, подтекающими к коллектору от источника питания (Е К ). Отметим, что этот дырочный ток во много раз превышает собственный обратный ток закрытого коллекторного перехода и практически полностью определяет ток коллектора (i К ) транзистора.

    Из анализа активного режима (рис. 1.16) следует уравнение для токов транзистора:

    В этом уравнении ток базы много меньше тока эмиттера и тока коллектора, а
    ток коллектора практически равен току эмиттера транзистора.

    Соотношения между токами в транзисторе характеризуются двумя параметрами:

    коэффициентом передачи тока эмиттера

    и коэффициентом передачи тока базы

    Используя формулу (1.2), полу­чим формулу взаимосвязи коэффициентов передачи :

    Значения коэффициентов α и β зависят от конструкции транзисто­ра. Для большинства маломощных транзисторов, используемых в уст­ройствах связи и в компьютерах, коэффициент b = 20…200, а коэф­фициент a = 0,95…0,995.

    Усилительные свойства транзистора

    Рассмотрим усилительные свойства транзистора. Пусть на входе транзистора имеется напряжение Е Э = 0,5 В. И пусть это напряжение создает ток i Э = 5 мА. Мощность, расходуемая на управление транзистором, равна:

    Р ВХ = Е Э i Э = 0,5 × 5 ×10 -3 = 2,5 мВт.

    Пусть сопротивление полезной нагрузки в коллекторной цепи транзистора (рис. 1.17) равно R К = 1 кОм. По нагрузочному резистору протекает коллекторный ток, примерно равный эмиттерному току транзистора: i K » i Э . Выходная мощность, выделяющаяся на нагрузке, равна:

    Р Н = i K 2 R K = 25 мВт.

    Следовательно, в схеме (см. рис. 1.17) обеспечивается десятикратное усиление по мощности. Заметим, что для обеспечения такого усиления требуется, чтобы на коллекторный переход было подано большое запирающее напряжение:

    Е К > U K ,

    где U K = i K R K – падение напряжения на нагрузочном сопротивлении в цепи коллектора.

    Увеличенная энергия выходного сигнала обеспечивается источником питания в коллекторной цепи.

    Рассмотрим другие режимы работы транзистора:

    · в режиме насыщения возникает прямой ток коллекторного перехода. Его направление противоположно направлению диффузионного тока дырок. Результирующий ток коллектора резко уменьшается, и резко ухудшаются усилительные свойства транзистора;

    · редко используется транзи­стор в инверсном режиме, так как инжекционные свойства коллектора много хуже инжекционных свойств эмиттера;

    · в режиме отсечки все токи через транзистор практически равны нулю – оба перехода тран­зистора закрыты, и усилительные свойства транзистора не проявляют­ся.

    Кроме рассмотренной схемы включения транзистора с общей базой используются две другие схемы:

    1) при соединении с корпусом эмиттера транзистора получим схему с общим эмиттером (ОЭ) (рис. 1.17). Схема ОЭ наиболее часто встречается на практике;

    2) при соединении с корпусом коллектора транзистора получим схему с общим коллектором (ОК) . В этих схемах управляющее напряжение подается на базовый вывод транзистора.

    Зависимости токов через выводы транзистора от приложенных к транзистору напряжений называют вольт-амперными характеристи­ками (ВАХ) транзистора.

    Для схемы с общим эмиттером (рис. 1.17) ВАХ транзистора имеют вид (рис. 1.18, 1.19). Аналогичные графики можно получить для схемы с общей базой. Кривые (см. рис. 1.18) называются входными характеристиками транзистора , так как они показывают зависимость входного тока от управляющего входного напряжения, подаваемого между базой и эмиттером транзистора. Входные характеристики транзистора близки к характеристикам р- n -перехода.

    Зависимость входных характеристик от напряжения на коллекторе объясняется увеличением ширины кол­лекторного перехода и, следовательно, уменьшением толщины базы при увеличении обратного напряжения на коллекторе транзистора (эффект Эрли).

    Кривые (см. рис. 1.19) называются выходными характеристиками транзи­стора . Их используют для определения коллекторного тока транзистора. Увеличению коллекторного тока соответствует увеличе­ние управляющего напряжения на базе транзистора:

    u БЭ4 > u БЭ3 > u БЭ2 > u БЭ1. .

    При u КЭ £ U НАС (см. рис. 1.19) напряжение на коллекторе транзистора ста­новится меньше напряжения на базе. В этом случае открывается кол­лекторный переход транзистора, и возникает режим насыщен
    ия, при котором ток коллектора резко уменьшается.

    При большом напряжении на коллекторе ток коллектора начинает возрастать, так как возникает процесс лавинного (или теплового) про­боя коллекторного перехода транзистора.

    Из анализа ВАХ транзистора следует, что транзистор, как и диод, относится к нелинейным элементам. Однако в активном режиме при u КЭ > U НАС ток коллектора транзистора изменяется примерно прямо пропорционально приращениям входного управляющего напряжения на базе транзистора, т.е. выходная цепь транзистора близка по свойствам к идеальному управляемому источнику тока. Ток коллектора в активном режиме практически не зависит от нагрузки, подключаемой к коллектору транзистора.

    На рис. 1.20 показана простейшая линейная эквивалентное схема транзистора , полученная для активного режима работы при подаче на транзистор малых по амплитуде переменных сигналов (U m < 0,1 В). Основным элементом этой схемы является источник тока, управляемый входным напряжением:

    I K = SU БЭ ,

    где S – крутизна транзистора, равная для маломощных транзисторов 10…100 мА/В.

    Сопротивление r КЭ характеризует потери энергии в коллекторной цепи. Его значение для маломощных транзисторов равно десяткам и сотням килоом. Сопротивление эмиттерного перехода (r БЭ ) равно сотням ом или единицам килоом. Это сопротивление характеризует потери энергии на управление транзистором. Значения параметров эквивалентной схемы можно найти, указывая рабочие точки на входных и выходных ВАХ тран­зистора и определяя соответствующие производные в этих рабочих точках (или задавая в рабочих точках приращения соответствующих токов и напряжений).

    Необходимые пояснения даны, переходим к сути.

    Транзисторы. Определение и история

    Транзистор - электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

    Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

    Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

    Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

    В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» - дважды). А в полевом (он же униполярный) - или электроны, или дырки.

    Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые - в цифровой.

    И, напоследок: основная область применения любых транзисторов - усиление слабого сигнала за счет дополнительного источника питания.

    Биполярный транзистор. Принцип работы. Основные характеристики


    Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

    Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


    Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой - слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
    Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй - с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

    Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны - неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

    Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем - ток коллектора, а управляющий ток базы - то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

    Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

    Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) - соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

    Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

    Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

    Третий параметр биполярного транзистора - коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая - очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

    Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .

    Также параметрами биполярного транзистора являются:

    • обратный ток коллектор-эмиттер
    • время включения
    • обратный ток колектора
    • максимально допустимый ток

    Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

    Режимы работы биполярного транзистора

    Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
    1. Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
    2. Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
    3. Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
    4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

    Схемы включения биполярных транзисторов

    Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

    Схема включения с общим эмиттером

    Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности - до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор - обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

    Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

    Схема включения с общей базой

    Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное - не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

    В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

    Схема включения с общим коллектором

    Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

    Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

    Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

    В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

    Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

    Два слова о каскадах

    Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

    Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
    Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

    Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке - VT1), который управляет энергией питания более мощного собрата (на рисунке - VT2).

    Другие области применения биполярных транзисторов

    Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления - то сигнал произвольной формы, зависящий от управляющего воздействия.

    Маркировка

    Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .

    Полезные комментарии:
    http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

    Теги: Добавить метки

    Характеристики биполярных транзисторов

    Статическим режимом работы транзистора называется такой режим, при котором отсутствует нагрузка в выходной цепи, а изменение входного тока или напряжения не вызывает изменение выходного напряжения Рис.7.

    Статические характеристики транзисторов бывают двух видов: входные и выходные . На Рис.8. изображена схема установки для измерения статических характеристик транзистора, включённого по схеме с общим эмиттером.

    Рис.8. Схема

    измерений статических

    параметров транзистора с ОЭ.

    Входная статическая характеристика I Б от входного напряжения U БЭ при постоянном выходном напряжении U КЭ . Для схемы с общим эмиттером:

    I Б = f (U БЭ) при U ЭК = const.

    Поскольку ветви входной статической характеристики для U КЭ > 0 расположены очень близко друг к другу и практически сливаются в одну, то на практике с достаточной точностью можно пользоваться одной усреднённой характеристикой (Рис.9а ). Особенность входной статической характеристики является наличие в нижней части нелинейного участка в районе изгиба U 1 (приблизительно 0,2…0,3 В для германиевых транзисторов и 0,3…0,4 В – для кремниевых).

    Выходная статическая характеристика – это зависимость выходного тока I К от выходного напряжения U КЭ при постоянном входном токе I Б . Для схемы включения с общим эмиттером:

    I К = f (U КЭ) при I Б = const.

    Из Рис.9б видно, что выходные характеристики представляют собой прямые линии, почти параллельные оси напряжения. Это объясняется тем, что коллекторный переход закрыт независимо от величины напряжения база-коллектор, и ток коллектора определяется только количеством носителей заряда, проходящих из эмиттера через базу в коллектор, т. е. током эмиттера I Э .

    Динамическим режимом работы транзистора называется такой режим, при котором в выходной цепи стоит нагрузочный резистор R К , за счёт которого изменение входного тока или напряжения U ВХ будет вызывать изменение выходного напряжения U ВЫХ = U КЭ (Рис.10).


    Рис.9. Статические характеристики транзистора с ОЭ: а – входные; б – выходные.

    Входная динамическая характеристика – это зависимость входного тока I Б от входного напряжения U БЭ при наличии нагрузки. Для схемы с общим эмиттером:

    I Б = f (U БЭ)

    Поскольку в статическом режиме для U КЭ > 0 мы пользуемся одной усреднённой характеристикой, то входная динамическая характеристика совпадает со входной статической (Рис.11а ).

    Рис.10. Схема включения транзистора в динамическом режиме с ОЭ.

    Выходная динамическая (нагрузочная) характеристика представляет собой зависимость выходного напряжения U КЭ от выходного тока I К при фиксированных значениях входного тока I Б (Рис.11б ):

    U КЭ = E К – I К R К

    Так как это уравнение линейное, то выходная динамическая характеристика представляет собой прямую линию и строится на выходных статических характеристиках по двум точкам, например: А , В на Рис.11б .

    Координаты точки А [U КЭ = 0; I K = Е К R К ] – на оси I K .

    Координаты точки В [I K = 0; U КЭ = Е К ] – на оси U КЭ.

    Координаты точки Р [U 0К; I 0 K ] – соответствуют положению рабочей точки РТ в режиме покоя (при отсутствии сигнала).

    Рис.11. Динамические характеристики транзистора с ОЭ: а) – входная; б) – выходная.

    Нагрузочная пряма проводится через любые две точки А, В, или Р, координаты которых известны.

    В зависимости от состояния p-n переходов транзисторов различают несколько видов его работы – режим отсечки, режим насыщения, предельный и линейный режимы (Рис.11).

    Режим отсечки. Это режим, при котором оба его перехода закрыты – транзистор заперт. Ток базы в этом случае равен нулю. Ток коллектора будет равен обратному току I К0 , а напряжение U КЭ = E К.

    Режим насыщения – это режим, когда оба перехода – и эмиттерный и коллекторный открыты, а в транзисторе происходит свободный переход носителей зарядов. При этом ток базы будет максимальный, ток коллектора будет равен току коллектора насыщения, а напряжение между коллектором и эмиттером стремиться к нулю.

    I Б = max; I К ≈ I КН; U КЭ = E К – I КН R Н; U КЭ → 0.

    Предельные режимы – это режимы, работа в которых ограничена максимально-допустимыми параметрами: I К доп, U КЭ доп, P К доп (Рис.11б ) и I Б нас, U БЭ доп (Рис.11а ) и связана с перегревом транзистора или выхода его из строя.

    Линейный режим – это режим, в котором обеспечивается достаточная линейность характеристик и он может использоваться для активного усиления.

    ТЕМА 4. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

    4.1 Устройство и принцип действия

    Биполярный транзистор – это полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и пригодный для усиления мощности.

    Выпускаемые в настоящее время биполярные транзисторы можно классифицировать по следующим признакам:

    По материалу: германиевые и кремниевые;

    По виду проводимости областей: типа р-n-р и n-p-n;

    По мощности: малой (Рмах £ 0,3Вт), средней (Рмах £ 1,5Вт) и большой мощности (Рмах > 1,5Вт);

    По частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

    В биполярных транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок (или основными и неосновными). Отсюда их название – биполярные.

    В настоящее время изготавливаются и применяются исключительно транзисторы с плоскостными р-n- переходами.

    Устройство плоскостного биполярного транзистора показано схематично на рис. 4.1.

    Он представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n-р-n средняя область имеет дырочную, а крайние области – электронную электропроводность.

    Транзисторы типа р-n-р имеют среднюю область с электронной, а крайние области с дырочной электропроводностью.

    Средняя область транзистора называется базой, одна крайняя область – эмиттером, другая – коллектором. Таким образом в транзисторе имеются два р-n- перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором. Площадь эмиттерного перехода меньше площади коллекторного перехода.

    Эмиттером называется область транзистора назначением которой является инжекция носителей заряда в базу. Коллектором называют область, назначением которой является экстракция носителей заряда из базы. Базой является область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

    Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а их концентрация в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера на несколько порядков выше проводимости базы, а проводимость коллектора несколько меньше проводимости эмиттера.

    От базы, эмиттера и коллектора сделаны выводы. В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

    Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

    Рассмотрим принцип действия транзистора на примере транзистора р-n-р –типа, включенного по схеме с общей базой (рис. 4.2).


    Рисунок 4.2 – Принцип действия биполярного транзистора (р-n-р- типа)

    Внешние напряжения двух источников питания ЕЭ и Ек подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении (прямое напряжение), а коллекторного перехода П2 – в обратном направлении (обратное напряжение).

    Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток Iко (единицы микроампер). Этот ток возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Ек, база-коллектор, −Ек. Величина обратного тока коллектора не зависит от напряжения на коллекторе, но зависит от температуры полупроводника.

    При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование (впрыскивание) дырок в базу.

    Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Ек. Дырки, рекомбинировавшие с электронами в базе, создают ток базы IБ.

    Под действием обратного напряжения Ек потенциальный барьер коллекторного перехода повышается, толщина перехода П2 увеличивается. Но потенциальный барьер коллекторного перехода не создает препятствия для прохождения через него дырок. Вошедшие в область коллекторного перехода дырки попадают в сильное ускоряющее поле, созданное на переходе коллекторным напряжением, и экстрагируются (втягиваются) коллектором, создавая коллекторный ток Iк. Коллекторный ток протекает по цепи: +Ек, база-коллектор, -Ек.

    Таким образом, в транзисторе протекает три тока: ток эмиттера, коллектора и базы.

    В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Следовательно, ток базы равен разности токов эмиттера и коллектора: IБ = IЭ − IК.

    Физические процессы в транзисторе типа n-р-n протекают аналогично процессам в транзисторе типа р-n-р.

    Полный ток эмиттера IЭ определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток Iк. Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы IБ. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. IЭ = IБ + Iк.

    Ток эмиттера является входным током, ток коллектора – выходным. Выходной ток составляет часть входного, т.е.

    (4.1)

    где a- коэффициент передачи тока для схемы ОБ;

    Поскольку выходной ток меньше входного, то коэффициент a<1. Он показывает, какая часть инжектированных в базу носителей заряда достигает коллектора. Обычно величина a составляет 0,95¸0,995.

    В схеме с общим эмиттером выходным током является ток коллектора, а входным – ток базы. Коэффициент усиления по току для схемы ОЭ:

    (4.2) (4.3)

    Следовательно, коэффициент усиления по току для схемы ОЭ составляет десятки единиц.

    Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

    Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Ек значительно больше, чем эмиттерного Еэ, то и мощность, потребляемая в цепи коллектора Рк, будет значительно больше мощности в цепи эмиттера Рэ. Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

    4.2 Схемы включения биполярных транзисторов

    В электрическую цепь транзистор включают таким образом, что один из его выводов (электрод) является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК. Эти схемы для транзистора типа р-n-р приведены на рис. 4.3. Для транзистора n-р-n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора (в активном режиме) полярность включения источников питания должна быть выбрана так, чтобы эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.


    Рисунок 4.3 – Схемы включения биполярных транзисторов: а) ОБ; б) ОЭ; в) ОК

    4.3 Статические характеристики биполярных транзисторов

    Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

    Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

    4.3.1 Характеристики транзистора, включенного по схеме ОБ

    Входной характеристикой является зависимость:

    IЭ = f(UЭБ) при UКБ = const (рис. 4.4, а).

    Выходной характеристикой является зависимость:

    IК = f(UКБ) при IЭ = const (рис. 4.4, б).


    Рисунок 4.4 – Статические характеристики биполярного транзистора, включенного по схеме ОБ

    Выходные ВАХ имеют три характерные области: 1 – сильная зависимость Iк от UКБ (нелинейная начальная область); 2 – слабая зависимость Iк от UКБ (линейная область); 3 – пробой коллекторного перехода.


    Термин «биполярный транзистор» связан с тем, что в этих транзисторах используются носители зарядов двух типов: электроны и дырки. Для изготовления транзисторов применяют те же полупроводниковые материалы, что и для .

    В биполярных транзисторах с помощью трехслойной полупроводниковой структуры из полупроводников создаются два p–n-перехода с чередующими типами электропроводности (p–n–p или n–p–n).

    Биполярные транзисторы конструктивно могут быть беcкорпусными (рис.1,а) (для применения, например, в составе интегральных микросхем) и заключенными в типовой корпус (рис. 1,б). Три вывода биполярного транзистора называются база , коллектор и эмиттер .

    Рис. 1. Биполярный транзистор: а) p–n–p-структуры без корпуса, б) n–p–n-структуры в корпусе

    В зависимости от общего вывода можно получить три схемы подключения биполярного транзистора : с общей базой (ОБ), общим коллектором (ОК) и общим эмиттером (ОЭ). Рассмотрим работу транзистора в схеме с общей базой, (рис. 2).

    Рис. 2. Схема работы биполярного транзистора

    Эмиттер инжектирует (поставляет) в базу основные носители, в нашем примере для полупроводниковых приборов n-типа ими будут электроны. Источники выбирают так, чтобы E2 >> E1. Резистор Rэ ограничивает ток открытого p–n-перехода.

    При E1 = 0 ток через коллекторный переход мал (обусловлен неосновными носителями), его называют начальным коллекторным током Iк0. Если E1 > 0, электроны преодолевают эмиттерный p–n-переход (E1 включена в прямом направлении) и попадают в область базы.

    Базу выполняют с большим удельным сопротивлением (малой концентрацией примеси), поэтому концентрация дырок в базе низкая. Следовательно, немногие попавшие в базу электроны рекомбинируют с ее дырками, образуя базовый ток Iб. Одновременно в коллекторном p–n-переходе со стороны E2 действует много большее поле, чем в эмиттерном переходе, которое увлекает электроны в коллектор. Поэтому подавляющее большинство электронов достигают коллектора.

    Эмиттерный и коллекторный токи связаны коэффициентом передачи тока эмиттера

    при Uкб = const.

    Всегда ∆ Iк ∆ Iэ, а a = 0,9 - 0,999 для современных транзисторов.

    В рассмотренной схеме Iк = Iк0 + aIэ » Iэ. Следовательно, схема биполярного транзистора с общей базой обладает низким коэффициентом передачи тока. Из-за этого ее применяют редко, в основном в высокочастотных устройствах, где по усилению напряжения она предпочтительнее других.

    Основной схемой включения биполярного транзистора является схема с общим эмиттером, (рис. 3).

    Рис. 3. Включение биполярного транзистора по схеме с общим эмиттером

    Для нее по можно записать Iб = Iэ – Iк = (1 – a)Iэ – Iк0 .

    Учитывая, что 1 – a = 0,001 - 0,1, имеем Iб << Iэ » Iк.

    Найдем отношение тока коллектора к току базы:

    Это отношение называют коэффициентом передачи тока базы . При a = 0,99 получаем b = 100. Если в цепь базы включить источник сигнала, то такой же сигнал, но усиленный по току в b раз, будет протекать в цепи коллектора, образуя на резисторе Rк напряжение много большее, чем напряжение источника сигнала.

    Для оценки работы биполярного транзистора в широком диапазоне импульсных и постоянных токов, мощностей и напряжений, а также для расчета цепи смещения, стабилизации режима используются семейства входных и выходных вольтамперных характеристик (ВАХ) .

    Семейство входных ВАХ устанавливают зависимость входного тока (базы или эмиттера) от входного напряжения Uбэ при Uк = const, рис. 4,а. Входные ВАХ транзистора аналогичны ВАХ диода в прямом включении.

    Семейство выходных ВАХ устанавливает зависимость тока коллектора от напряжения на нем при определенном токе базы или эмиттера (в зависимости от схемы с общим эмиттером или общей базой), рис. 4, б.

    Рис. 4. Вольт-амперные характеристики биполярного транзистора: а – входные, б – выходные

    Кроме электрического перехода n–p, в быстродействующих цепях широко используется переход на основе контакта металл–полупроводник – барьер Шоттки (Schottky). В таких переходах не затрачивается время на накопление и рассасывание зарядов в базе, и быстродействие транзистора зависит только от скорости перезарядки барьерной емкости.

    Рис. 5. Биполярные транзисторы

    Параметры биполярных транзисторов

    Для оценки максимально допустимых режимов работы транзисторов используют основные параметры:

    1) максимально допустимое напряжение коллектор–эмиттер (для различных транзисторов Uкэ макс = 10 - 2000 В),

    2) максимально допустимая мощность рассеяния коллектора Pк макс – по ней транзисторы делят на транзисторы малой мощности (до 0,3 Вт), средней мощности (0,3 - 1,5 Вт) и большой мощности (более 1,5 Вт), транзисторы средней и большой мощности часто снабжаются специальным теплоотводящим устройством – радиатором,

    3) максимально допустимый ток коллектора Iк макс – до 100 А и более,

    4) граничная частота передачи тока fгр (частота, на которой h21 становится равным единице), по ней биполярные транзисторы делят:

    • на низкочастотные – до 3 МГц,
    • среднечастотные – от 3 до 30 МГц,
    • высокочастотные – от 30 до 300 МГц,
    • сверхвысокочастотные – более 300 МГц.

    д.т.н., профессор Л. А. Потапов