• Виды аналоговой модуляции. Виды модуляции

    Предупреждаю сразу: сильно просто не получится. Слишком уж сложная штука модуляция.

    Что бы понять, что такое модуляция, нужно знать, что такое частота, с этого и начнём.
    Для примера возьмём качели: частота качания качелей, это число полных колебаний, качелей в секунду.
    Полных, это значит что одно колебание, это движение качели от самого крайнего левого положения, вниз, через центр до самого максимального уровня справа и потом опять через центр до того же уровня слева.
    Обычные дворовые качели имеют частоту порядка 0,5 герца, значит что полное колебание они совершают за 2 секунды.
    Динамик звуковой колонки качается гораздо быстрее, воспроизводя ноту "Ля" первой октавы (440 герц), он совершает 440 колебаний в секунду.
    В электрических цепях колебания, это качание напряжения, от максимального положительного значения, вниз, через ноль напряжения до максимального отрицательного значения, вверх, через ноль опять до максимального положительного. Или от максимального напряжения, через некое среднее до минимального, потом опять через среднее, опять до максимального.
    На графике (или экране осциллографа) это выглядит так:

    Частота колебаний напряжения на выходе радиостанции излучающей несущую на 18 канале сетки C в "европпе" будет 27175000 колебаний в секунду или 27 мегагерц и 175 килогерц (мега - миллион; кило - тысяча).

    Что бы сделать модуляцию наглядной, выдумаем два неких сигнала, один частотой 1000Гц, второй 3000Гц, графически они выглядят так:

    Заметим, как отображены эти сигналы на графиках слева. Это графики частоты и уровня. Чем больше частота сигнала, тем правее будет изображён на таком графике сигнал, чем больше его уровень (мощность), тем выше линия этого сигнала на графике.

    Теперь представим, что оба эти сигнала мы сложили, то есть в готовом виде наш вымышленный тестовый сигнал есть сумма двух сигналов. Как сложили? Очень просто - поставили микрофон и посадили двух людей перед ним: мужика, который кричал на частоте 1000Гц и бабу, которая верещала на 3000Гц, на выходе микрофона мы получили наш тестовый сигнал, который выглядит так:

    И вот именно этот тестовый сигнал мы и будем "подавать" на микрофонный вход нашего вымышленного передатчика, изучая что получается на выходе (на антенне) и как всё это влияет на разборчивость и дальность связи.

    О модуляции вообще

    Модулированный сигнал несущей на выходе любого передатчика в любом случае (при любой модуляции) получается методом сложения или умножения сигнала несущей на сигнал, который нужно передать, например сигнал с выхода микрофона. Разница между модуляциями лишь в том, что умножается, с чем складывается и в какой части схемы передатчика это происходит.
    В плане приёма, тут всё сводится к тому, что бы из принятого сигнала выделить то, чем был модулирован сигнал, усилить это и сделать понятным (слышимым, видимым).

    Амплитудная модуляция - AM (АМ, амплитудная модуляция)

    Как можно видеть, при амплитудной модуляции уровень напряжения колебаний высокой частоты (несущей) напрямую зависит от величины напряжения поступающего с микрофона.
    Напряжение на выходе микрофона увеличивается, увеличивается и напряжение несущей на выходе передатчика, то есть больше мощности на выходе, меньше напряжение с микрофона, меньше напряжение на выходе. Когда напряжение на выходе микрофона в некой центральной позиции, то передатчик излучает некую центральную мощность (при АМ модуляции в 100% при тишине перед микрофоном 50% мощности).
    Глубиной АМ модуляции называется уровень влияния сигнала с микрофона на уровень выходной мощности передатчика. Если виляние 30% то значит самый сильный отрицательный импульс напряжения с микрофона уменьшит уровень несущей на выходе на 30% от максимальной мощности.
    А вот так выглядит спектр сигнала с AM модуляцией (распределение его компонентов по частотам):

    По центру, на частоте 27175000 Гц у нас несущая, а ниже и выше по частоте "боковые полосы", то есть суммы сигнала несущей и звуковых частот нашего тестового сигнала:
    27175000+1000Гц и 27175000-1000Гц
    27175000+3000Гц и 27175000-3000Гц
    Сигналы "несущая минус звук" - нижняя боковая полоса, а "несущая плюс звук" - верхняя боковая полоса.
    Не трудно заметить, что для передачи информации достаточно только одной боковой полосы, вторая лишь повторяет ту же самую информацию, но только с противоположным знаком попусту расходуя мощность передатчика на излучение этой дублирующей информации в эфир.
    Если убрать несущую, которая полезной информации вообще не содержит и одну из боковых полос, то получиться SSB модуляция (по-русски: ОБП) - модуляция с одной боковой полосой и отсутствующей несущей (однополосная модуляция).

    SSB модуляция (ОБП, однополосная модуляция)

    Вот так выглядит SSB на выходе передатчика:

    Видно, что этот сигнал мало чем отличается от АМ модуляции. Оно и понятно, SSB это продолжение AM, то есть SSB создаётся из АМ модуляции, из сигнала которой удаляется не нужная боковая полоса и несущая.
    Если же взглянуть на спектр сигнала, то разница очевидна:

    Здесь нет ни несущей ни дублирующей боковой полосы (на этом графике показана USB, т.е. однополосная модуляция, где оставлена верхняя боковая полоса, есть ещё и LSB, это когда оставлена нижняя боковая полоса).
    Нет несущей, нет дублирующей боковой - вся мощность передатчика уходит только на передачу полезной информации.
    Только принять такую модуляцию на обычный АМ приёмник невозможно. Для приёма нужно восстановить "отправную точку" - несущую. Сделать это просто - частота на которой работает передатчик известна, значит нужно лишь добавить несущую такой же частоты и отправная точка появиться. Любопытный читатель наверно уже заметил, что если не известна частота передатчика, то отправная точка будет не правильная, мы добавим не ту несущую, что же мы при этом услышим? А услышим мы при этом голос или "быка" или "гномика". Произойдёт это потому, что приёмник в данном виде модуляции не знает, какие частоты были у нас изначально, то ли это были 1000Гц и 3000Гц, то ли 2000Гц и 4000Гц, то ли 500Гц и 2500Гц - "расстояния" то между частотами верные, а вот начало сместиться, как результат или "пи-пи-пи" или "бу-бу-бу".

    CW модуляция (телеграф)

    С телеграфом всё просто - это сигнал 100% АМ модуляция, только резкая: или сигнал есть на выходе передатчика или сигнала нет. Нажат телеграфный ключ - есть сигнал, отпущен - нет ничего.
    Выглядит на графиках телеграф вот так:

    Соответственно спектр телеграфного сигнала:

    То есть частота несущей 100% промодулирована нажатиями на телеграфный ключ.
    Почему на спектре 2 палочки немного отступая от сигнала "центральной частоты" а не одна единственная - несущей?
    Здесь всё просто: как бы то ни было, телеграф это АМ, а АМ это сумма сигналов несущей и модуляции, так как телеграф (морзянка), это серия нажатий на ключик то это тоже колебания с некоторой но частотой, пусть и низкой по сравнению со звуком. Именно на частоту нажатия на ключик и отступают боковые полосы телеграфного сигнала от несущей.
    Как передавать такие сигналы?
    В простейшем случае - нажимая на кнопку передачи во время молчания перед микрофоном.
    Как принимать такие сигналы?
    Для приёма нужно несущую, появляющуюся в эфире в такт нажатиям на ключ, превратить в звук. Методов много, самый простой - подключить к выходу детектора АМ приёмника схему, которая пикает каждый раз как на детекторе появляется напряжение (т.е. на детектор поступает несущая). Более сложный и разумный способ - смешать сигнал поступающий из эфира с сигналом генератора (гетеродина) встроенного в приёмник, а разность сигналов подать на усилитель звука. Так если частота сигнала в эфире 27175000Гц, частота генератора приёмника 27174000, то на вход усилителя звуковой частоты поступит сигнал 27175000+27174000=54349000Гц и 27175000-27174000=1000Гц, естественно первый из них не звуковой а радиосигнал, его усилитель звука не усилит, а вот второй, 1000Гц, это уже слышимый звук и его он усилит и мы услышим "пииии", пока есть в эфире несущая и тишину (шумы эфира) когда нет.
    Кстати, когда включаются двое на передачу одновременно, эффект "пииии" возникающий от сложения и вычитания несущих в приёмнике, думаю, замечали многие. То что слышно - разница между сигналами несущих возникающая в нашем приёмнике.

    FM модуляция (ЧМ, частотная модуляция)

    Собственно суть частотной модуляции проста: частота несущей в такт напряжению на выходе микрофона немного меняется. Когда напряжение на микрофоне увеличивается, увеличивается и частота, когда уменьшается напряжение на выходе микрофона, то уменьшается и частота несущей.
    Уменьшение и увеличение частоты несущей происходит в небольших пределах, например для Си-Би радиостанций это плюс/минус 3000Гц при частоте несущей порядка 27000000Гц, для радиовещательных станций FM диапазона, это плюс/минус 100000Гц.
    Параметр ЧМ модуляции - индекс модуляции. Соотношение звука максимальной частоты которую пропустит микрофонный усилитель передатчика к максимальному изменению частоты несущей при самом громком звуке. Не трудно заметить, что для Си-Би это 1 (или 3000/3000), а для вещательных станций FM это примерно 6 ... 7 (100000/15000).
    При ЧМ модуляции несущая по уровню (мощность сигнала передатчика) всегда постоянна, она не меняется от громкости звуков перед микрофоном.
    В графическом виде, на выходе передатчика ЧМ модуляция выглядит так:

    При ЧМ модуляции, как и при АМ на выходе передатчика есть и несущая и две боковые полосы, так как частота несущей болтается в такт модулирующему сигналу, отступая от центра:

    DSB, ДЧТ, фазовая и другие виды модуляции

    Справедливости ради, нужно отметить, что существуют и другие виды модуляции несущей:
    DSB - две боковые полосы и отсутствующая несущая. DSB, по сути АМ модуляция у которой удалена (вырезана, подавлена) несущая.
    ДЧТ - двухчастотный телеграф, по сути, есть не что иное, как частотная модуляция, но нажатиями телеграфного ключа. Например, точке соответствует сдвиг несущей на 1000Гц, а тире на 1500Гц.
    Фазовая модуляция - модуляция фазы несущей. Частотная модуляция при малых индексах 1-2 по сути есть фазовая модуляция.

    В некоторых системах (телевидение, FM стерео радиовещание) модуляция несущей осуществляется ещё одной промодулированной несущей, а она уже и несёт полезную информацию.
    Например, упрощённо, FM стерео вещательный сигнал, это несущая промодулированная частотной модуляцией, сигналом который сам есть несущая промодулированная DSB модуляций, где одна боковая - это сигнал левого канала, а другая боковая полоса это сигнал правого канала звука.

    Важные аспекты приёма и передачи сигналов АМ, ЧМ и SSB

    Так как АМ и SSB это модуляции, у которых выходной сигнал передатчика пропорционален напряжению, поступающему с микрофона, то важно, что бы он линейно усиливался, как на приёмной, так и на передающей стороне. То есть если усилитель усиливает в 10 раз, то при напряжении на его входе 1 вольт на выходе должно быть 10 вольт, а при 17 вольтах на входе на выходе должно быть точно 170 вольт. Если усилитель будет не линеен, то есть при напряжении на входе 1 вольт усиление 10 и на выходе 10 вольт, а при 17 вольтах на входе усиление окажется лишь 5 и на выходе будет 85 вольт, то появятся искажения - хрипы и хрюки при громких звуках перед микрофоном. Если усиление будет наоборот меньше для малых входных сигналах, то будут хрипы при тихих звуках и неприятные призвуки даже при громких (потому что в начале своего колебания любой звук проходит зону близкую к нулю).
    Особенна важна линейность усилителей для SSB модуляции.

    Для выравнивания уровней сигналов в приёмниках АМ и SSB используются специальные узлы схемы - автоматические регуляторы усиления (схемы АРУ). Задача АРУ выбирать такое усиление узлов приёмника, что бы и сильный сигнал (от близкого корреспондента) и слабый (от удалённого), в конце концов, оказались примерно одинаковыми. Если АРУ не использовать, то слабые сигналы будут слышны тихо-тихо, а сильные разорвут излучатель звука приёмника в клочки, как капля никотина разрывает хомяка. Если же АРУ будет слишком быстро реагировать на изменение уровня, то она начнёт не просто выравнивать уровни сигналов от близких и далёких корреспондентов, но и внутри сигнала "душить" модуляцию - уменьшая усиление при повышении напряжения и повышая при понижении, сводя всю модуляцию к немодулированному сигналу.

    Для ЧМ модуляции не требуется особой линейности усилителей, при ЧМ модуляции информацию несёт изменение частоты и никакое искажение или ограничение уровня сигнала не может изменить частоту сигнала. Собственно в приёмнике ЧМ вообще обязательно установлен ограничитель уровня сигнала, так как уровень не важен, важна частота, а изменение уровня будет только мешать выделить изменения частоты и превратить ЧМ несущую в звук сигнала, которым она промодулирована.
    К слову сказать, именно из-за того, что в ЧМ приёмнике все сигналы ограничиваются, то есть слабые шумы имеют почти тот же уровень, что и сильный полезный сигнал, в отсутствии сигнала ЧМ детектор (демодулятор) так сильно шумит - он пытается выделить изменение частоты шумов на входе приёмника и шумов самого приёмника, а в шумах изменение частоты сильно велико и случайно, вот и слышны случайные сильные звуки: громкий шум.
    В АМ и SSB приёмнике шума при отсутствии сигнала меньше, так как сам шум приёмника по уровню всё же мал и шумы на входе по сравнению с полезным сигналом по уровню малы, а для AM и SSB важен именно уровень.

    Для телеграфа тоже не очень важна линейность, там информацию несёт само наличие или отсутствие несущей, а её уровень лишь побочный параметр.

    ЧМ, АМ и SSB на слух

    В сигналах АМ и SSB гораздо заметнее импульсные помехи, такие как треск неисправного зажигания автомобилей, щелчки грозовых разрядов или рокот от импульсных преобразователей напряжения.
    Чем слабее сигнал, чем меньше его мощность, тем тише звук на выходе приёмника, а чем сильнее, тем громче. Хотя АРУ и делает своё дело, выравнивая уровни сигналов, но её возможности не бесконечны.
    Для SSB модуляции практически невозможно пользоваться шумоподавителем и вообще понять, когда другой корреспондент отпустил передачу, так как при молчании перед микрофоном в SSB передатчик в эфир ничего не излучает - нет несущей, а если перед микрофоном тишина, то нет и боковых полос.

    ЧМ сигналы меньше подвержены влиянию импульсных помех, но из-за сильного шума ЧМ детектора в отсутствии сигнала просто невыносимо сидеть без шумоподавителя. Каждое выключение передачи корреспондента в приёмнике сопровождается характерным "пшык" - детектор уже начал переводить шумы в звук, а шумоподавитель ещё не закрылся.

    Если слушать АМ на ЧМ приёмник или наоборот, то будет слышно хрюканье, но разобрать о чём речь всё же можно. Если на ЧМ или АМ приёмник послушать SSB, то будет только дикая аудио-каша из "хрю-жу-жу-бжу" и совершенно никакой разборчивости.
    На SSB приёмник можно прекрасно послушать CW (телеграф), АМ, а с некоторыми искажениями и ЧМ с малыми индексами модуляции.

    Если включаются одновременно две или больше АМ или ЧМ радиостанций на одной частоте, то получается каша из несущих, этакий писк и визг среди которого ничего не разобрать.
    Если же включатся два или больше SSB передатчика на одной частоте, то в приёмнике будет слышно всех, кто говорил, так как несущей у SSB нет и биться (смешиваться до свиста) нечему. Слышно всех, так, словно все сидят в одной комнате и разом заговорили.

    Если у АМ или ЧМ частота приёмника не точно совпадает с частотой передатчика, то появляются искажения на громких звуках, "подхрипывания".
    Если у SSB передатчика частота меняется в такт уровню сигнала (например, аппаратура не тянет по питанию), то в голосе слышно бульканье. Если плавает частота приёмника или передатчика, то звук плавает по частоте, то "бубнит", то "чирикает".

    Эффективность видов модуляции - АМ, ЧМ и SSB

    Теоретически, подчёркиваю - теоретически, при равной мощности передатчика, дальность связи от вида модуляции будет зависеть так:
    АМ = Расстояние * 1
    ЧМ = Расстояние * 1
    SSB = Расстояние * 2
    В той самой теории, энергетически, SSB выигрывает у АМ в 4 раза по мощности, или в 2 раза по напряжению. Выигрыш появляется за счёт того, что мощность передатчика не расходуется на излучение бесполезной несущей и попусту дублирующей информацию второй боковой полосы.
    На практике выигрыш меньше, так как мозг человека не привык слышать шумы эфира в паузах между громкими звуками и несколько страдает разборчивость.
    ЧМ тоже модуляция "с сюрпризом" - одни умные книги говорят, что АМ и ЧМ одна другой не лучше, а то и вовсе ЧМ хуже, другие утверждают, что при малых индексах модуляции (а это Си-Би и радиолюбительские радиостанции) ЧМ выигрывает у АМ в 1,5 раза. На деле, по субъективному мнению автора ЧМ "пробивнее", чем АМ примерно в 1,5 раза, прежде всего, потому что ЧМ менее подвержена импульсным помехам и качаниям уровня сигнала.

    Аппаратура АМ, ЧМ и SSB в плане сложности и переделки одного в другое

    Самая сложная аппаратура это SSB.
    По сути SSB аппарат с лёгкостью может работать в AM или ЧМ после ничтожно малой переделки.
    Переделать АМ или ЧМ приёмопередатчик в SSB почти невозможно (потребуется ввести в схему очень, очень много дополнительных узлов и полностью переделать блок передатчика).
    От автора: переделка АМ или ЧМ аппарата в SSB лично мне кажется полным безумием.
    SSB аппарат "с нуля" - собирал, но что бы переделать АМ или ЧМ в SSB - нет.

    Второй по сложности, это ЧМ аппарат.
    По сути ЧМ аппарат уже содержит в приёмнике всё, что нужно для детектирования АМ сигналов, так как у него тоже есть АРУ (автоматическая регулировка усиления) и следовательно детектор уровня принимаемой несущей, то есть по сути полноценный АМ приёмник, только работающий где-то там, внутри (от этой части схемы работает и пороговый шумоподавитель).
    С передатчиком будет сложнее, так как почти все его каскады работают в не линейном режиме.
    От автора: переделать можно, но никогда в этом не было нужды.

    АМ аппаратура самая простая.
    Что бы переделать АМ приёмник в ЧМ, потребуется ввести новые узлы - ограничитель и ЧМ детектор. По факту ограничитель и ЧМ детектор, это 1 микросхема и чуть-чуть деталей.
    Переделка АМ передатчика в ЧМ значительно проще, так как нужно лишь ввести цепочку, которая будет "болтать" частоту несущей в такт напряжению, поступающему с микрофона.
    От автора: пару раз переделывал АМ трансивер в АМ/ЧМ, в частности Си-Би радиостанции "Cobra 23 plus" и "Cobra 19 plus".

    Контрольные вопросы к лекции 6

    6-1. Как системы передачи данных подразделяются в зависимости от используемой в них среды распространения сигнала?

    6-2. Что используется в качестве непрерывной передающей среды?

    6-3. Что используется в качестве открытой передающей среды?

    6-4. Перечислите разновидности проводных линий связи?

    6-5. Чем обусловлены мультипликативные помехи?

    6-6- Что является причиной внутренних аддитивных помех?

    6-7. Что является причиной внешних аддитивных помех?

    6-8. Перечислите основные типы внешних аддитивных помех?

    6-9. Что является причиной гальванических наводок?

    6-10. Что является причиной емкостных наводок?

    6-11. Что является причиной магнитных наводок?

    6-12. Что является причиной электромагнитных наводок?

    6-13. Что используется в качестве второго провода в однопроводной несимметричной линии?

    6-14. Почему однопроводная линия называется несимметричной?

    6-15. Изобразите эквивалентную схему однопроводной несимметричной линии?

    6-16- Почему в однопроводной несимметричной линии возникают помехи общего вида?

    6-17. Какие составляющие содержит помеха нормального вида?

    6-18. Для чего в простейшем случае используется второй сигнальный провод?

    6-19. Почему установка второго сигнального провода существенно ослабляет магнитную наводку?

    6-20. При каком условии установка второго сигнального провода ослабляет гальваническую наводку?

    6-21. Каким способом можно обеспечить симметричные условия передачи сигналов по обоим проводам двухпроводной линии?

    6-22. Почему скрутка проводов практически устраняет магнитную составляющую помехи?

    6-23. Какое средство используется для уменьшения емкостных наводок?

    6-24. Опишите конструкцию коаксиального кабеля.

    6-25. В чем состоят преимущества коаксиального кабеля перед симметричным кабелем?

    6-26- Что обеспечивает широкую полосу пропускания коаксиальных кабелей?

    6-27. Как распределяется рабочий ток во внешнем и внутреннем проводах коаксиального кабеля в зависимости от частоты рабочего тока?

    6-28. Как распределяется влияющий ток во внешнем и внутреннем проводах коаксиального кабеля в зависимости от частоты влияющего тока?

    6-29. Как влияет величина шага скрутки проводов в витой паре на ослабление помех?

    6-30. Перечислите основные элементы линейно тракта ВОЛС.

    6-31. Что представляет собой световод?

    6-32. За счет чего происходит направленная передача энергии в световоде?

    6-33. От чего зависит характер прохождения оптического излучения через световод?

    6-34. Какими оптическими явлениями сопровождается распространение света по световоду?

    6-35. Что используется в качестве источников и приемников света в ВОЛС?


    6-36- В чем состоят основные преимущества СПД с использованием ВОЛС?

    6-37. Что представляют собой радиорелейные линии прямой видимости?

    6-38. Чем тропосферные РРЛ отличаются от РРЛ прямой видимости?

    6-39. Чем спутниковые РРЛ отличаются от тропосферных РРЛ?

    6-40. Чем спутниковый ретранслятор отличается от ретрансляторов, применяемых на обычных РРЛ?


    Лекция 7. Непрерывные методы модуляции и манипуляции

    При передаче информации по непрерывному каналу используется определенный физический процесс, называемый переносчиком или несущей.

    Математической моделью переносчика может служить функция времени l(t,A,B,…) , зависящая также от параметров А, В,….

    Некоторые параметры функции фиксированы при данных условиях передачи, и тогда они могут исполнять роль идентифицирующих параметров, т.е. по ним можно определять принадлежность данного сигнала к определенному классу сигналов.

    Другие параметры подвергаются воздействию со стороны передатчика. Это воздействие на них называется модуляцией, а эти параметры исполняют роль информативных параметров.

    В общем случае модуляция есть отображение множества возможных значений входного сигнала на множество значений информативного параметра переносчика. Устройство, осуществляющее модуляцию, называется модулятором. На один вход модулятора действует реализация входного сигнала x(t) , на другой– сигнал- переносчик l(t,A) . Модулятор формирует выходной сигнал l(t,A) , информативный параметр которого изменяется во времени в соответствии с передаваемым сигналом. В более узком смысле под модуляцией понимается воздействие на переносчик, выражающееся в умножении информативного, т.е. модулируемого параметра на множитель , где h(t) - модулирующая функция, соответствующая реализации x(t) входного сигнала, определяемая так, что ½h(t)½£1 , а М – коэффициент модуляции.

    Основное назначение модуляции состоит в перенесении спектра сигнала в заданную частотную область для обеспечения возможности передачи его по каналу и повышения помехоустойчивости передачи.

    В зависимости от вида используемого при модуляции переносчика различают непрерывные и импульсные виды модуляции. При непрерывной модуляции в качестве несущего используется гармоническое колебание. При импульсной модуляции в качестве несущей используется периодическая последовательность прямоугольных импульсов.

    Рассмотрим основные принципы непрерывных методов модуляции, когда в качестве переносчика или несущей или модулируемого напряжения используется гармоническое напряжение , где -амплитуда напряжения, -несущая частота, -начальная фаза (рис. 2.7).

    Модуляцией называют процесс преобразования одной либо нескольких характеристик модулирующего высокочастотного колебания при воздействии управляющего низкочастотного сигнала. В итоге спектр управляющего сигнала перемещается в высокочастотную область, где передача высоких частот является более эффективной.

    Модуляция выполняется с целью передачи информации посредством . Передаваемые данные содержатся в управляющем сигнале. А функцию переносчика осуществляет высокочастотное колебание, именуемое несущим. В роли несущего колебания могут быть использованы колебания разнообразной формы: пилообразные, прямоугольные и др., но обычно используют гармонические синусоидальные. Исходя из того, какая именно характеристика синусоидального колебания изменяется, различают несколько типов модуляции:

    Амплитудная модуляция

    На вход модулирующего устройства передают модулирующий и опорный сигналы, в результате на выходе имеем смодулированный сигнал. Условием корректного преобразования считается удвоенное значение несущей частоты в сравнении с максимальным значением полосы модулирующего сигнала. Данный тип модуляции достаточно прост в исполнении, но отличается невысокой помехоустойчивостью.

    Помехонеустойчивость возникает вследствие узкой полосы модулируемого сигнала. Ее используют в основном в средне- и низкочастотных интервалах электромагнитного спектра.

    Частотная модуляция

    В результате данного типа модуляции сигнал модулирует частоту опорного сигнала, а не мощность. Поэтому если величина сигнала увеличивается, то, соответственно, растет частота. Ввиду того, что полоса получаемого сигнала намного шире исходной величины сигнала.

    Такая модуляция характеризуется высокой помехоустойчивостью, однако для ее применения следует использовать высокочастотный диапазон.

    Фазовая модуляция

    В процессе данного типа модуляции модулирующий сигнал использует фазу опорного сигнала. При данном типе модулирования получаемый сигнал имеет достаточно широкий спектр, потому что фаза оборачивается на 180 градусов.

    Фазовая модуляция активно используется для формирования помехозащищенной связи в микроволновом диапазоне.

    В качестве несущего сигнала могут использоваться незатухающие функции, шумы, последовательность импульсов и пр. Так, при импульсной модуляции в роли несущего сигнала используется последовательность узких импульсов, а в роли модулирующего сигнала выступает дискретный либо аналоговый сигнал. Так как последовательность импульсов характеризуется 4 характеристиками, то различают 4 типа модуляции:

    — частотно-импульсная;

    — широтно-импульсная;

    — амплитудно-импульсная;

    — фазово-импульсная.

    Чтобы осуществить эффективную передачу сигналов в какой-либо среде, необходимо перенести спектр этих сигналов из низкочастотной области в область достаточно высоких частот. Данная процедура получила в радиотехнике название модуляции.

    Сущность модуляции заключается в следующем. Формируется некоторое колебание (чаще всего гармоническое), называемое несущим колебанием или просто несущей, и какой-либо из параметров этого колебания изменяет­ся во времени пропорционально исходному сигналу. Исходный сигнал называют модулирующим, а результирующее колебание с изменяющи­мися во времени параметрами - модулированным сигналом. Обратный процесс - выделение модулирующего сигнала из модулированного колебания - называется демодуляцией.

    Классификация видов модуляции:

    1) по виду информационного сигнала (модулирующий сигнал);

    Непрерывная модуляция (аналоговый сигнал);

    Дискретная модуляция (дискретный сигнал);

    2) по виду переносчика (или несущей частоты)

    Гармоническая (синусоидальный сигнал);

    Импульсная (прямоугольный периодический импульс).

    3) по виду параметров несущей частоты, которые претерпевают изменения под действием информационного сигнала.

    Амплитудная модуляция;

    Частотная модуляция;

    Фазовая модуляция;

    Широтная модуляция;

    Широтно-импульсная модуляция (рисунок 1.1).

    Рисунок.1.1 – Виды модуляции

    Гармонический сигнал общего вида:

    S (t) = A cos(ω 0 t+ φ 0).

    У данного сигнала есть три параметра: амплитуда А, частота ω 0 и начальная фа­за φ 0 . Каждый из них можно связать с модулирующим сигналом, получив, таким образом, три основных вида модуляции: амплитудную, частотную и фазовую. Частотная и фазовая модуляция очень тесно взаимосвязаны, поскольку обе они влияют на аргумент функции cos. Поэтому эти два вида моду­ляции имеют общее название - угловая

    модуляция.

    В настоящее время все большая часть информации, передаваемой по разнообраз­ным каналам связи, существует в цифровом виде. Это означает, что передаче под­лежит не непрерывный (аналоговый) модулирующий сигнал, а последователь­ность целых чисел п 0 , п 1, п 2 , ..., которые могут принимать значения из некоторого фиксированного конечного множества. Эти числа, называемые символами, поступают от источника информации с периодом Т, а частота, соответствующая этому периоду, называется символьной скоростью: f T = 1/Т.

    Часто используемым на практике вариантом является двоичная последовательность символов, когда каждое из чисел n i может принимать одно из двух значений - 0 или 1.

    Последовательность передаваемых символов является, очевидно, дискретным сиг­налом. Поскольку символы принимают значения из конечного множества, этот сигнал фактически является и квантованным, то есть его можно назвать цифровым сигналом.

    Типичный подход при осуществлении передачи дискретной последовательности символов состоит в следующем. Каждому из возможных значений символа со­поставляется некоторый набор параметров несущего колебания. Эти параметры поддерживаются постоянными в течение интервала Т, то есть до прихода сле­дующего символа. Фактически это означает преобразование последовательности чисел { n k } в ступенчатый сигнал S n (t ) с использованием кусочно-постоянной ин­терполяции:

    s n (t)=f(n k ), kT

    Здесь f - некоторая функция преобразования. Полученный сигнал S n (t ) далее используется в качестве модулирующего сигнала обычным способом.

    Такой способ модуляции, когда параметры несущего колебания меняются скачко­образно, называется манипуляцией . В зависимости от того, какие именно параметры изменяются, различают амплитудную (АМ), фазовую (ФМ), час­тотную (ЧМ). Кроме того, при передаче цифровой

    информации может использоваться несущее колебание, отличное по форме

    от гармонического. Так, при использовании в качестве несущего колебания последовательности прямоугольных импульсов возможны амплитудно-импульсная (АИМ), широтно-импульсная (ШИМ) и время-импульсная (ВИМ) модуляция. АИМ – амплитудно–импульсная модуляция заключается в том, что амплитуда импульсной несущей изменяется по закону изменения мгновенных значений первичного сигнала.

    ЧИМ – частотно–импульсная модуляция. По закону изменения мгновенных значений первичного сигнала изменяется частота следования импульсов несущей.

    ВИМ – время–импульсная модуляция, при которой информационным параметром является временной интервал между синхронизирующим импульсом и информационным.

    ШИМ – широтно–импульсная модуляция. Заключается в том, что по закону изменения мгновенных значений модулирующего сигнала меняется длительность импульсов несущей.

    ФИМ – фазо–импульсная модуляция, отличается от ВИМ методом синхронизации. Сдвиг фазы импульса несущей изменяется не относительно синхронизирующего импульса, а относительно некоторой условной фазы.

    ИКМ – импульсно – кодовая модуляция. Ее нельзя рассматривать как отдельный вид модуляции, так как значение модулирующего напряжения представляется в виде кодовых слов.

    СИМ – счетно–импульсная модуляция. Является частным случаем ИКМ, при котором информационным параметром является число импульсов в кодовой группе.

    При амплитудной манипуляции единичный символ передается ВЧ заполнением, а нулевой отсутствием сигнала. Амплитудно – манипулированный сигнал описывается выражением:

    где амплитудный член может приниматьМ дискретных значений, а фазовый член φ –это произвольная константа. Изображенный на рисунке 1.2 (в) АМ – сигнал может соответствовать радиопередаче с использованием двух сигналов, амплитуды которых равны 0 и .

    Амплитудная манипуляция наиболее простая, но вместе с тем наименее помехозащищенная и в настоящее время практически не используется.

    При частотной дискретной модуляции (ЧМ, FSK–Frequency Shift Keying) значениям 0 и 1 информационного бита соответствуют свои частоты физического сигнала при неизменной его амплитуде. Общее аналитическое выражение для частотно-манипулированного сигнала имеет следующий вид:

    Здесь частота ω i может принимать М дискретных значений, а фаза φ является произвольной постоянной. Схематическое изображение ЧМ - сигнала приведено на рисунке 1.2 б, где можно наблюдать типичное изменение частоты в моменты переходов между символами.

    Частотная модуляция весьма помехоустойчива, поскольку искажению при помехах подвергается в основном амплитуда сигнала, а не частота. При этом достоверность демодуляции, а значит и помехоустойчивость тем выше, чем больше периодов сигнала попадает в бодовый интервал. Но увеличение бодового интервала по понятным причинам снижает скорость передачи информации. С другой стороны, необходимая для этого вида модуляции ширина спектра сигнала может быть значительно уже всей полосы канала. Отсюда вытекает область применения ЧМ – низкоскоростные, но высоконадежные стандарты, позволяющие осуществлять связь на каналах с большими искажениями амплитудно-частотной характеристики, или даже с усеченной полосой пропускания.

    При фазовой манипуляции 1 и 0 отличаются фазой высокочастотного колебания. Фазоманипулированный сигнал имеет следующий вид:

    Здесь фазовая составляющая φ i (t ) может принимать М дискретных значений, обычно определяемых следующим образом:

    где Е – это энергия символа;

    Т – время передачи символа.

    На рисунке 1.2 а приведен пример двоичной (М=2) фазовой манипуляции, где явно видны характерные резкие изменения фазы при переходе между символами.

    На практике фазовая манипуляция используется при небольшом числе возмож­ных значений начальной фазы - как правило, 2,4 или 8. Кроме того, при приеме сигнала сложно измерить абсолютное значение начальной фазы; значительно проще определить относительный фазовый сдвиг между двумя соседними сим­волами. Поэтому обычно используется фазоразностная или относительная фазовая мани­пуляция.

    При фазоразностной модуляции (ДОФМ, ТОФМ, DPSK – Differential Phase Shift Keying) изменяемым в зависимости от значения информационного элемента параметром является фаза сигнала при неизменных амплитуде и частоте. При этом каждому информационному элементу ставится в соответствие не абсолютное значение фазы, а ее изменение относительно предыдущего значения.

    Согласно рекомендаций МККТТ при скорости 2400 бит/с поток данных, подлежащих передаче, разделяется на пары последовательных битов (дибитов), которые кодируются в изменение фазы по отношению к фазе предыдущего элемента сигнала. Один элемент сигнала несет 2 бита информации. Если информационный элемент есть дибит, то в зависимости от его значения (00, 01, 10 или 11) фаза сигнала может измениться на 90, 180, 270 градусов или не измениться вовсе.

    При тройной относительно-фазовой модуляции или восьмикратной

    фазоразностной модуляции поток данных, подлежащих передаче, разделяется на тройки последовательных битов (трибитов), которые кодируются в изменение фазы по отношению к фазе предыдущего элемента сигнала. Один элемент сигнала несет 3 бита информации.

    Фазовая модуляция наиболее информативна, однако увеличение числа кодируемых бит выше трех (8 позиций поворота фазы) приводит к резкому снижению помехоустойчивости. Поэтому на высоких скоростях применяются комбинированные амплитудно-фазовые методы модуляции.

    Амплитудно-фазовая манипуляция. Амплитудно-фазовая манипуляция (amplitude phase keying - АРК) - это комби­нация схем ASK и PSK. АРК-модулированный сигнал изображен на рис. 1.2 г и выражается как

    с индексированием амплитудного так и фазового членов. На рис.1. 2 г можно видеть харак­терные одновременные (в моменты перехода между символами) изменения фазы и ампли­туды АРК-модулированного сигнала. В приведенном примере М =8, что соответствует 8 сигналам (восьмеричной передаче). Возможный набор из восьми векторов сигналов изо­бражен на графике в координатах "фаза-амплитуда". Четыре показанных вектора имеют одну амплитуду, еще четыре - другую. Векторы ориентированы так, что угол между двумя ближайшими векторами составляет 45°.

    Рисунок 1.2 – Виды цифровых модуляций

    Если в двухмерном пространстве сигналов между М сигналами набора угол прямой, схема называется квадратурной амплитудной модуляци­ей (quadrature amplitude modulation - QAM).

    Квадратурная амплитудная модуляция

    Необходимо отметить, что еще одним видом линейной модуляции является квадратурная амплитудная модуляция (КАМ), сущность которой заключается в передаче двух разных сигналов методами AM или ЧМ на одной несущей частоте. Спектры этих двух сигналов полностью перекрываются и их разделение с помощью фильтров невозможно. Чтобы сохранить возможность разделения сигналов на приемной стороне, несущие колебаний на модуляторы подают с фазовым сдвигом 90° (в квадратуре).

    На рисунке 1.3 представлена схема формирования КАМ сигнала.

    Рисунок 1.3 – Квадратурная АМ

    Достоинством КАМ по сравнению с обычными AM или БМ, является вдвое большее количество сигналов, которые можно независимо передавать в одной и той же полосе частот.

    Угловая (частотная и фазовая) модуляция

    Угловая модуляция обычно применяется, когда требуется обеспечить высокую верность приема передаваемого сообщения. Объясняется это тем, что системы с угловой модуляцией обладают повышенной по сравнению с AM устойчивостью к воздействию шумов и других видов помех. Известно, например, свойства ЧМ систем подавлять аддитивную шумовую помеху. Это значит, что при детектировании ЧМ существенно улучшается отношение сигнал/шум. Однако это преимущество достигается ценой ухудшения других параметров сигнала, в частности ценой увеличения занимаемой полосы частот. Частотная модуляция является, пожалуй, наиболее общим примером, который иллюстрирует методы повышения помехоустойчивости систем связи, основанные на расширении спектра сигнала.

    На рисунке 1.4 представлена Временная диаграмма сигнала при однотональной угловой модуляции.

    Рисунок 1.4 Угловая модуляция: а - модулирующий низкочастотный сигнал; б - однотональный сигнал с угловой модуляцией

    Сигнал угловой модуляции (УМ) при гармонической несущей можно записать так:

    u УМ (t)= U 0 cos[(t)]=U 0 cos[ω 0 t+φ(t)],

    где (t)=ω 0 t+φ(t) – полная фаза сигнала;

    φ(t) – фаза, которая несет информацию о первичном сигнале.

    Различают два вида УМ: фазовая (ФМ) и частотная (ЧМ). При ФМ изменения фазы прямо пропорциональны первичному сигналу

    Где φ 0 – начальная фаза.

    При ЧМ мгновенная частота сигнала прямо пропорциональна первичному сигналу

    , где - коэффициент преобразования управляющего сигнала в изменение частоты сигнала на выходе частотного модулятора.

    Формы сигналов ФМ и ЧМ не отличаются друг от друга, если производная первичного сигнала по времени имеет тот же вид, что и сам первичный сигнал. Это имеет место при синусоидальном первичном сигнале, например

    b(t)=Usint .

    Сигнал УМ в этом случае можно записать так:

    u УМ (t)=U 0 cos(ω 0 t+Мsint),

    где М – индекс модуляции.

    Индекс ФМ определяют как

    М ФМ ==К ФМ U  ( – девиация фазы).

    Индекс ЧМ равен

    М ЧМ ==К ЧМ U  /,

    причем девиация частоты К ЧМ U  . следовательно, индекс ЧМ

    М ЧМ =/=f / F.

    Найдем спектр сигнала при УМ одним тоном. Представим сигнал при УМ одним тоном следующим выражением:

    (Re – вещественная часть).

    Поскольку при ЧМ

    М ЧМ =/=f /F,

    то получаем, что при больших индексах модуляции

    f ум 2f ,

    т. е. ширина полосы частот при ЧМ равна удвоенной величине девиации частоты и не зависит от частоты модуляции F.

    На рисунках 1.5 и 1.6 представлены схемы получения сигналов угловой модуляции

    где b(t) – первичный сигнал;

    –генератор несущей U0cosω0t ;

    блок -/2 осуществляет поворот фазы на угол -/2;

    Продолжаем серию общеобразовательных статей, под общим названием «Теория радиоволн».
    В предыдущих статьях мы познакомились с радиоволнами и антеннами: Давайте ближе познакомимся с модуляцией радиосигнала.

    В рамках этой статьи, будет рассмотрена аналоговая модуляция следующих видов:

    • Амплитудная модуляция
    • Амплитудная модуляция c одной боковой полосой
    • Частотная модуляция
    • Линейно-частотная модуляция
    • Фазовая модуляция
    • Дифференциально-фазовая модуляция
    Амплитудная модуляция
    При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.

    Одним из основных параметров АМ, является коэфициент модуляции(M).
    Коэффициент модуляции - это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
    Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
    При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.

    Спектр АМ

    Данный спектр свойственен для модулирующего колебания постоянной частоты.

    На графике, по оси Х представлена частота, по оси У - амплитуда.
    Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
    Расстояние от левой до правой боковой полосы называют ширина спектра .
    В нормальном случае, при коэффициенте модуляции <=1, амплитуды боковых полос меньше или равны половине амплитуды несущей.
    Полезная информация заключена только в верхней или нижней боковых полосах спектра. Основная спектральная составляющая - несущая, не несет полезной информации. Мощность передатчика при амплитудной модуляции в большей части расходуется на «обогрев воздуха», за счет не информативности самого основного элемента спектра.

    Амплитудная модуляция с одной боковой полосой

    В связи с неэффективностью классической амплитудной модуляции, была придумана амплитудная модуляция с одной боковой полосой.
    Суть ее заключается в удалении из спектра несущей и одной из боковых полос, при этом вся необходимая информация передается по оставшейся боковой полосе.

    Но в чистом виде в бытовом радиовещании этот вид не прижился, т.к. в приемнике нужно синтезировать несущую с очень высокой точностью. Используется в аппаратуре уплотнения и любительском радио.
    В радиовещании чаще используют АМ с одной боковой полосой и частично подавленной несущей:

    При такой модуляции соотношение качество/эффективность наилучшим образом достигается.

    Частотная модуляция

    Вид аналоговой модуляции, при которой, частота несущей изменяется по закону модулирующего низкочастотного сигнала. Амплитуда при этом остается постоянной.

    а) - несущая частота, б) модулирующий сигнал, в) результат модуляции

    Наибольшее отклонение частоты от среднего значения, называется девиацией .
    В идеальном варианте, девиация должна быть прямо пропорционально амплитуде модулирующего колебания.

    Спектр при частотной модуляции выглядит следующим образом:

    Состоит из несущей и симметрично отстающей от нее вправо и влево гармоник боковых полос, на частоту кратную частоте модулирующего колебания.
    Данный спектр представляет гармоническое колебание. В случае реальной модуляции, спектр имеет более сложные очертания.
    Различают широкополосную и узкополосную ЧМ модуляцию.
    В широкополосной - спектр частот, значительно превосходит частоту модулирующего сигнала. Применяется в ЧМ радиовещании.
    В радиостанциях применяют в основном узкополосную ЧМ модуляцию, требующую более точной настройки приемника и соответственно более защищенную от помех.
    Спектры широкополосной и узкополосной ЧМ представлены ниже

    Спектр узкополосной ЧМ напоминает амплитудную модуляцию, но если учесть фазу боковых полос, то окажется, что эти волны имеют постоянную амплитуду и переменную частоту, а не постоянную частоту и переменную амплитуду (AM). При широкополосной ЧМ амплитуда несущей может быть очень малой, что обусловливает высокую эффективность ЧМ; это значит, что большая часть передаваемой энергии содержится в боковых частотах, несущих информацию.

    Основные преимущества ЧМ, перед АМ - энергоэффективность и помехоустойчивость.

    Как разновидность ЧМ, выделяют Линейно-частотную модуляцию.
    Суть ее заключается в том, что частота несущего сигнала изменяется по линейному закону.

    Практическая значимость линейно-частотно-модулированных (ЛЧМ) сигналов заключается в возможности существенного сжатия сигнала при приеме с увеличением его амплитуды над уровнем помех.
    ЛЧМ находят применение в радиолокации.

    Фазовая модуляция
    В реальности, больше применяют термин фазовая манипуляция, т.к. в основном производят модуляцию дискретных сигналов.
    Смысл ФМ таков, что фаза несущей, изменяется скачкообразно, при приходе очередного дискретного сигнала, отличного от предыдущего.

    Из спектра можно видеть, почти полное отсутствие несущей, что указывают на высокую энергоэффективность.
    Недостаток данной модуляции в том, что ошибка в одном символе, может привести к некорректному приему всех последующих.

    Дифференциально-фазовая манипуляция
    В случае этой модуляции, фаза меняется не при каждом изменении значения модулирующего импульса, а при изменении разности. В данном примере при приходе каждой «1».

    Преимущество этого вида модуляции в том, что в случае возникновения случайной ошибки в одном символе, это не влечет дальнейшую цепочку ошибок.

    Стоит отметить, что существуют также фазовые манипуляции такие как квадратурная, где используется изменение фазы в пределах 90 градусов и ФМ более высоких порядков, но их рассмотрение выходит за рамки данной статьи.

    PS: хочу еще раз отметить, что цель статей не заменить учебник, а рассказать «на пальцах» об основах радио.
    Рассмотрены лишь основные виды модуляций для создания у читателя представления о теме.