• Что такое функция? Функциональная зависимость, или функция, - это такая зависимость между двумя переменными, при которой каждому значению независимой переменной. Функциональные зависимости и реляционные базы данных

    Выступает нормализация базы данных или функциональная зависимость — это ситуация, в которой значение позволяет выполнить плавный переход к следующему значению в последовательности без какого-либо перерыва. Для этого типа ситуации существует поток информации в базе данных который протекает без каких-либо задержек или проблем, а также сохраняется целостность самих данных. Функциональная зависимость имеет определяющее значение при создании и эксплуатации реляционных баз данных, поскольку в процесс вовлекаются легкие ассоциации с одним значением или типом данных с соответствующими значениями.

    Один из самых простых способов, чтобы понять, как функциональная зависимость выполняет работу является рассмотреть использование государственного идентификационного номера, такой как номер социального страхования, который регулярно издается на каждого гражданина России. С помощью этого номера в качестве средства идентификации, возможно, для работодателей получить доступ к информации о владельце этого номера; потенциальные кредиторы и другие кредиторы могут использовать номер доступа к соответствующей финансовой информации о заявителе, а также номер даёт возможность получить доступ к информации, такой как налоги, начисления и уплаченные налоги, доходы от одного года к следующему, и для расчета выхода на пенсию, когда человек будет в конечном итоге пользоваться заслуженной после выхода на пенсию. Во многих случаях, работодатели могут на самом деле использовать этот же номер, что и первичный идентификационный номер сотрудника или некоторые части числа реляционных инструментов для доступа к остальной части электронного файла работника.

    В рамках разработки баз данных и её работы, функциональная зависимость служит для того, чтобы позволить пользователям вводить некоторые значения, которые в очередь могут быть использованы для получения информации, которая является желательной. Например, продавец может ввести значение названия компании для того, чтобы извлечь все записи, связанные с контактами, связанными с корпоративным клиентом. Подобным образом, продавец, который планирует продажи может ввести название города в качестве значения и в качестве средства доступа по имени и контактной информации всех клиентов, находящихся рядом с его или ее пунктом назначения, что делает для него легче организовать встречи с этими клиентами.

    Пока точная структура, такая как система которая обеспечивает функциональную зависимость может варьироваться в зависимости от приложения, конечный результат будет всё тот же. Одно значение связано с другим, что позволяет получить доступ к необходимой информации с относительной легкостью. С таким количеством записей, которые хранятся в базах данных, а не полагаться на старый метод жесткого копирования файлов, этот тип реляционных зависимостей является очень важным для поиска и использования соответствующих данных.

    При проектировании базы данных в реляционной СУБД основной целью разра­ботки логической модели данных является создание точного представления дан­ных, связей между ними и требуемых ограничений. Для этого не­обходимо определить, прежде всего, подходящий набор отношений. Метод, используемый при этом, называется нормализацией (normalization). Нормализация представляет собой вариант восходящего подхода к проектированию базы данных, который начинается с установления связей между атрибутами.

    Цель нормализации

    Нормализация - метод создания набора отношений с заданными свойствами на основе требований к данным, установленным в некоторой орга­низации.

    Нормализация часто выполняется в виде последовательности тестов для некоторого отношения с целью проверки его соответствия (или несоответствия) требованиям заданной нормальной формы.

    Процесс нормализации является формальным методом, который позволяет идентифицировать отношения на основе их первичных ключей (или потенциальных ключей, как в случае НФБК) и функциональных зависимостей, существующих между их атрибутов. Проектировщики баз данных могут использовать нормализацию в виде наборов тестов, применяемых к отдельным отношениям с целью нормализации реляционной схемы до заданной конкретной формы, что позволит предотвратить возможное возникновение аномалий обновления.

    Основная цель проектирования реляционной базы данных заключается в группи­ровании атрибутов и отношения так, чтобы минимизировать избыточность данных и таким образом сократить объем памяти, необходимый для физического хранения от­ношений, представленных в виде таблиц.

    Функциональные зависимости

    Функциональная зависимость описывает связь между ат­рибутами и является одним из основных понятий нормализации. В этом разделе приводится определение данного понятия, а в следующих - описание его взаимосвя­зи с процессами нормализации отношений базы данных.

    Функциональная зависимость - описывает связь между атрибутами отношения. Например, если в отношении. R, содержащем атрибуты А и В, атрибут В функционально зависит от атрибута А (что обозначается как АВ), то каждое значение атрибута А связано только с одним значением атрибута В. (Причем каждый из атрибутов А и В может состоять из одного или нескольких атрибутов.)

    Функциональная зависимость является смысловым (или семантическим) свойст­вом атрибутов отношения. Семантика отношения указывает, как его атрибуты могут быть связаны друг с другом, а также определяет функциональные зависимости меж­ду атрибутами в виде ограничений, наложенных на некоторые атрибуты.

    Зависимость между атрибу­тами А и В можно схематически представить в виде диаграммы, показанной на рисунке 5.

    Детерминант - детерминантом функциональной зависимости называется атрибут или группа атрибутов, расположенная на диаграмме функциональ­ной зависимости слева от символа стрелки.

    Рисунок 5 - Диаграмма функциональной за­висимости

    При наличии функциональной зависимости атрибут или группа атрибутов, распо­ложенная на ее диаграмме слева от символа стрелки, называется детерминантом (determinant). Например, на рис. 6.1 атрибут А является детерминантом атрибута В.

    Концепция функциональной зависимости является центральным понятием про­цесса нормализации.

    Зависимости между атрибутами

      Атрибут В функционально зависит от атрибута А, если каждому значению А соответствует только одно значение В.

    Обознач-ся:А В

    2. Если существует функциональная зависимость вида А В и В А, то между А и В имеется взаимосвязанное соответствие или функциональная взаимозависимость

    Обозн: А В

    Частичная функциональная зависимость это зависимость неключевого атрибута от части составного ключа.

    Полная функциональная зависимость

    Когда неключевой атрибут полностью зависит от составного ключа.

    Пр: Кафедра(ФИО, должен, оклад, стаж, д_стаж, кафедра, предмет, группа, вид занятий)

    ФИО кафедра

    ФИО должность

    Атрибут С зависит от А транзитивно если для атрибутов А,В,С выполняется условие А В и В С, но нет обратной зависимости А С

    Пример. ФИО должность оклад

    В отношении rатрибут В многозначно зависит от атрибута А, если каждому значению А соответствует множество значений В, не связанных с другими атрибутами изr.

    Обозн. А В, А В, А В ФИО предмет

    Замечание: В общем случае между двумя атрибутами одного отношения могут существовать функциональные и многозначные зависимости (1:1, 1:M,M:M) т.к. зависимость между атрибутами является причиной аномалий, то необходимо разбить отношение с зависимостями атрибутов на несколько отношений. В результате получается совокупность связанных отношений, связи между которыми отражают зависимости между атрибутами различных отношений.

    Два или более атрибутов называются взаимонезависимыми, если не один из этих атрибутов не зависит функционально от других атрибутов (Обозн. А¬
    В).

    Выявление зависимостей между атрибутами

    Выявление зависимостей между атрибутами необходимо для выполнения проектирования БД методом нормальных форм.

    Основной способ определения функциональной зависимости- это внимательный анализ семантики атрибутов .

    A1 A3

    Кроме того, А2 ¬ А1, А3 ¬ А1

    Перечисляя все существующие функциональные зависимости в отношении rполучим полное множество функциональных зависимостей, которые обозначаютсяF + .

    Зная некоторые функциональные зависимости, с помощью аксиом вывода можно получить полное множество F + для какого-либо отношения.

    Для отношения “кафедра”:

    ФИО оклад

    ФИО должность

    ФИО стаж

    ФИО кафедра

    ФИО д_стаж

    Стаж д_стаж

    Должность оклад

    Оклад должность

    ФИО.Преподаватель.Группа Вид занятий

    Нормализация отношений

    В реляционной БД каждое отношение должно быть нормализовано. Нормальная форма – это ограничение на схему БД, которое позволяет избежать аномалий при добавлении, удалении и изменении данных.

    Отношение считается нормализованным (1НФ), если каждое значение любого атрибута в каждом картеже является неделимым (атомарным) элементом. Такими атомарными значениями являются простые типы данных.

    2НФ В основном используются три нормальных формы.

    Для всех нормальных форм соблюдается правило вложенности

    Преимущества нормализации :

      Лучшая организация БД, что облегчает работу пользователям и администраторам БД.

      Сокращается избыточность информации, что ведет за собой упрощение структуры и рациональное использование дискового пространства.

      Минимизируется дублируемая информация.

      Нормализация с разбиением БД на более мелкие таблицы дает большую гибкость при изменении структур данных.

      Большая безопасность БД.

    После нормализации БД организация защиты информации, содержащейся в ней, значительно упрощается.

    Недостатки :

    Снижение производительности при выполнении запросов в БД.

    Определения:

      Отношение находится в 1НФ, если все элементы соответствующих доменов являются атомарными для каждого атрибута в исходном отношении. Исходное отношение строится таким образом чтобы оно находилось в 1НФ.

      Значение является не атомарным, если оно используется приложением по частям.

    Перевод отношения в следующую нормальную форму осуществляется методом декомпозиции без потерь.

    Такая декомпозиция должна обеспечивать то что запросы к исходному отношению и к отношениям, получаемым в результате декомпозиции, дадут одинаковый результат.

    Основной операцией в методе является операция проекции.

    r (A,B,C,D,E) C D

    r1(A,B,C,E) r2(C,D)π CD (r)

    Частичная зависимость от ключа неключевых атрибутов приводит к следующему:

      1. В отношении имеется явное и не явное избыточное дублирование данных, например, повторение о стаже, должности и окладе преподавателя, проводящих занятия в нескольких группах и/или по разным предметам. Повторение данных об окладах для одной и той же должности или данные о надбавке за стаж.

      Следствием избыточного дублирования является проблема редактирования данных. Часть избыточности устраняется при переходе в 2НФ.

    Отношение находится в 2НФ, если:

      Отношение находится в 1НФ.

      Каждый неключевой атрибут функционально полностью зависит от первичного ключа.

    Для устранения частичной зависимости и перевода отношения в 2НФ необходимо:

      Построить проекцию без атрибутов, находящихся в частичной функциональной зависимости от первичного ключа.

      Построить проекцию на части составного первичного ключа и атрибута, зависящие от этих частей.

    В результате получим два отношения r1,r2, находящихся во 2НФ:

    Вид занятий

    Иванов И.М

    Практика

    Иванов И.М

    Практика

    Петров М.И

    Петров М.И

    Практика

    Сидоров Н.Г

    Сидоров Н.Г

    Егоров В.В

    Переход ко 2НФ позволяет исключить явную избыточность данных в отношении r2, тем не менее, дублирование данных сохраняется и поэтому необходимо преобразоватьr2 в 3НФ.

    Опр.1: Отношение находится в 3НФ, если:

      Удовлетворяются все требования 2НФ.

      Если каждый неключевой атрибут не транзитивно зависит от первичного ключа.

    Опр.2: Отношение находится в 3НФ в том случае, если все неключевые атрибуты взаимно независимы и полностью зависят от первичного ключа.

    ФИО оклад должность

    ФИО стаж Д_стаж

    ФИО должность оклад

    Транзитивные зависимости также порождают избыточное порождение данных.

    Чтобы устранить транзитивные зависимости, необходимо использовать проекцию на атрибуты, являющиеся причиной данных транзитивных зависимостей.

    В результате получим:

    Д_стаж

    На практике, в большинстве случаев приведение к 3НФ является достаточным, и дальнейшую нормализацию не проводят.

    Если в отношении имеется зависимость атрибутов составного ключа от неключевых атрибутов, то необходимо перейти к усиленной 3НФ, она называется НФБК.

    Опр. Отношение находится в НФБК, если оно находится в 3НФ, и в нем отсутствуют зависимости ключей (атрибутов составного ключа) от неключевых атрибутов.

    Ограничения уникальности, накладываемые объявлениями первичного и кандидатных ключей отношения, является частным случаем ограничений, связанных с понятием функциональных зависимостей .

    Для объяснения понятия функциональной зависимости, рассмотрим следующий пример.

    Пусть нам дано отношение, содержащее данные о результатах какой-то одной конкретной сессии. Схема этого отношения выглядит следующим образом:

    Сессия (№ зачетной книжки , Фамилия, Имя, Отчество, Предмет , Оценка);

    Атрибуты «№ зачетной книжки» и «Предмет» образуют составной (так как ключом объявлены два атрибута) первичный ключ этого отношения. Действительно, по двум этим атрибутам можно однозначно определить значения всех остальные атрибутов.

    Однако, помимо ограничения уникальности, связанной с этим ключом, на отношение непременно должно быть наложено то условие, что одна зачетная книжка выдается обязательно одному конкретному человеку и, следовательно, в этом отношении кортежи с одинаковым номером зачетной книжки должны содержать одинаковые значения атрибутов «Фамилия», «Имя» и «Отчество».


    Если у нас имеется следующий фрагмент какой-то определенной базы данных студентов учебного заведения после какой-то сессии, то в кортежах с номером зачетной книжки 100, атрибуты «Фамилия», «Имя» и «Отчество» совпадают, а атрибуты «Предмет» и «Оценка» – не совпадают (что и понятно, ведь в них речь идет о разных предметах и успеваемости по ним). Это значит, что атрибуты «Фамилия», «Имя» и «Отчество» функционально зависят от атрибута «№ зачетной книжки», а атрибуты «Предмет» и «Оценка» функционально не зависят.

    Таким образом, функциональная зависимость – это однозначная зависимость, затабулированная в системах управления базами данных.

    Теперь дадим строгое определение функциональной зависимости.

    Определение : пусть X, Y – подсхемы схемы отношения S, определяющие над схемой S схему функциональной зависимости X > Y (читается «X стрелка Y»). Определим ограничения функциональной зависимости inv > Y> как утверждение о том, что в отношении со схемой S любые два кортежа, совпадающие в проекции на подсхему X, должны совпадать и в проекции на подсхему Y.

    Запишем это же определение в формулярном виде:

    Inv > Y> r (S ) = t 1 , t 2 ? r (t 1 [X ] = t 2 [X ] ? t 1 [Y ] = t 2 [Y ]), X , Y ? S;

    Любопытно, что в этом определении использовано понятие унарной операции проекции, с которым мы сталкивались раньше. Действительно, как еще, если не использовать эту операцию, показать равенство друг другу двух столбцов таблицы-отношения, а не строк? Поэтому мы и записали в терминах этой операции, что совпадение кортежей в проекции на какой-то атрибут или несколько атрибутов (подсхему X) непременно влечет за собой совпадение этих же столбцов-кортежей и на подсхеме Y в том случае, если Y функционально зависит от X.

    Интересно заметить, что в случае функциональной зависимости Y от X, говорят также, что X функционально определяет Y или что Y функционально зависит от X. В схеме функциональной зависимости X > Y подсхема X называется левой частью, а подсхема Y – правой частью.

    На практике проектирования баз данных на схему функциональной зависимости для краткости обычно ссылаются как на функциональную зависимость.

    Конец определения .


    В частном случае, когда правая часть функциональной зависимости, т. е. подсхема Y, совпадает со всей схемой отношения, ограничение функциональной зависимости переходит в ограничение уникальности первичного или кандидатного ключа. Действительно:

    Inv <K > S > r (S ) = ? t 1 , t 2 ? r (t 1 [K ] = t 2 [K ] > t 1 (S ) = t 2 (S )), K ? S ;

    Просто в определении функциональной зависимости вместо подсхемы X нужно взять обозначение ключа K, а вместо правой части функциональной зависимости, подсхемы Y взять всю схему отношений S, т. е., действительно, ограничение уникальности ключей отношений является частным случаем ограничения функциональной зависимости при равенстве правой части схемы функциональной зависимости всей схеме отношения.

    Приведем примеры изображения функциональной зависимости:

    {№ зачетной книжки} > {Фамилия, Имя, Отчество};

    {№ зачетной книжки, Предмет} > {Оценка};

    2. Правила вывода Армстронга

    Если какое-либо базовое отношение удовлетворяет векторно определенным функциональным зависимостям, то с помощью различных специальных правил вывода можно получить другие функциональные зависимости, которым данное базовое отношение будет заведомо удовлетворять.

    Хорошим примером таких специальных правил являются правила вывода Армстронга.

    Но прежде чем приступать к анализу самих правил вывода Армстронга, введем в рассмотрение новый металингвистический символ «+», который называется символом метаутверждения о выводимости . Этот символ при формулировании правил записывается между двумя синтаксическими выражениями и свидетельствует о том, что из формулы, стоящей слева от него, выводится формула, стоящая справа от него.

    Сформулируем теперь сами правила вывода Армстронга в виде следующей теоремы.

    Теорема. Справедливы следующие правила, называемые правилами вывода Армстронга.

    Правило вывода 1. + X > X;

    Правило вывода 2. X > Y+ X ? Z > Y;

    Правило вывода 3. X > Y, Y ? W > Z + X ? W > Z;

    Здесь X, Y, Z, W – произвольные подсхемы схемы отношения S. Символ метаутверждения о выводимости разделяет списки посылок и списки утверждений (заключений).

    1. Первое правило вывода называется «рефлексивность » и читается следующим образом: «выводится правило: “X функционально влечет за собой X”». Это самое простое из правил вывода Армстронга. Оно выводится буквально из воздуха.

    Интересно заметить, что функциональная зависимость, обладающая и левой, и правой частями, называется рефлексивной . Согласно правилу рефлексивности ограничение рефлексивной зависимости выполняется автоматически.

    2. Второе правило вывода называется «пополнение » и читается таким образом: «если X функционально определяет Y, то выводится правило: “объединение подсхем X и Z функционально влечет за собой Y”». Правило пополнения позволяет расширять левую часть ограничения функциональных зависимостей.

    3. Третье правило вывода называется «псевдотранзитивность » и читается следующим образом: “если подсхема X функционально влечет за собой подсхему Y и объединение подсхем Y и W функционально влекут за собой Z, то выводится правило: «объединение подсхем X и W функционально определяют подсхему Z»”.

    Правило псевдотранзитивности обобщает правило транзитивности, соответствующее частному случаю W: = 0. Приведем формулярную запись этого правила:

    Необходимо отметить, что посылки и заключения, приведенные ранее, были представлены в сокращенной форме обозначениями схем функциональной зависимости. В расширенной форме им соответствуют следующие ограничения функциональных зависимостей.

    Правило вывода 1. inv X> r(S);

    Правило вывода 2. inv Y> r(S) ? inv Y> r(S);

    Правило вывода 3. inv Y> r(S) & inv Z> r(S) ? inv Z> r(S);

    Проведем доказательства этих правил вывода.

    1. Доказательство правила рефлексивности следует непосредственно из определения ограничения функциональной зависимости при подстановке вместо подсхемы Y – подсхемы X.

    Действительно, возьмем ограничение функциональной зависимости:

    Inv Y> r(S) и подставим в него X вместо Y, получим:

    Inv X> r(S), а это и есть правило рефлексивности.

    Правило рефлексивности доказано.

    2. Доказательство правила пополнения проиллюстрируем на диаграммах функциональной зависимости.

    Первая диаграмма – это диаграмма посылки:

    посылка: X > Y


    Вторая диаграмма:

    заключение: X ? Z > Y


    Пусть кортежи равны на X ? Z. Тогда они равны на X. Согласно посылке они будут равны и на Y.

    Правило пополнения доказано.

    3. Доказательство правила псевдотранзитивности также проиллюстрируем на диаграммах, которых в этом конкретном случае будет три.

    Первая диаграмма – первая посылка:

    посылка 1: X > Y


    посылка 2: Y ? W > Z


    И, наконец, третья диаграмма – диаграмма заключения:

    заключение: X ? W > Z


    Пусть кортежи равны на X ? W. Тогда они равны и на X, и на W. Согласно Посылке 1, они будут равны и на Y. Отсюда, согласно Посылке 2, они будут равны и на Z.

    Правило псевдотранзитивности доказано.

    Все правила доказаны.

    3. Производные правила вывода

    Другим примером правил, с помощью которых можно, при необходимости вывести новые правила функциональной зависимости, являются так называемые производные правила вывода .

    Что это за правила, как они получаются?

    Известно, что если из одних правил, уже существующих, законными логическими методами вывести другие, то эти новые правила, называемые производными , можно использовать наряду с исходными правилами.

    Необходимо специально отметить, что эти самые произвольные правила являются «производными» именно от пройденных нами ранее правил вывода Армстронга.

    Сформулируем производные правила вывода функциональных зависимостей в виде следующей теоремы.

    Теорема.

    Следующие правила являются производными от правил вывода Армстронга.

    Правило вывода 1. + X ? Z > X;

    Правило вывода 2. X > Y, X > Z + X ? Y > Z;

    Правило вывода 3. X > Y ? Z + X > Y, X > Z;

    Здесь X, Y, Z, W, так же как и в предыдущем случае, – произвольные подсхемы схемы отношения S.

    1. Первое производное правило называется правилом тривиальности и читается следующим образом:

    «Выводится правило: “объединение подсхем X и Z функционально влечет за собой X”».

    Функциональная зависимость с левой частью, являющейся подмножеством правой части, называется тривиальной . Согласно правилу тривиальности ограничения тривиальной зависимости выполняются автоматически.

    Интересно, что правило тривиальности является обобщением правила рефлексивности и, как и последнее, могло бы быть получено непосредственно из определения ограничения функциональной зависимости. Тот факт, что это правило является производным, не случаен и связан с полнотой системы правил Армстронга. Подробнее о полноте системы правил Армстронга мы поговорим чуть позднее.

    2. Второе производное правило называется правилом аддитивности и читается следующим образом: «Если подсхема X функционально определяет подсхему Y, и X одновременно функционально определяет Z, то из этих правил выводится следующее правило: “X функционально определяет объединение подсхем Y и Z”».

    3. Третье производное правило называется правилом проективности или правилом «обращение аддитивности ». Оно читается следующим образом: «Если подсхема X функционально определяет объединение подсхем Y и Z, то из этого правила выводится правило: “X функционально определяет подсхему Y и одновременно X функционально определяет подсхему Z”», т. е., действительно, это производное правило является обращенным правилом аддитивности.

    Любопытно, что правила аддитивности и проективности применительно к функциональным зависимостям с одинаковыми левыми частями позволяют объединять или, наоборот, расщеплять правые части зависимости.

    При построении цепочек вывода после формулировки всех посылок применяется правило транзитивности с той целью, чтобы включить функциональную зависимость с правой частью, находящейся в заключении.

    Проведем доказательства перечисленных произвольных правил вывода.

    1. Доказательство правила тривиальности .

    Проведем его, как и все последующие доказательства, по шагам:

    1) имеем: X > X (из правила рефлексивности вывода Армстронга);

    Правило тривиальности доказано.

    2. Проведем пошаговое доказательство правила аддитивности :

    1) имеем: X > Y (это посылка 1);

    2) имеем: X > Z (это посылка 2);

    3) имеем: Y ? Z > Y ? Z (из правила рефлексивности вывода Армстронга);

    4) имеем: X ? Z > Y ? Z (получаем при помощи применения правила псевдотранзитивности вывода Армстронга, а потом как следствие первого и третьего шагов доказательства);

    5) имеем: X ? X > Y ? Z (получаем, применяя правило псевдотранзитивности вывода Армстронга, а после следует из второго и четвертого шагов);

    6) имеем X > Y ? Z (следует из пятого шага).

    Правило аддитивности доказано.

    3. И, наконец, проведем построение доказательства правила проективности :

    1) имеем: X > Y ? Z, X > Y ? Z (это посылка);

    2) имеем: Y > Y, Z > Z (выводится при помощи правила рефлексивности вывода Армстронга);

    3) имеем: Y ? z > y, Y ? z > Z (получается из правила пополнения вывода Армстронга и следствием из второго шага доказательства);

    4) имеем: X > Y, X > Z (получается, применением правила псевдотранзитивности вывода Армстронга, а затем как следствие из первого и третьего шагов доказательства).

    Правило проективности доказано.

    Все производные правила вывода доказаны.

    4. Полнота системы правил Армстронга

    Пусть F (S ) - заданное множество функциональных зависимостей, заданных над схемой отношения S.

    Обозначим через inv <F (S )> ограничение, накладываемое этим множеством функциональных зависимостей. Распишем его:

    Inv <F (S )> r (S ) = ?X > Y ?F (S ) [inv Y> r (S )].

    Итак, это множество ограничений, накладываемое функциональными зависимостями, расшифровывается следующим образом: для любого правила из системы функциональных зависимостей X > Y, принадлежащего множеству функциональных зависимостей F (S ), действует ограничение функциональных зависимостей inv Y> r (S ), определенных над множеством отношения r (S ).

    Пусть какое-то отношение r (S ) удовлетворяет этому ограничению.

    Применяя правила вывода Армстронга к функциональным зависимостям, определенным для множества F (S ), можно получить новые функциональные зависимости, как уже было сказано и доказано нами ранее. И, что показательно, ограничениям этих функциональных зависимостей отношение F (S ) будет автоматически удовлетворять, что видно из расширенной формы записи правил вывода Армстронга. Напомним общий вид этих расширенных правил вывода:

    Правило вывода 1. inv < X > X > r (S );

    Правило вывода 2. inv Y> r (S ) ? inv ? Z > Y> r (S );

    Правило вывода 3. inv Y> r (S ) & inv ? W > Z> r (S ) ? inv ? W > Z>;

    Возвращаясь к нашим рассуждениям, пополним множество F (S ) новыми, выведенными из него же с помощью правил Армстронга зависимостями. Будем применять эту процедуру пополнения до тех пор, пока у нас не перестанут получаться новые функциональные зависимости. В результате этого построения мы получим новое множество функциональных зависимостей, называемое замыканием множества F (S ) и обозначаемое F + (S) .

    Действительно, такое название вполне логично, ведь мы собственноручно путем длительного построения «замкнули» множество имеющихся функциональных зависимостей само на себе, прибавив (отсюда «+») все новые функциональные зависимости, получившиеся из имеющихся.

    Необходимо заметить, что этот процесс построения замыкания конечен, ведь конечна сама схема отношения, на которой и проводятся все эти построения.

    Само собой разумеется, что замыкание является надмножеством замыкаемого множества (действительно, ведь оно больше!) и ни сколько не изменяется при своем повторном замыкании.

    Если записать только что сказанное в формулярном виде, то получим:

    F (S ) ? F + (S ), [F + (S )] + = F + (S );

    Далее из доказанной истинности (т. е. законности, правомерности) правил вывода Армстронга и определения замыкания следует, что любое отношение, удовлетворяющее ограничениям заданного множества функциональных зависимостей, будет удовлетворять ограничению зависимости, принадлежащей замыканию.

    X > Y ? F + (S ) ? ?r (S ) [inv <F (S )> r (S ) ? inv Y> r (S )];

    Итак, теорема полноты системы правил вывода Армстронга утверждает, что внешняя импликация может совершенно законно и обоснованно быть заменена эквивалентностью.

    (Доказательство этой теоремы мы рассматривать не будем, так как сам процесс доказательства не столь важен в нашем конкретном курсе лекций.)

    Что такое функция? Функциональная зависимость, или функция, - это такая зависимость между двумя переменными, при которой каждому значению независимой переменной соответствует единственное значение зависимой переменной. Независимую переменную иначе называют аргументом, а о зависимой говорят, что она является функцией от этого аргумента. Все значения, которые принимает независимая переменная, образуют область определения функции.


    Существует несколько способов задания функции: 1.С помощью таблицы. 2.Графический. 3.С помощью формулы. Графиком функции называется множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции.



    Линейной функцией называется функция, которую можно задать формулой вида y=kx+b, где x – независимая переменная, k и b – заданные числа. Для построения графика линейной функции достаточно найти координаты двух точек графика, отметить эти точки в координатной плоскости и провести через них прямую. Прямая пропорциональность – функция вида у=кх, где х – независимая переменная, к – не равное нулю число. Графиком прямой пропорциональности является прямая, проходящая через начало координат.


    Построение графика линейной функции Для построения графика линейной функции необходимо: - выбрать любые два значения переменной х (аргумента), например 0 и 1; - вычислить соответствующие значения переменной y (функции). Полученные результаты удобно записывать в таблицу x01 y - полученные точки А и В изображаем в системе координат; - соединяем по линейке точки А и В. Пример. Построим график линейной функции y = -3·x+6. x01 y63


    Обратной пропорциональностью называется функция, которую можно задать формулой вида у=k/х, где х - независимая переменная и k - не равное нулю число. Областью определения такой функции является множество всех чисел, отличных от нуля. Если величины x и y обратно пропорциональны, то функциональная зависимость между ними выражается уравнением y = k / x, где k есть некоторая постоянная величина. График обратной пропорциональности есть кривая линия, состоящая из двух ветвей. Этот график называют гиперболой. В зависимости от знака k ветви гиперболы расположены либо в 1 и 3 координатных четвертях (k положительно), либо во 2 и 4 координатных четвертях (k отрицательно). На рисунке изображен график функции y = k/х, где k – отрицательное число.



    ЧАСТНЫЕ СЛУЧАИ ЛИНЕЙНОЙ ФУНКЦИИ. y=kx, k0, b=0 - прямая пропорциональность,. График - прямая, проходящая через начало координат; y=b, k=0, b0. (b>0, выше оси OX; b 0, выше оси OX; b"> 0, выше оси OX; b"> 0, выше оси OX; b" title="ЧАСТНЫЕ СЛУЧАИ ЛИНЕЙНОЙ ФУНКЦИИ. y=kx, k0, b=0 - прямая пропорциональность,. График - прямая, проходящая через начало координат; y=b, k=0, b0. (b>0, выше оси OX; b"> title="ЧАСТНЫЕ СЛУЧАИ ЛИНЕЙНОЙ ФУНКЦИИ. y=kx, k0, b=0 - прямая пропорциональность,. График - прямая, проходящая через начало координат; y=b, k=0, b0. (b>0, выше оси OX; b">