• Как найти энергию связи в мэв. Энергия связи ядер. Дефект массы. Сколько нуклонов помещается в ядре

    Абсолютно любого химического вещества состоит из определенного набора протонов и нейтронов. Они удерживаются вместе благодаря тому, что внутри частицы присутствует энергия связи атомного ядра.

    Характерной особенностью ядерных сил притяжения является их очень большая мощность на сравнительно маленьких расстояниях (примерно от 10 -13 см). С ростом расстояния между частицами ослабевают и силы притяжения внутри атома.

    Рассуждение об энергии связи внутри ядра

    Если представить, что имеется способ отделять по очереди от ядра атома протоны и нейтроны и располагать их на таком расстоянии, чтобы энергия связи атомного ядра переставала действовать, то это должно быть очень тяжелой работой. Для того чтобы извлечь из ядра атома его составляющие, нужно постараться преодолеть внутриатомные силы. Эти усилия пойдут на то, чтобы разделить атом на содержащиеся в нем нуклоны. Поэтому можно судить, что энергия атомного ядра меньше чем энергия тех частиц, из которых оно состоит.

    Равна ли масса внутриатомных частиц массе атома?

    Уже в 1919 году исследователи научились измерять массу атомного ядра. Чаще всего его «взвешивают» при помощи особых технических приборов, которые получили название масс-спектрометров. Принцип работы таких приборов состоит в том, что сравниваются характеристики движения частиц с различными массами. При этом такие частицы имеют одинаковые электрические заряды. Подсчеты показывают, что те частицы, которые обладают разными показателями массы, двигаются по различным траекториям.

    Современные ученые выяснили с большой точностью массы всех ядер, а также входящих в их состав протонов и нейтронов. Если же сравнить массу определенного ядра с суммой масс содержащихся в нем частиц, то окажется, что в каждом случае масса ядра будет больше, чем масса отдельно взятых протонов и нейтронов. Эта разница составит приблизительно 1% для любого химического вещества. Поэтому можно сделать вывод, что энергия связи атомного ядра - это 1% энергии его покоя.

    Свойства внутриядерных сил

    Нейтроны, которые находятся внутри ядра, отталкиваются друг от друга кулоновскими силами. Но при этом атом не распадается на части. Этому способствует присутствие силы притяжения между частицами в атоме. Такие силы, которые имеют природу, отличную от электрической, называются ядерными. А взаимодействие нейтронов и протонов называется сильным взаимодействием.

    Вкратце свойства ядерных сил сводятся к следующим:

    • это зарядовая независимость;
    • действие лишь на коротких расстояниях;
    • а также насыщаемость, под которой понимается удерживание друг около друга лишь определенного количества нуклонов.

    По закону сохранения энергии, в тот момент, когда ядерные частицы соединяются, происходит выброс энергии в виде излучения.

    Энергия связи атомных ядер: формула

    Для упомянутых вычислений используется общепринятая формула:

    Е св =(Z·m p +(A-Z)·m n -M я )·c²

    Здесь под Е св понимается энергия связи ядра; с - скорость света; Z -количество протонов; (A-Z ) - число нейтронов; m p обозначает массу протона; а m n - массу нейтрона. M я обозначает массу ядра атома.

    Внутренняя энергия ядер различных веществ

    Чтобы определить энергию связи ядра, используется одна и та же формула. Вычисляемая по формуле энергия связи, как ранее уже было указано, составляет не более 1% от общей энергии атома или энергии покоя. Однако при детальном рассмотрении оказывается, что это число довольно сильно колеблется при переходе от вещества к веществу. Если попробовать определить его точные значения, то они будут особенно различаться у так называемых легких ядер.

    Например, энергия связи внутри водородного атома составляет ноль, потому что в нем находится лишь один протон.Энергия связи ядра гелия будет равна 0,74%. У ядер вещества под названием тритий это число будет равно 0,27%. У кислорода - 0,85%. В ядрах, где находится порядка шестидесяти нуклонов, энергия внутриатомной связи будет составлять около 0,92%. Для атомных ядер, обладающих большей массой, это число будет постепенно уменьшаться до 0,78%.

    Чтобы определить энергию связи ядра гелия, трития, кислорода, или же любого другого вещества, используется та же формула.

    Типы протонов и нейтронов

    Основные причины подобных различий могут быть объяснены. Ученые выяснили, что все нуклоны, которые содержатся внутри ядра, делятся на две категории: поверхностные и внутренние. Внутренние нуклоны - это те, что оказываются окружены другими протонами и нейтронами со всех сторон. Поверхностные же окружены ими лишь изнутри.

    Энергия связи атомного ядра - это сила, которая выражена больше у внутренних нуклонов. Нечто подобное, кстати, происходит и при поверхностном натяжении различных жидкостей.

    Сколько нуклонов помещается в ядре

    Выяснено, что количество внутренних нуклонов особенно мало у так называемых легких ядер. А у тех, что относятся к категории самых легких, практически все нуклоны расцениваются как поверхностные. Считается, что энергия связи атомного ядра - это величина, которая должна расти с количеством протонов и нейтронов. Но даже такой рост не может продолжаться до бесконечности. При определенном количестве нуклонов - а это от 50 до 60 - приходит в действие другая сила - их электрическое отталкивание. Оно происходит даже независимо от наличия энергии связи внутри ядра.

    Энергия связи атомного ядра в различных веществах используется учеными для того, чтобы высвободить ядерную энергию.

    Многих ученых всегда интересовал вопрос: откуда возникает энергия, когда более легкие ядра сливаются в тяжелые? На самом деле, данная ситуация аналогична атомному делению. В процессе слияния легких ядер, точно так же, как это происходит при расщеплении тяжелых, всегда образуются ядра более прочного типа. Чтобы «достать» из легких ядер все находящиеся в них нуклоны, требуется затратить меньше количество энергии, нежели то, что выделяется при их объединении. Обратное утверждение также является верным. На самом деле энергия синтеза, которая приходится на определенную единицу массы, может быть и больше удельной энергии деления.

    Ученые, исследовавшие процессы деления ядра

    Процесс был открыт учеными Ганом и Штрасманом в 1938 году. В стенах Берлинского химического университета исследователи открыли, что в процессе бомбардировки урана другими нейтронами, он превращается в более легкие элементы, стоящие в середине таблицы Менделеева.

    Немалый вклад в развитие этой области знания внесла и Лиза Мейтнер, которой Ган в свое время предложил изучать радиоактивность вместе. Ган разрешил Мейтнер работать лишь на том условии, что она будет проводить свои исследования в подвале и никогда не станет подниматься на верхние этажи, что было фактом дискриминации. Однако это не помешало достичь ей значительных успехов в исследованиях атомного ядра.

    Энергия связи является важным понятием в химии. Она определяет количество энергии, которое необходимо для разрыва ковалентной связи между двумя атомами газа. Данное понятие неприменимо по отношению к ионным связям. Когда два атома соединяются в молекулу, можно определить, насколько крепка связь между ними - достаточно найти энергию, которую необходимо затратить для разрыва этой связи. Помните, что единичный атом не обладает энергией связи, эта энергия характеризует силу связи двух атомов в молекуле. Чтобы рассчитать энергию связи для какой-либо химической реакции, просто определите общее количество разорванных связей и вычтите из него количество образовавшихся связей.

    Шаги

    Часть 1

    Определите разорванные и образовавшиеся связи

      Запишите уравнение для вычисления энергии связи. Согласно определению, энергия связи представляет собой сумму разорванных связей за вычетом суммы сформированных связей: ΔH = ∑H (разорванные связи) - ∑H (образовавшиеся связи) . ΔH обозначает изменение энергии связи, которое называют также энтальпией связи, а ∑H соответствует сумме энергий связи для обеих частей уравнения химической реакции.

      Запишите химическое уравнение и обозначьте все связи между отдельными элементами. Если дано уравнение реакции в виде химических символов и цифр, полезно переписать его и обозначить все связи между атомами. Такая наглядная запись позволит вам легко посчитать связи, которые разрываются и образуются в ходе данной реакции.

      Изучите правила подсчета разорванных и образовавшихся связей. В большинстве случаев при расчетах используются средние значения энергии связи. Одна и та же связь может иметь немного разную энергию, в зависимости от конкретной молекулы, поэтому обычно используют средние значения энергии связи. .

      • Разрывы одинарной, двойной и тройной химической связи рассматриваются как одна разорванная связь. Хотя эти связи обладают разными энергиями, в каждом случае считается, что разрывается одна связь.
      • То же самое относится и к образованию одинарной, двойной или тройной связи. Каждый такой случай рассматривается как формирование одной новой связи.
      • В нашем примере все связи являются одинарными.
    1. Определите, какие связи разрываются в левой части уравнения. Левая часть химического уравнения содержит реагирующие вещества, и в ней представлены все связи, которые разрываются в результате реакции. Это эндотермический процесс, то есть для разрыва химических связей необходимо затратить определенную энергию.

      • К нашем примере левая часть уравнения реакции содержит одну связь H-H и одну связь Br-Br.
    2. Подсчитайте количество образовавшихся связей в правой части уравнения. Справа указаны продукты реакции. В этой части уравнения представлены все связи, которые образуются в результате химической реакции. Это экзотермический процесс, и он протекает с выделением энергии (обычно в виде тепла).

      • В нашем примере в правой части уравнения содержатся две связи H-Br.

      Часть 2

      Рассчитайте энергию связи
      1. Найдите необходимые значения энергии связи. Есть множество таблиц, в которых приведены значения энергии связи для самых разных соединений. Такие таблицы можно найти в интернете или справочнике по химии. Следует помнить, что значения энергии связи всегда приводятся для молекул в газообразном состоянии.

      2. Умножьте значения энергии связи на число разорванных связей. В ряде реакций одна связь может разрываться несколько раз. Например, если молекула состоит из 4 атомов водорода, то энергию связи водорода следует учесть 4 раза, то есть умножить на 4.

        • В нашем примере каждая молекула имеет по одной связи, поэтому значения энергии связи просто умножаются на 1.
        • H-H = 436 x 1 = 436 кДж/моль
        • Br-Br = 193 x 1 = 193 кДж/моль
      3. Сложите все энергии разорванных связей. После того как вы умножите значения энергий связи на соответствующее количество связей в левой части уравнения, необходимо найти общую сумму.

        • Найдем суммарную энергию разорванных связей для нашего примера: H-H + Br-Br = 436 + 193 = 629 кДж/моль.

    Нуклоны в ядрах находятся в состояниях, существенно отличающихся от их свободных состояний. За исключением ядра обычного водорода, во всех ядрах имеется не менее двух нуклонов, между которыми существует особое ядерное сильное взаимодействие – притяжение, обеспечивающее устойчивость ядер несмотря на отталкивание одноименно заряженных протонов.

    · Энергией связи нуклона в ядре называется физическая величина, равная той работе, которую нужно совершить для удаления нуклона из ядра без сообщения ему кинетической энергии.

    · Энергия связи ядра определяется величиной той работы , которую нужно совершить , чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии .

    Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая энергия, которую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

    При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если W св – величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса

    (9.2.1)

    называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов.

    Если ядро массой М яд образовано из Z протонов с массой m p и из (A Z ) нейтронов с массой m n , то:

    . (9.2.2)

    Вместо массы ядра М яд величину ∆m можно выразить через атомную массу М ат:

    , (9.2.3)

    где m Н – масса водородного атома. При практическом вычислении ∆m массы всех частиц и атомов выражаются в атомных единицах массы (а.е.м.). Одной атомной единице массы соответствует атомная единица энергии (a.e.э.): 1 а.е.э. = 931,5016 МэВ.

    Дефект массы служит мерой энергии связи ядра:

    . (9.2.4)

    Удельной энергией связи ядра ω св называется энергия связи , приходящаяся на один нуклон :

    . (9.2.5)

    Величина ω св составляет в среднем 8 МэВ/нуклон. На рис. 9.2 приведена кривая зависимости удельной энергии связи от массового числа A , характеризующая различную прочность связей нуклонов в ядрах разных химических элементов. Ядра элементов в средней части периодической системы (), т.е. от до , наиболее прочны.

    В этих ядрах ω св близка к 8,7 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает. Ядра атомов химических элементов, расположенных в конце периодической системы (например ядро урана), имеют ω св ≈ 7,6 МэВ/нуклон. Это объясняет возможность выделения энергии при делении тяжелых ядер. В области малых массовых чисел имеются острые «пики» удельной энергии связи. Максимумы характерны для ядер с четными числами протонов и нейтронов ( , , ), минимумы – для ядер с нечетными количествами протонов и нейтронов ( , , ).

    Если ядро имеет наименьшую возможную энергию , то оно находится в основном энергетическом состоянии . Если ядро имеет энергию , то оно находится в возбужденном энергетическом состоянии . Случай соответствует расщеплению ядра на составляющие его нуклоны. В отличие от энергетических уровней атома, раздвинутых на единицы электронвольтов, энергетические уровни ядра отстоят друг от друга на мегаэлектронвольт (МэВ). Этим объясняется происхождение и свойства гамма-излучения.

    Данные об энергии связи ядер и использование капельной модели ядра позволили установить некоторые закономерности строения атомных ядер.

    Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров (). Условие минимума энергии ядра приводит к следующему соотношению между Z уст и А :

    . (9.2.6)

    Берется целое число Z уст, ближайшее к тому, которое получается по этой формуле.

    При малых и средних значениях А числа нейтронов и протонов в устойчивых ядрах примерно одинаковы: Z А Z .

    С ростом Z силы кулоновского отталкивания протонов растут пропорционально Z ·(Z – 1) ~ Z 2 (парное взаимодействие протонов ), и для компенсации этого отталкивания ядерным притяжением число нейтронов должно возрастать быстрее числа протонов.

    Для просмотра демонстраций щелкните по соответствующей гиперссылке: