• Как работает модуль пельтье. Термоэлектрический модуль пельтье - устройство, принцип действия, характеристики

    Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.

    Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.

    Что это такое?

    Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.

    В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.

    На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.

    Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.

    Устройство и принцип работы

    Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.


    Обозначения:

    • А – контакты для подключения к источнику питания;
    • B – горячая поверхность элемента;
    • С – холодная сторона;
    • D – медные проводники;
    • E – полупроводник на основе р-перехода;
    • F – полупроводник n-типа.

    Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.


    Рис. 3. А – горячая сторона термоэлемента, В – холодная

    Технические характеристики

    Характеристики термоэлектрических модулей описываются следующими параметрами:

    • холодопроизводительностью (Q max), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
    • максимальным температурным перепадом между сторонами элемента (DT max), параметр приводится для идеальных условий, единица измерения – градусы;
    • допустимая сила тока, необходимая для обеспечения максимального температурного перепада – I max ;
    • максимальным напряжением U max , необходимым для тока I max , чтобы достигнуть пиковой разницы DT max ;
    • внутренним сопротивлением модуля – Resistance, указывается в Омах;
    • коэффициентом эффективности – СОР (аббревиатура от английского – coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.

    Маркировка

    Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.


    Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706

    Маркировка разбивается на три значащих группы:

    1. Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
    2. Количество термопар в модуле, изображенном на фото их 127.
    3. Величина номинального тока в Амперах, у нас – 6 А.

    Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.

    Применение

    Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:

    • мобильных холодильных установок;
    • небольших генераторов для выработки электричества;
    • систем охлаждения в персональных компьютерах;
    • кулеры для охлаждения и нагрева воды;
    • осушители воздуха и т.д.

    Приведем детальные примеры использования термоэлектрических модулей.

    Холодильник на элементах Пельтье

    Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:

    • простота конструкции;
    • устойчивость к вибрации;
    • отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
    • низкий уровень шума;
    • небольшие габариты;
    • возможность работы в любом положении;
    • длительный срок службы;
    • небольшое потребление энергии.

    Такие характеристики идеально подходят для мобильных установок.

    Элемент Пельтье как генератор электроэнергии

    Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву. Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником. К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.

    Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.

    Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии. Тем не менее, термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов. Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.


    Для охлаждения процессора

    Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров. Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна. Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.

    Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.

    Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.

    Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.

    Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.


    Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.

    Кондиционер на элементах Пельтье

    Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело – охладить небольшой объем холодильной камеры, другое – помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (в 3-4 раза) потреблять электроэнергии, чем оборудование, работающее на хладагенте.

    Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.

    В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.

    Для охлаждения воды

    Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:

    • вода не охлаждается ниже 10-12°С;
    • на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
    • устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
    • не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.
    Настольный кулер для воды с использованием элемента Пельтье

    Осушитель воздуха на элементах Пельтье

    В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.


    Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.

    Как подключить?

    С подключением модуля проблем не возникнет, на провода выходов необходимо подать постоянное напряжение, его величина указанна в даташит элемента. Красный провод необходимо подключить к плюсу, черный – к минусу. Внимание! Смена полярности меняет местами охлаждаемую и нагреваемую поверхности.

    Как проверить элемент Пельтье на работоспособность?

    Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.

    Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:

    1. подключаем щупы к выводам модуля;
    2. подносим зажженную зажигалку к одной из сторон;
    3. наблюдаем за показаниями прибора.

    В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.

    Как сделать элемент Пельтье своими руками?

    Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.


    Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.


    На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств. Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой. В этом случае элемент гарантировано не нагреется выше температуры 100 °С.

    Явление возникновения термо-ЭДС было открыто немецким физиком Томасом Иоганном Зеебеком в далеком в 1821 году. А заключается это явление в том, что в замкнутой электрической цепи, состоящей из соединенных последовательно разнородных проводников, при условии что их контакты находятся в условиях различных температур, возникает ЭДС.

    Данный эффект, названный по имени его первооткрывателя эффектом Зеебека, называют теперь просто термоэлектрическим эффектом .

    Если цепь состоит всего из пары разнородных проводников, то такая цепь называется . В первом приближении можно утверждать, что величина термо-ЭДС зависит лишь от материала проводников и от температур холодного и горячего контактов. Таким образом, в небольшом интервале температур термо-ЭДС пропорциональна разности температур холодного и горячего контактов, а коэффициент пропорциональности в формуле называется коэффициентом термо-ЭДС.

    Так например, при разности температур в 100°С, при температуре холодного контакта 0°С, пара медь-константан обладает термо-ЭДС величиной в 4,25мВ.

    Между тем, термоэлектрический эффект имеет в своей основе три составляющих:

    Первый фактор — различие у разных веществ зависимости средней энергии электронов от температуры. В результате, если при нагреве проводника на одном его конце температура выше, то там электроны приобретают большие скорости, чем электроны на холодном конце проводника.

    Кстати, у полупроводников с нагревом растет и концентрация электронов проводимости. Электроны с высокой скоростью устремляются к холодному концу, и там происходит накопление отрицательного заряда, а на горячем конце получается нескомпенсированный положительный заряд. Так возникает составляющая термо-ЭДС, называемая объемной ЭДС.

    Второй фактор — у разных веществ контактная разность потенциалов зависит от температуры по-разному. Это связано с различием энергии Ферми у каждого из проводников, сведенных в контакт. Контактная разность потенциалов, возникающая при этом, оказывается пропорциональной разности энергий Ферми.

    Получается электрическое поле в тонком приконтактном слое, причем разность потенциалов с каждой стороны (у каждого из сведенных в контакт проводников) будет одинаковой, и при обходе цепи по замкнутому контуру, результирующее электрическое поле будет равно нулю.

    Но если температура одного из проводников будет отличаться от температуры другого, то в связи с зависимостью энергии Ферми от температуры, изменится и разность потенциалов. В результате возникнет контактная ЭДС — вторая составляющая термо-ЭДС.

    Третий фактор — фононное увеличение ЭДС . При условии, что в твердом теле имеет место температурный градиент, количество фононов (фонон - квант колебательного движения атомов кристалла), движущихся в направлении от горячего конца к холодному будет преобладать, в результате чего вместе с фононами большое количество электронов будет увлекаться в сторону холодного конца, и там станет накапливаться отрицательный заряд, пока процесс не придет в равновесие.

    Это дает третью составляющую термо-ЭДС, которая в условиях низких температур может в сотни раз превосходить две упомянутые выше составляющие.

    В 1834 году французский физик Жан Шарль Пельтье открыл обратный эффект. Он обнаружил, что при прохождении электрического тока через контакт (спай) двух разнородных проводников выделяется или поглощается тепло.

    Количество поглощаемого или выделяемого тепла связано с видом спаянных веществ, а также с направлением и величиной протекающего через спай электрического тока. Коэффициент Пельтье в формуле численно равен коэффициенту термо-ЭДС, умноженному на абсолютную температуру. Это явление известно теперь как .

    В сути эффекта Пельтье в 1838 году разобрался русский физик Эмилий Христианович Ленц. Он экспериментально проверил эффект Пельтье, поместив каплю воды на место спая образцов сурьмы и висмута. Когда Ленц пропускал через цепь электрический ток, вода превращалась в лед, но когда ученый изменил направление тока на противоположное, лед быстро растаял.

    Ученый установил таким образом, что при протекании тока не только выделялось джоулево тепло, но происходило также поглощение или выделение дополнительного тепла. Это дополнительное тепло получило название «тепло Пельтье».

    Физическая основа эффекта Пельтье заключается в следующем. Контактное поле в месте спая двух веществ, созданное контактной разностью потенциалов, либо препятствует прохождению пропускаемого через цепь тока, либо способствует ему.

    Если ток пропускается против поля, то требуется работа источника, который должен затратить энергию на преодоление контактного поля, в результате чего и происходит нагрев места спая. Ежели ток направлен так, что контактное поле поддерживает его, то работу совершает контактное поле, и энергия отнимается у самого вещества, а не расходуется источником тока. В результате вещество в месте спая охлаждается.

    Наиболее выразителен эффект Пельтье у полупроводников, благодаря чему стали возможными модули Пельтье или термоэлектрические преобразователи .

    В основе элемента Пельтье два полупроводника, контактирующие между собой. Эти полупроводники отличаются энергией электронов в зоне проводимости, поэтому при протекании тока через место контакта, электроны вынуждены приобретать энергию, чтобы смочь перейти в другую зону проводимости.

    Так, при перемещении в более высокоэнергетическую зону проводимости другого полупроводника, электроны поглощают энергию, охлаждая место перехода. При обратном направлении тока электроны отдают энергию, и происходит нагрев дополнительно к джоулеву теплу.

    Полупроводниковый модуль Пельтье состоит из нескольких пар , имеющих форму маленьких параллелепипедов. Обычно в качестве полупроводников используют теллурид висмута и твердый раствор кремния и германия. Полупроводниковые параллелепипеды соединены между собой попарно медными перемычками. Эти перемычки служат контактами для теплообмена с керамическими пластинками.

    Перемычки расположены так, что с одной стороны модуля только перемычки обеспечивающие переход n-p, а с другой стороны — только перемычки обеспечивающие переход p-n. В результате, при подаче тока, одна сторона модуля нагревается, другая — охлаждается, а если полярность питания сменить на противоположную, то сторона нагрева и охлаждения соответственно поменяются местами. Таким образом, при прохождении тока происходит перенос тепла с одной стороны модуля на другую, и возникает разность температур.

    Если теперь одну сторону модуля Пельтье нагревать, а другую охлаждать, то в цепи возникнет термо-ЭДС, то есть будет реализован эффект Зеебека. Очевидно, эффект Зеебека (термоэлектрический эффект) и эффект Пельтье — две стороны одной медали.

    Сегодня можно легко приобрести модули Пельтье по относительно доступной цене. Наиболее популярны модули Перьтье типа ТЕС1-12706, содержащие 127 термопар, и рассчитанные на питание 12 вольт.

    При максимальном потреблении в 6 ампер, достижима разница температур в 60°С, при этом заявляемый производителем безопасный диапазон рабочих температур — от -30°С до +70°С. Размер модуля 40мм х 40мм х 4мм. Модуль может работать как в режиме охлаждения-нагревания, так и в .

    Есть и более мощные модули Пельтье, например TEC1-12715, рассчитанный на 165 Вт. При питании напряжением от 0 до 15,2 вольт, с силой тока от 0 до 15 ампер, данный модуль способен развить разность температур в 70 градусов. Размер модуля также 40мм х 40мм х 4мм, однако диапазон безопасных рабочих температур шире - от -40°С до +90°С.

    В таблице ниже приведены данные по модулям Пельтье, широко доступным сегодня на рынке:

    Андрей Повный

    Чуть чуть теории.

    Единичным элементом термоэлектрического модуля (ТЭМ) является термопара, состоящая из двух разнородных элементов с p- и n- типом проводимости. Элементы соединяются между собой при помощи коммутационной пластины из меди. В качестве материала элементов традиционно используются полупроводники на основе висмута, теллура, сурьмы и селена.

    Термоэлектрический модуль (Элемент Пельтье) представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. В стандартном термоэлектрическом модуле термопары помещаются между двух плоских керамических пластин на основе оксида или нитрида алюминия. Количество термопар может изменяться в широких пределах - от единиц до сотен пар, что позволяет создавать ТЭМ практически любой холодильной мощности - от десятых долей до сотен ватт.

    При прохождении через термоэлектрический модуль постоянного электрического тока между его сторонами образуется перепад температур -одна сторона (холодная) охлаждается, а другая (горячая) нагревается. Если с горячей стороны ТЭМ обеспечить эффективный отвод тепла, например, с помощью радиатора, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже температуры окружающей среды. Степень охлаждения будет пропорциональной величине тока. При смене полярности тока горячая и холодная стороны меняются местами.

    Практика.

    Элементы Пельте широко используются в системах охлаждения. Но не многие знают об их другом свойстве – вырабатывать энергию. Изучению этих их возможностей и посвящена данная лабораторная работа.

    50*50 мм элемент, установлен между двумя алюминиевыми брусками. Предварительно их поверхности притёрты и смазаны пастой КПТ. В одном из брусков просверлены сквозные отверстия, через которые пропущена медная трубка, для водяного охлаждения. Вот, что получилось:

    Подключаем воду к охладителю к одной стороне элемента Пельтье , а другую ставим на конфорку. К выходу элемента подключаем 10Вт 6 вольтовою лампочку. Результат - наш генератор работает!

    Опыт доказывает, что элемент Пельтье хорошо вырабатывает электричество. Лампочка горит достаточно ярко, напряжение около 4.5 вольта.

    Нагрев до 160 градусов оказался не оптималенлен, при 120 градусах результат был хуже всего на 10%.

    Температура охлаждающей жидкости на выходе десять градусов, на входе на один градус меньше. Судя по таким результатам, вода, для охлаждения, не так уж необходима…

    При помощи элементов Пельтье можно добывать электричество в экспедиции, в турпоходе, на охотничьем зимовье, словом в любом месте, где это может понадобиться. Естественно, при наличии дров или яркого солнца, ну и обязательно смекалки.

    Использование термоэлектрического модуля.

    Такой термоэлектрический генератор прекрасно помнят те, кто помнит советские совхозы и колхозы. Говорят, в войну немцы не могли понять, как партизаны могут подолгу вести радиопередачи из осажденного леса.

    Да, как говорится - если бы нашим ученым платили деньги, то они бы iphone ещё в `85 изобрели бы! :-)

    Термоэлектрический холодильник

    Термоэлектрический холодильник (вариант 2)

    Термоэлектрический холодильник (вариант 3)

    Автомобильный охладитель для баночных напитков

    Кулер для питьевой воды

    Термоэлектрический кондиционер для кабины КАМАЗа

    В такой "ковшик" наливается вода, ставится на огонь и, пожалуйста, подзаряжай мобильник. Весь секрет в дне, там "зарыт" Пельтье

    Давайте поподробней об этой конструкции.

    В настоящее время растет интерес к использованию термоэлектрических генераторных модулей в бытовых устройствах. В первую очередь это касается возможности питания маломощных потребителей электроэнергии - радиоприемники, сотовые и спутниковые телефоны, переносные компьютеры, устройства автоматики и т.п. от имеющихся источников тепла. Термоэлектрический генератор, в котором отсутствуют вращающиеся, трущиеся и какие-либо другие изнашиваемые части, позволяет непосредственно получать электричество из любого источника тепла: выхлопных газов двигателей внутреннего сгорания, горячей воды геотермальных источников, "бросового" тепла ТЭЦ и т.п. Руководствуясь опытом, полученным при создании промышленных термоэлектрических генераторов (ТЭГ) различной мощности - от нескольких Ватт до нескольких килоВатт ИПФ КРИОТЕРМ приступила к серийному производству бытового ТЭГ номинальной мощностью 8 Вт. Конструктивно генератор выполнен в виде алюминиевого ковшика с внутренним объемом около 1 л в донной части которого установлены генераторные модули производства ИПФ Криотерм.

    Необходимый для работы генератора перепад температур достигается при разогреве ковшика, например, пламенем костра. Вода, нагреваемая внутри ковшика может идти на приготовление пищи или на другие цели. Данный генератор в первую очередь предназначен для использования в глухих, труднодоступных местах для подзарядки элементов питания индивидуальных средств связи и навигации, освещения и т.п. Он незаменим для охотников, туристов, моряков, сотрудников спасательных и специальных служб, вынужденных долгое время находится вдали от источников центрального энергоснабжения.

    Преимуществом генератора является малый вес и объем, высокая удельная генерируемая мощность, функциональность и высокая надежность. Конструкция генератора исключает возможность его перегрева при правильном использовании. В качестве дополнительной опции к генератору предлагается ступенчатый стабилизатор напряжения с диапазонами 3 В - 6 В - 9В -12В и переходники для зарядных устройств.

    БЫТОВОЙ ГЕНЕРАТОР ТЕРМОЭЛЕКТРИЧЕСКИЙ 1TG-8

    Техническая спецификация

    Масса без жидкости, кг, не более0,55

    Габаритные размеры, мм

    без ручки250х130х110 ? 123, h=100

    Ну чтож, все графики начерчены, все таблицы заполнены, теперь можно и помечтать. В целом если прикидывать энергопотребление в походе по максимуму, то получается следующее:
    GPS-навигатор - 0,3 Вт х 10 ч = 3 Вт*ч в день;
    фотоаппарат (зеркалка Canon) - аккумулятор 8 Вт*ч на 4 дня = 2 Вт*ч в день;
    видеокамера (видеорегистратор для запечатления интересных моментов поездки, около 1 часа видео в день) - 1,6 Вт*ч в день;
    сотовый телефон - около 0,2 Вт*ч в день;
    светодиодный фонарик для подсвечивания стоянки вечером - 2 Вт*ч в день.
    Итого получаем: 3 + 2 + 1,6 + 0,2 + 2 = 8,8 Вт*ч в сутки. С учётом потерь при зарядке аккумуляторов этих устройств и непредвиденные траты можно с лёгкостью округлить эту цифру до 10 Вт*ч в сутки, что приблизительно равно трём NiMH аккумуляторам формфактора АА (по 3,2 Вт*ч). Будем считать, что именно это количество электроэнергии позволяет комфортно путешествовать по ранее запланированному маршруту не ограничивая свои творческие позывы. Этот расчёт более-менее верен для одиночной вылазки или группы из двух человек. Если народу больше, то тут на каждого добавляется дополнительный потребитель, будь то сотовый или ещё один фотоаппарат. Я думаю что на каждого "лишнего" участника можно смело прибавлять по 1 Вт*ч, то есть для группы из 6-ти человек комфортный уровень энергопотребления составит 14 Вт*ч или около 4,5 аккумулятора АА. Предположим что поход длиться 10 дней, то для группы из 2-х человек понадобится 100 Вт*ч энергии, это 31 NiMH аккумулятор общей массой 31 х 31,5 = 976,5 г. То есть почти 1 кг аккумуляторов. Если брать щелочные батарейки, то самые лучшие отдают 2,2 Вт*ч и их потребуется 45 штук. Массу их не знаю, но даже если они по 25 г, то в сумме уже больше килограмма набирается. Для группы из 6-ти человек общее количество электроэнергии составляет 140 Вт*ч, это почти 44 аккумулятора массой 1386 г или 64 батарейки ещё большей массой. Если брать с собой LiPo аккумуляторы, какие используют моделисты, то для двух человек это будет аккумулятор массой 100 Вт*ч ÷ 160 Вт*ч/кг = 0,625 кг или 625 г. Для группы из 6-ти человек масса LiPo аккумулятора составит 875 г.
    Теперь прикинем как обстоят дела с термогенератором. Допустим у нас модуль (или модули) ТЕС1-12709, греем его не выше 150 °С, охлаждаем в ручье с температурой 15 °С, то есть на холодной стороне будет 20 °С, перепад температур 150 - 20 = 130 °С. Для такого значения разности температур у меня нет показателя эффективности, придётся считать. Берём два максимальных значения на графике зависимости эффективности от тока для ТЕС1-12709, например 13,6 мВт/°С для усреднённой разности температур 71 °С и 15,7 мВт/°С для 87 °С и рассчитываем на какую величину увеличилась эффективность при повышении разности температур на 87 - 71 = 16 °С. Получается на 2,1 мВт/°С. А дальше по пропорции: если увеличение разности в 16 °С привело к увеличению эффективности на 2,1 мВт/°С, то увеличение разности на 130 - 87 = 43 °С приведёт к увеличению эффективности на (43 х 2,1) ÷ 16 = 5,6 мВт/°С. Значит эффективность при разности температур в 130 °С будет равна 15,7 + 5,6 = 21,3 мВт/°С. В итоге получаем 21,3 х 130 = 2769 мВт или 2,8 Вт. Это довольно близкое к реальности значение если судить по тому, что в некоторых видеоэкспериментах два модуля выдавали 4...6 Вт. Чтобы с помощью одного модуля получить 10 Вт*ч энергии, надо чтобы генератор работал 10 ÷ 2,8 = 3,57 ч, а для 14 Вт*ч - 5 часов. То есть если использовать термогенератор состоящий из 2-х элементов Пельтье, то выработка электроэнергии даже для большой группы не занимает очень много времени.
    Единственная серьёзная проблема, возникающая при производстве электричества в походе этим методом - это рассеяние тепла на холодной стороне. Самый лучший и оптимальный - водяное охлаждение, так как вода имеет большую теплоёмкость. В этом плане водным туристам повезло больше, чем велосипедистам: у них способ передвижения связан именно с водой и если продумать конструкцию генератора (очень странно, почему она до сих пор не продумана и не реализована в промышленных объёмах), то выработка электроэнергии у них может происходить во время движения. Генератор частично погружён в воду, частично плавает на поверхности. В печь по мере расходования подгружается топливо, снаружи это всё охлаждается водой. Топливо собирается и готовиться на привале.
    Если заморачиваться с собиранием дров и сосновых шишек не хочется, то можно подумать над конструкцией газовой печи. Тут стоит немного посчитать. Итак, имеем:
    баллон сжиженного газа для газовых горелок с топливом массой 450 г.;
    состав: изобутан - 72%, пропан - 22%, бутан - 6%, в пересчёте на массу это 324 г, 99 г и 27 г соответственно;
    теплоты сгорания для этих газов равны соответственно 49,22 МДж/кг, 48,34 Мдж/кг и 49,34 МДж/кг.
    После умножения и сложения имеем 22,07 МДж в одном баллоне сжиженного газа. Принимаем КПД нашего генератора равное 1%, следовательно получаем в качестве электроэнергии 220 кДж, что составляет 61,3 Вт*ч. С чем можно сравнить? Ну например с 19-тью NiMH аккумуляторами АА. Не густо и довольно накладно, газ не дешёв.
    Раз использовать газ дорого, то можно придумать что-то с использованием жидкого топлива, например бензина. Я немного порылся в интернете на предмет дешёвого катализатора для каталитических горелок, но кроме оксида хрома (VI), полученного из бихромата аммония ничего не нашёл. Да и с ним не всё так гладко, но при желании, путём некоторого количества экспериментов можно и тут добиться стабильных положительных результатов. В каталитических грелках китайского производства скорее всего используются элементы платиновой группы в микроколичествах. Вот бы катализатор как в этой грелке, но большего размера для элементов Пельтье. Получился бы компактный и лёгкий генератор. Теплота сгорания бензина 44,5 МДж/кг, плотность 0,74 кг/л, с одного литра бензина имеем 33 МДж энергии, при 1%-ном КПД это 330 кДж или 91,6 Вт*ч электроэнергии (28 аккумуляторов АА). Более бюджетный вариант, но всё таки собирать и заготавливать имеющееся в природе бесплатное топливо естественно выгоднее, и у него нет одной очень неприятной особенности, присущей тем запасам, которые покупаются в магазине - оно не заканчивается в самый неподходящий момент.

    Элементы Пельтье называются специальные термоэлектрические преобразователи, работающие по принципу Пельтье. (образования разности температур при подключении электрического тока, другими словами, термоэлектрический охладитель).

    Ни для кого не секрет, что электронные устройства при работе греются. Нагрев отрицательно влияет на процесс работы, поэтому, чтобы как-то охладить приборы, в корпус устройств встраивают специальные элементы, называющиеся по имени изобретателя из Франции – Пельтье. Это малогабаритный элемент, который может охлаждать радиодетали на платах устройств. При его установке собственными силами никаких проблем не возникнет, монтаж в схему производится обычным паяльником.

    1 — Изолятор керамический
    2 — Проводник n — типа
    3 — Проводник p — типа
    4 — Проводник медный

    В ранние времена вопросы охлаждения никого не интересовали, поэтому это изобретение осталось без применения. Два века спустя, при использовании электронных устройств в быту и промышленности, стали применять миниатюрные элементы Пельтье, вспомнив об эффекте французского изобретателя.

    Принцип действия

    Чтобы понять, как работает элемент на основе изобретения Пельтье, необходимо разобраться в физических процессах. Эффект заключается в соединении двух материалов с токопроводящими свойствами, обладающими различной энергией электронов в районе проводимости. При подключении электрического тока к зоне связи, электроны получают высокую энергию, для перехода в зону с более высокой проводимости второго полупроводника. Во время поглощения энергии проводники охлаждаются. При течении тока в обратную сторону происходит обычный эффект нагревания контакта.

    Вся работа осуществляется на уровне решетки атома материала. Чтобы лучше понять работу, представим газ из частиц – фононов. Температура газа имеет зависимость от параметров:

    • Свойства металла.
    • Температуры среды.

    Предполагаем, что металл состоит из смеси электронного и фононного газа, находящегося в термодинамическом равновесии. Во время касания двух металлов с различной температурой, холодный электронный газ перемещается в теплый металл. Создается разность потенциалов.

    На стыке контакта электроны поглощают энергию фононов и отдают ее на другой металл фононам. При смене полюсов источника тока, весь процесс будет обратного действия. Разность температур будет возрастать до того момента, пока имеются в наличии свободные электроны с большим потенциалом. При их отсутствии наступит уравновешивание температур в металлах.

    Если на одну сторону пластины Пельтье установить качественный теплоотвод в виде радиатора, то вторая сторона пластины создаст более низкую температуру. Она будет ниже на несколько десятков градусов, чем окружающий воздух. Чем больше значение тока, тем сильнее будет охлаждение. При обратной полярности тока холодная и теплая сторона поменяются друг с другом.

    При соединении элемента Пельтье с металлом, эффект становится незначительным, поэтому практически устанавливают два элемента. Их количество может быть любым, это зависит от потребности в мощности охлаждения.

    Эффективность действия эффекта Пельтье зависит от того, насколько точно выбраны свойства металлов, силы тока, протекающей по прибору, скорости отвода тепла.

    Сфера использования

    Чтобы применить практически элемент Пельтье, ученые произвели несколько опытов, показавших, что повышение отвода тепла достигается увеличением числа соединений 2-х материалов. Чем больше число спаев материалов, тем выше эффект. Чаще в нашей жизни такой элемент служит для охлаждения электронных устройств, уменьшения температуры в микросхемах.

    Вот их некоторые области использования:

    • Устройства ночного видения.
    • Цифровые камеры, приборы связи, микросхемы, нуждающиеся в качественном охлаждении, для лучшего эффекта картинки.
    • Телескопы с охлаждением.
    • Кондиционеры.
    • Точные часовые системы охлаждения кварцевых электрических генераторов.
    • Холодильники.
    • Кулеры для воды.
    • Автомобильные холодильники.
    • Видеокарты.

    Элементы Пельтье часто используются в системах охлаждения, кондиционирования. Есть возможность достижения довольно низких температур, что открывает возможность применения для охлаждения оборудования с повышенным нагревом.

    В настоящее время специалисты используют элементы Пельтье в акустических системах, выполняющих роль кулера. Элементы Пельтье не создают никаких звуков, поэтому бесшумность является одним из их достоинств. Такая технология стала популярной из-за мощной отдачи тепла. Элементы, изготовленные по современной технологии, имеют компактные размеры, радиаторы охлаждения поддерживают определенную температуру долгое время.

    Достоинством элементов является длительный срок службы, потому что они сделаны в виде монолитного корпуса, неисправности маловероятны. Простая конструкция обычного широко применяемого вида простая, состоит из двух медных проводов с клеммами и проводами, изоляции из керамики.

    Это небольшой перечень мест применения. Он расширяется за счет устройств бытового назначения, компьютеров, автомобилей. Можно отметить использование элементов Пельтье в охлаждении микропроцессоров с высокой производительностью. Ранее в них устанавливались только вентиляторы. Теперь, при монтаже модуля с элементами Пельтье значительно снизился шум в работе устройств.

    Будут ли меняться схемы охлаждения в обычных холодильниках на схемы с использованием эффекта Пельтье? Сегодня вряд ли это возможно, так как элементы имеют низкий КПД. Стоимость их также не позволит применить их в холодильниках, так как она достаточно высока. Будущее покажет, насколько будет развиваться это направление. Сегодня проводятся эксперименты с твердотельными растворами, аналогичными по строению и свойствам. При их использовании цена модуля охлаждения может уменьшиться.

    Обратный эффект элементов Пельтье

    Технология подобного вида имеет особенность с интересными фактами. Это заключается в эффекте образования электрического тока путем охлаждения и нагревания пластины модуля Пельтье. Другими словами, он служит генератором электрической энергии, при обратном эффекте.

    Такие генераторы электричества существуют пока чисто теоретически, но можно надеяться на будущее развитие этого направления. В свое время французский изобретатель не нашел применения своему открытию.

    Сегодня этот термоэлектрический эффект широко используется в электронике. Границы применения постоянно расширяются, что подтверждается докладами и опытами исследователей и ученых. В будущем бытовая и электронная техника станет обладать совершенными инновационными возможностями. Холодильники станут бесшумными, так же, как и компьютеры. А пока модули Пельтье монтируют в разные схемы для охлаждения радиодеталей.

    Преимущества и недостатки

    Достоинствами элементов Пельтье можно назвать следующие факты:

    • Компактный корпус элементов, позволяет монтировать его на плату с радиодеталями.
    • Нет движущихся и трущихся частей, что повышает его срок службы.
    • Позволяет соединение множества элементов в один каскад, по схеме, позволяющей уменьшать температуру очень горячих деталей.
    • При смене полярности питающего напряжения элемент станет работать в обратном порядке, то есть, стороны охлаждения и нагрева поменяются местами.

    Недостатками можно назвать такие моменты:

    • Недостаточный коэффициент действия, влияющий на увеличение подводимого тока, для достижения необходимого перепада температур.
    • Довольно сложная система отведения тепла от поверхности охлаждения.
    Как изготовить элементы Пельтье для холодильника

    Изготовить такие элементы Пельтье можно самому быстро и просто. Для начала нужно определиться с материалом пластин. Нужно взять пластины элементов из прочной керамики, приготовить проводники в количестве больше 20 штук, для того, чтобы обеспечить наибольший перепад температур. При достаточном числе элементов КПД произойдет значительное увеличение производительности холодильника.

    Большую роль играет мощность применяемого холодильника. Если он действует на жидком фреоне, то с производительностью проблем не возникнет. Пластины элементов монтируются возле испарителя, смонтированного вместе с двигателем. Для такого монтажа понадобится некоторый набор прокладок и инструмента. Таким образом, обеспечится быстрое охлаждение нижней части холодильника.

    Необходима тщательная изоляция проводников, только после этого их подключают к компрессору. После окончания монтажа нужно проверить напряжение мультиметром. При нарушении работы элементов (например, короткое замыкание), сработает терморегулятор.

    Другие применения термоэлектрических модулей

    Эффект модуля Пельтье применяется сегодня, благодаря законам физики. Избыточная энергия элементов всегда пригодится там, где необходима бесшумный и быстрый обмен теплом.

    Основные места использования модулей:

    • Охлаждение микропроцессоров.
    • Двигатели внутреннего сгорания выпускают отработанные газы, которые ученые стали применять для образования вспомогательной энергии с помощью термоэлектрических модулей. Полученная таким способом энергия подается снова в мотор, в виде электричества. Это создает экономию топлива.
    • В бытовых устройствах, действующих на нагревание или охлаждение.

    Охлаждающий кулер может превратиться в нагреватель, а холодильник может выполнять функцию теплового шкафа, если изменить полярность постоянного тока. Это называется обратимым эффектом.

    Такой принцип применяют в рекуператорах. Он состоит из бокса из двух камер. Они между собой сообщаются вентилятором. Элементы Пельтье нагревают холодный воздух, поступающий снаружи, с помощью энергии, которая извлечена из теплого воздуха в помещении. Такое устройство экономит расходы на отопление помещений.