• Резонанс в последовательном и параллельном LC контуре. Последовательный колебательный контур

    Колебательный контур называется идеальным, если он состоит из катушки и емкости и в нем нет сопротивления потерь.

    Рассмотрим физические процессы в следующей цепи:

    1 Ключ стоит в положении 1. Конденсатор начинает заряжаться, от источника напряжения и в нем накапливается энергия электрического поля,

    т.е.конденсатор становится источником электрической энергии.

    2. Ключ в положении 2. Конденсатор начнет разряжаться. Электрическая энергия, запасенная в конденсаторе переходит в энергию магнитного поля катушки.

    Ток в цепи достигает максимального значения(точка 1). Напряжение на обкладках конденсатора уменьшается до нуля.

    В период от точки 1 до точки 2 ток в контуре уменьшается до нуля, но как только он начинает уменьшатся, то уменьшается магнитное поле катушки и в катушке индуцируется ЭДС самоиндукции, который противодействует уменьшению тока, поэтому он уменьшается до нуля не скачкообразно, а плавно. Так как возникает ЭДС самоиндукции, то катушка становится источником энергии. От этой ЭДС конденсатор начинает заряжаться, но с обратной полярностью (напряжение конденсатора отрицательное) (в точке 2 конденсатор вновь заряжается).

    Вывод: в цепи LC происходит непрерывное колебание энергии между электрическим и магнитным полями, поэтому такая цепь называется колебательным контуром.

    Получившиеся колебания называются свободными илисобственными , поскольку они происходят без помощи постороннего источника электрической энергии, внесенной ранее в контур (в электрическое поле конденсатора). Так как емкость и индуктивность идеальны (нет сопротивления потерь) и энергия из цепи не уходит, амплитуда колебаний с течением времени не меняется и колебания будут незатухающими .

    Определим угловую частоту свободных колебаний:

    Используем равенство энергий электрического и магнитного полей

    Где ώ угловая частота свободных колебаний.

    [ ώ ]=1/с

    f 0= ώ /2π [Гц].

    Период свободных колебаний Т0=1/f .

    Частоту свободных колебаний называют частотой собственных колебаний контура.

    Из выражения: ώ²LC=1 получимώL=1/Cώ , следовательно, при токе в контуре с частотой свободных колебаний индуктивное сопротивление равно емкостному сопротивлению.

    Характеристические сопротивления.

    Индуктивное или емкостное сопротивление в колебательном контуре при частоте свободных колебаний называется характеристическим сопротивлением.

    Характеристическое сопротивление вычисляется по формулам:

    5.2 Реальный колебательный контур

    Реальный колебательный контур обладает активным сопротивлением, поэтому при воздействии в контуре свободных колебаний энергия предварительно заряженного конденсатора постепенно тратится, преобразуясь в тепловую.

    Свободные колебания в контуре являются затухающими, так как в каждый период энергия уменьшается и амплитуда колебаний в каждый период будет уменьшаться.

    Рисунок - реальный колебательный контур.

    Угловая частота свободных колебаний в реальном колебательном контуре:

    Если R=2… , то угловая частота равна нулю, следовательно свободные колебания в контуре не возникнут.

    Таким образом колебательным контуром называется электрическая цепь состоящая из индуктивности и емкости и обладающая малым активным сопротивлением, меньшим удвоенного характеристического сопротивления, что обеспечивает обмен энергией между индуктивностью и емкостью.

    В реальном колебательном контуре свободные колебания затухают тем быстрее, чем больше активное сопротивление.

    Для характеристики интенсивности затухания свободных колебаний используется понятие «затухание контура» - отношение активного сопротивления к характеристическому.

    На практике используют величину, обратную затуханию – добротность контура.

    Для получения незатухающих колебаний в реальном колебательном контуре необходимо в течение каждого периода колебаний пополнять электрическую энергию на активном сопротивлении контура в такт с частотой собственных колебаний. Это осуществляется с помощью генератора.

    Если подключить колебательный контур к генератору переменного тока, частота которого отличается от частоты свободных колебаний контура, то в цепи протекает ток с частотой равной частоте напряжения генератора. Эти колебания называют вынужденным.

    Если частота генератора отличается от собственной частоты контура, то такой колебательный контур является ненастроенным относительно частоты внешнего воздействия, если же частоты совпадают, то настроенным.

    Задача: Определить индуктивность, угловую частоту контура, характеристическое сопротивление, если емкость колебательного контура 100 пФ, частота свободных колебаний 1,59 МГц.

    Решение:

    Тестовые задания:

    Тема занятия 8: РЕЗОНАНС НАПРЯЖЕНИЙ

    Резонанс напряжений – явление возрастания напряжений на реактивных элементах, превышающих напряжение на зажимах цепи при максимальном токе в цепи, которое совпадает по фазе с входным напряжением.

    Условия возникновения резонанса:

      Последовательное соединение LиCс генератором переменного тока;

      Частота генератора должна быть равна частоте собственных колебаний контура, при этом характеристические сопротивления равны;

      Сопротивление должно быть меньше, чем 2ρ, так как только в этом случае в цепи возникнут свободные колебания, поддерживаемые внешним источником.

    Полное сопротивление цепи:

    так как равны характеристические сопротивления. Следовательно, при резонансе цепь носит чисто активный характер, значит, входное напряжение, и ток в момент резонанса совпадают по фазе. Ток принимает максимальное значение.

    При максимальном значении тока напряжение на участках L и C будут большими и равными между собой.

    Напряжение на зажимах цепи:

    Рассмотрим следующие соотношения:

    , следовательно

    Q добротность контура –при резонансе напряжения показывает, во сколько раз напряжение на реактивных элементах больше входного напряжения генератора, питающего цепь. При резонансе коэффициент передачи последовательного колебательного контура

    резонанса.

    Пример:

    Uc=Ul=QU =100В,

    то есть напряжение на зажимах меньше напряжений на емкости и индуктивности. Это явление называется резонансом напряжений

    При резонансе, коэффициент передачи равен добротности.

    Построим векторную диаграмму напряжения

    Напряжение на емкости равно напряжению на индуктивности, следовательно напряжение на сопротивлении равно напряжению на зажимах и совпадает по фазе с током.

    Рассмотрим энергетический процесс в колебательном контуре:

    В цепи имеется обмен энергии между электрическим полем конденсатора и магнитным полем катушки. К генератору энергия катушки не возвращается. От генератора в цепь поступает такое количество энергии, которое тратится на резисторе. Это необходимо для того, чтобы в контуре наблюдались незатухающие колебания. Мощность в цепи только активная.

    Докажем это математически:

    , полная мощность цепи, которая равна активной мощности.

    Реактивная мощность.

    8.1 Резонансная частота. Расстройка.

    Lώ=l/ώC , следовательно

    , угловая резонансная частота.

    Из формулы видно, что резонанс наступает, если частота питающего генератора равна собственным колебаниям контура.

    При работе с колебательным контуром необходимо знать, совпадает ли частота генератора и частота собственных колебаний контура. Если частоты совпадают, то контур остается настроенным в резонанс, если не совпадает – то в контуреприсутствует расстройка.

    Настроить колебательный контур в резонанс можно тремя способами:

    1 Изменять частоту генератора, при значениях емкости и индуктивности const, то есть изменяя частоту генератора мы подстраиваем эту частоту под частоту колебательного контура

    2 Изменять индуктивность катушки, при частоте питания и емкости const;

    3 Изменять емкость конденсатора, при частоте питания и индуктивности const.

    Во втором и третьем способе изменяя частоту собственных колебаний контура, подстраиваем ее под частоту генератора.

    При ненастроенном контуре частота генератора и контура не равны, то есть присутствует расстройка.

    Расстройка – отклонение частоты от резонансной частоты.

    Существует три вида расстройки :

      Абсолютная – разность между данной частотой и резонансной

      Обобщенная – отношение реактивного сопротивления к активному:

      Относительная – отношение абсолютной расстройки к резонансной частоте:

    При резонансе все расстройки равны нулю , если частота генератора меньше частоты контура, то расстройка считается отрицательной,

    Если больше – положительной.

    Таким образом добротность характеризует качество контура, а обобщенная расстройка- удаленность от резонансной частоты.

    8.2 Построение зависимостейX , X L , X C отf .

    Задачи:

      Сопротивление контура 15 Ом, индуктивность 636 мкГн, Емкость 600 пФ, напряжение питающей сети 1,8 В. Найти собственную частоту контура, затухание контура, характеристическое сопротивление, ток, активную мощность, добротность, напряжение на зажимах контура.

    Решение:

      Напряжение на зажимах генератора 1 В, частота питающей сети 1 МГц, добротность 100, емкость 100 пФ. Найти: затухание, характеристическое сопротивление, активное сопротивление, индуктивность, частоту контура, ток, мощность, напряжения на емкости и индуктивности.

    Решение:

    Тестовые задания:

    Тема занятия 9 : Входные и передаточные АЧХ и ФЧХ последовательного колебательного контура.

    9.1 Входные АЧХ и ФЧХ.

    В последовательном колебательном контуре:

    R – активное сопротивление;

    X – реактивное сопротивление.

    В прошлой статье мы с вами рассмотрели последовательный колебательный контур , так как все участвующие в нем радиоэлементы соединялись последовательно. В этой же статье мы рассмотрим параллельный колебательный контур, в котором катушка и конденсатор соединяются параллельно.

    Параллельный колебательный контур на схеме

    На схеме идеальный колебательный контур выглядит вот так:

    В реальности у нас катушка обладает приличным сопротивлением потерь, так как намотана из провода, да и конденсатор тоже имеет некоторое сопротивление потерь. Потери в емкости очень малы и ими обычно пренебрегают. Поэтому оставим только одно сопротивление потерь катушки R. Тогда схема реального колебательного контура примет вот такой вид:


    где

    R — это сопротивление потерь контура, Ом

    L — собственно сама индуктивность, Генри

    С — собственно сама емкость, Фарад

    Работа параллельного колебательного контура

    Давайте подцепим к генератору частоты реальный параллельный колебательный контур


    Что будет, если мы подадим на контур ток с частотой в ноль Герц, то есть постоянный ток? Он спокойно побежит через катушку и будет ограничиваться лишь потерь R самой катушки. Через конденсатор ток не побежит, потому что конденсатор не пропускает постоянный ток. Об это я писал еще в статье конденсатор в цепи постоянного и переменного тока .

    Давайте тогда будем добавлять частоту. Итак, с увеличением частоты у нас конденсатор и катушка начнут оказывать реактивное сопротивление электрическому току.

    Реактивное сопротивление катушки выражается по формуле

    а конденсатора по формуле

    Если плавно увеличивать частоту, то можно понять из формул, что в самом начале при плавном увеличении частоты конденсатор будет оказывать бОльшее сопротивление, чем катушка индуктивности. На какой-то частоте реактивные сопротивления катушки X L и конденсатора X C уравняются. Если далее увеличивать частоту, то уже катушка уже будет оказывать большее сопротивление, чем конденсатор.

    Резонанс параллельного колебательного контура

    Очень интересное свойство параллельного колебательного контура заключается в том, что при Х L = Х С у нас колебательный контур войдет в резонанс . При резонансе колебательный контур начнет оказывать большее сопротивление переменному электрическому току . Еще часто это сопротивление называют резонансным сопротивлением контура и оно выражается формулой:

    где

    R рез — это сопротивление контура на резонансной частоте

    L — собственно сама индуктивность катушки

    C — собственно сама емкость конденсатора

    R — сопротивление потерь катушки

    Формула резонанса

    Для параллельного колебательного контура также работает формула Томсона для резонансной частоты как и для последовательного колебательного контура:

    где

    F — это резонансная частота контура, Герцы

    L — индуктивность катушки, Генри

    С — емкость конденсатора, Фарады

    Как найти резонанс на практике

    Ладно, ближе к делу. Берем паяльник в руки и спаиваем катушку и конденсатор параллельно. Катушка на 22 мкГн, а конденсатор на 1000пФ.


    Итак, реальная схема этого контура будет вот такая:

    Для того, чтобы все показать наглядно и понятно, давайте добавим к контуру последовательно резистор на 1 КОм и соберем вот такую схему:


    На генераторе мы будет менять частоту, а с клемм X1 и X2 мы будем снимать напряжение и смотреть его на осциллографе.

    Нетрудно догадаться, что у нас сопротивление параллельного колебательного контура будет зависеть от частоты генератора, так как в этом колебательном контуре мы видим два радиоэлемента, чьи реактивные сопротивления напрямую зависит от частоты, поэтому заменим колебательный контур эквивалентным сопротивлением контура R кон.

    Упрощенная схема будет выглядеть вот так:

    Интересно, на что похожа эта схема? Не на делитель ли напряжения ? Именно! Итак, вспоминаем правило делителя напряжения: на меньшем сопротивлении падает меньшее напряжение, на бОльшем сопротивлении падает бОльшее напряжение. Какой вывод можно сделать применительно к нашему колебательному контуру? Да все просто: на резонансной частоте сопротивление R кон будет максимальным, вследствие чего у нас на этом сопротивлении «упадет» бОльшее напряжение.

    Начинаем наш опыт. Поднимаем частоту на генераторе, начиная с самых маленьких частот.

    200 Герц.


    Как вы видите, на колебательном контуре «падает» малое напряжение, значит, по правилу делителя напряжения, можно сказать, что сейчас у контура малое сопротивление R кон

    Добавляем частоту. 11,4 Килогерца


    Как вы видите, напряжение на контуре поднялось. Это значит, что сопротивление колебательного контура увеличилось.

    Добавляем еще частоту. 50 Килогерц


    Заметьте, напряжение на контуре повысилось еще больше. Значит его сопротивление еще больше увеличилось.

    723 Килогерца


    Обратите внимание на цену деления одного квадратика по вертикали, по сравнению с прошлым опытом. Там было 20мВ на один квадратик, а сейчас уже 500 мВ на один квадратик. Напряжение выросло, так как сопротивление колебательного контура стало еще больше.

    И вот я поймал такую частоту, на которой получилось максимальное напряжение на колебательном контуре. Обратите внимание на цену деления по вертикали. Она равняется двум Вольтам.


    Дальнейшее увеличение частоты приводит к тому, что напряжение начинает падать:


    Снова добавляем частоту и видим, что напряжение стало еще меньше:


    Разбираем частоту резонанса

    Давайте более подробно рассмотрим эту осциллограмму, когда у нас было максимальное напряжение с контура.

    Что здесь у нас произошло?

    Так как на этой частоте был всплеск напряжения, следовательно, на этой частоте параллельный колебательный контур имел самое высокое сопротивление R кон. На этой частоте Х L = Х С. Потом с ростом частоты сопротивление контура снова упало. Это и есть то самое резонансное сопротивление контура, которое выражается формулой:

    Резонанс токов

    Итак, давайте допустим, мы вогнали наш колебательный контур в резонанс:

    Чему будет равняться резонансный ток I рез ? Считаем по закону Ома:

    I рез = U ген /R рез, где R рез = L/CR.

    Но самый прикол в том, что у нас при резонансе в контуре появляется свой собственный контурный ток I кон , который не выходит за пределы контура и остается только в самом контуре! Так как с математикой у меня туго, поэтому я не буду приводить различные математические выкладки с производными и комплексными числами и объяснять откуда берется контурный ток при резонансе. Именно поэтому резонанс параллельного колебательного контура называется резонансом токов.

    Добротность

    Кстати, этот контурный ток будет намного больше, чем ток, который проходит через контур. И знаете во сколько раз? Правильно, в Q раз. Q — это и есть добротность! В параллельном колебательном контуре она показывает во сколько раз сила тока в контуре I кон больше сила тока в общей цепи I рез

    Или формулой:

    Если сюда еще прилепить сопротивление потерь, то формула примет вот такой вид:

    где

    Q — добротность

    R — сопротивление потерь на катушке, Ом

    С — емкость, Ф

    L — индуктивность, Гн

    Заключение

    Ну и в заключении хочу добавить, что параллельный колебательный контур применяется в радиоприемном оборудовании, где надо выделить частоту какой-либо станции. Также с помощью колебательного контура можно построить различные , которые бы выделяли нужную нам частоту, а другие частоты пропускали бы через себя, что в принципе мы и делали в нашем опыте.

    Колебательный контур

    электрическая цепь, содержащая катушку индуктивности и конденсатор, в которой могут возбуждаться электрические колебания. Если в некоторый момент времени зарядить конденсатор до напряжения V 0 , то энергия, сосредоточенная в электрическом поле конденсатора, равна Е с = , где С - ёмкость конденсатора. При разрядке конденсатора в катушке потечёт ток I , который будет возрастать до тех пор, пока конденсатор полностью не разрядится. В этот момент электрическая энергия К. к. E c = 0, а магнитная, сосредоточенная в катушке, E L =L - индуктивность катушки, I 0 - максимальное значение тока. Затем ток в катушке начинает падать, а напряжение на конденсаторе возрастать по абсолютной величине, но с противоположным знаком. Спустя некоторое время ток через индуктивность прекратится, а конденсатор зарядится до напряжения - V 0 . Энергия К. к. вновь сосредоточится в заряженном конденсаторе. Далее процесс повторяется, но с противоположным направлением тока. Напряжение на обкладках конденсатора меняется по закону V = V 0 cos ω 0 t, а ток в катушке индуктивности I = I 0 sin ω 0 t , т. е. в К. к. возбуждаются собственные гармонические колебания напряжения и тока с частотой ω 0 = 2 π/T 0 , где T 0 - период собственных колебаний, равный T 0 = 2π

    В реальных К. к., однако, часть энергии теряется. Она тратится на нагрев проводов катушки, обладающих активным сопротивлением, на излучение электромагнитных волн в окружающее пространство и потери в диэлектриках (см. Диэлектрические потери), что приводит к затуханию колебаний. Амплитуда колебаний постепенно уменьшается, так что напряжение на обкладках конденсатора меняется уже по закону: V=V 0 e -δt cosωt, где коэффициент δ = R/2L - показатель (коэффициент) затухания, а ω = - частота затухающих колебаний. Т. о., потери приводят к изменению не только амплитуды колебаний, но и их периода Т = 2 π/ω. Качество К. к. обычно характеризуют его добротностью Q определяет число колебаний, которое совершит К. к. после однократной зарядки его конденсатора, прежде чем амплитуда колебаний уменьшится в е раз (е - основание натуральных логарифмов).

    Если включить в К. к. генератор с переменной эдс: U = U 0 cosΩt (), то в К. к. возникнет сложное колебание, являющееся суммой его собственных колебаний с частотой ω 0 и вынужденных с частотой Ω. Через некоторое время после включения генератора собственные колебания в контуре затухнут и останутся только вынужденные. Амплитуда этих стационарных вынужденных колебаний определяется соотношением

    Т. е. зависит не только от амплитуды внешней эдс U 0 , но и от её частоты Ω. Зависимость амплитуды колебаний в К. к.

    от частоты внешней эдс называется резонансной характеристикой контура. Резкое увеличение амплитуды имеет место при значениях Ω, близких к собственной частоте ω 0 К. к. При Ω = ω 0 амплитуда колебаний V makc в Q раз превышает амплитуду внешней эдс U. Т. к. обычно 10 Q 100, то К. к. позволяет выделить из множества колебаний те, частоты которых близки к ω 0 . Именно это свойство (избирательность) К. к. используется на практике. Область (полоса) частот ΔΩ вблизи ω 0 , в пределах которой амплитуда колебаний в К. к. меняется мало, зависит от его добротности Q. Численно Q равно отношению частоты ω 0 собственных колебаний к ширине полосы частот ΔΩ.

    Для повышения избирательности К. к. необходимо увеличивать Q. Однако рост добротности сопровождается увеличением времени установления колебаний в К. к. Изменения амплитуды колебаний в контуре с высокой добротностью не успевают следовать за быстрыми изменениями амплитуды внешней эдс. Требование высокой избирательности К. к. противоречит требованию передачи быстро изменяющихся сигналов. Поэтому, например, в усилителях телевизионных сигналов искусственно снижают добротность К. к. Часто используются схемы с двумя или несколькими связанными между собой К. к. Такие системы при правильно подобранных связях обладают почти прямоугольной резонансной кривой (пунктир).

    Кроме описанных линейных К. к. с постоянными L и С, применяются нелинейные К. к., параметры которых L или С зависят от амплитуды колебаний. Например, если в катушку индуктивности К. к. вставлен железный сердечник, то намагниченность железа, а с ним и индуктивность L катушки меняется с изменением тока, текущего через неё. Период колебания в таком К. к. зависит от амплитуды, поэтому резонансная кривая приобретает наклон, а при больших амплитудах становится неоднозначной (). В последнем случае имеют место скачки амплитуды при плавном изменении частоты Ω внешней эдс. Нелинейные эффекты проявляются тем сильнее, чем меньше потери в К. к. В К. к. с низкой добротностью нелинейность вообще не сказывается на характере резонансной кривой.

    Лит.: Стрелков С. П.. Введение в теорию колебаний, М. - Л., 1951.

    В. Н. Парыгин.

    Рис. 2. Колебательный контур с источником переменной эдс U =U 0 cos Ωt.

    Рис. 3. Резонансная кривая колебательного контура: ω 0 - частота собственных колебаний; Ω - частота вынужденных колебаний; ΔΩ - полоса частот вблизи ω 0 , на границах которой амплитуда колебаний V = 0,7 V makc . Пунктир - резонансная кривая двух связанных контуров.


    Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

    Для генерации высокочастотных волн часто применяются схемы на основе колебательного контура. Подобрав параметры элементов цепи, можно производить частоты свыше 500 МГц. Схемы используются в ВЧ-генераторах, высокочастотном нагреве, телевизионных и радиоприемниках.

    Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-11.jpg 661w" sizes="(max-width: 600px) 100vw, 600px">

    Колебательный контур

    Колебательный контур

    Колебательный контур – это последовательное или параллельное соединение индуктивных и конденсаторных элементов, генерирующих электромагнитные колебания любой заданной частоты. Оба компонента схемы способны хранить энергию.

    Когда существует разность потенциалов на конденсаторных пластинах, он сохраняет энергию электрического поля. Аналогично энергия сохраняется в магнитном поле индуктивной катушки.

    Работа колебательного контура

    Когда первоначально конденсатор подключается к источнику постоянного тока, на нем возникает разность потенциалов. Одна пластина имеет избыток электронов и заряжена отрицательно, другая – недостаток электронов и заряжена положительно.

    Что будет, если в цепь включить индуктивную катушку:

    1. При замыкании контакта, соединяющего электроцепь, конденсатор начинает разряжаться через катушку индуктивности. Накопленная им энергия электрического поля снижается;
    2. Ток, протекающий через катушку L, индуцирует ЭДС, противостоящую потоку электронов. Из-за этого скорость нарастания тока медленная. В катушке создается магнитное поле, которое начинает накапливать свою энергию. После полного разряда конденсатора поток электронов через катушку уменьшается до нуля. Электростатическая энергия, накопленная в конденсаторе, преобразуется в энергию магнитного поля катушки;
    3. Когда конденсатор разряжен, магнитное поле начинает постепенно разрушаться, но, согласно закону Ленца, индукционный ток катушки способствует заряду конденсатора с противоположной полярностью. Энергия, связанная с магнитным полем, снова превращается в электростатическую;

    Важно! В идеальном случае, когда нет потерь на L и С, конденсатор зарядился бы до первоначального значения с противоположным знаком.

    1. После того, как уменьшающееся магнитное поле перезарядило конденсатор, он снова начинает разряжаться с потоком тока обратной направленности, а МП опять нарастает.

    Последовательность зарядки и разрядки продолжается, то есть процесс преобразования электростатической энергии в магнитную и наоборот периодически повторяется, подобно маятнику, у которого потенциальная энергия циклически превращается в кинетическую и обратно.

    Непрерывный процесс зарядки и разрядки приводит к меняющему направление движению электронов или к колебательному току.

    Обмен энергией между L и С будет продолжаться бесконечно, если отсутствуют потери. Часть энергии теряется, рассеиваясь в виде тепла на проводах катушки, соединительных проводниках, из-за тока утечки конденсатора, электромагнитного излучения. Поэтому колебания будут затухающими.

    Png?.png 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-3-768x463..png 900w" sizes="(max-width: 600px) 100vw, 600px">

    Затухающие колебания

    Резонанс

    Если схема с конденсатором, катушкой и резистором возбуждается напряжением, постоянно меняющимся во времени с определенной частотой, то также изменяются реактивные сопротивления: индуктивное и емкостное. Амплитуда и частота выходного сигнала будет изменяться по сравнению с входным.

    Индуктивное сопротивление прямо пропорционально частоте:

    X(L) = 2π x f x L,

    а емкостное сопротивление обратно пропорционально этому показателю:

    X(C) = 1/(2π x f x C).

    Важно! На более низких частотах индуктивное сопротивление незначительное, а емкостное будет высоким и сможет создавать практически разомкнутый контур. На высоких частотах картина обратная.

    При конкретной комбинации конденсатора и катушки схема становится резонансной, или настроенной, имеющей частоту колебаний, при которой индуктивное сопротивление идентично емкостному. И они компенсируют друг друга.

    Следовательно, в цепи остается исключительно активное сопротивление, противостоящее протекающему току. Созданные условия получили наименование резонанса колебательного контура. Фазовый сдвиг между током и напряжением отсутствует.

    Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-9-768x576..jpg 800w" sizes="(max-width: 600px) 100vw, 600px">

    Резонанс LC-цепи

    Для расчета резонансной частоты колебательного контура учитывается следующее условие:

    Следовательно, 2π x f x L = 1/(2πx f x C).

    Отсюда получается формула резонансной частоты:

    f = 1/(2π x √(L x C)).

    Расчет резонансной частоты, индуктивности и емкости можно сделать на онлайн калькуляторе, подставив конкретные значения.

    Скорость, с которой рассеивается энергия от LC-схемы, должна быть такой же, как энергия, подаваемая на схему. Устойчивые, или незатухающие, колебания производятся электронными схемами генераторов.

    LC-цепи используются либо для генерации сигналов на определенной частоте, либо для выделения частотного сигнала из более сложного. Они являются ключевыми компонентами многих электронных устройств, в частности радиооборудования, используемого в генераторах, фильтрах, тюнерах и частотных микшерах.

    Видео

    Темы кодификатора ЕГЭ : свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

    Электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

    Колебательный контур

    Колебательный контур - это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

    Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания - периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия - только за счёт энергии, запасённой в контуре.

    Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

    Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

    Начальный момент : . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

    Рис. 1.

    Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

    Аналогия . Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

    Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

    Рис. 2.

    Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

    Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же - координата маятника) уменьшается.

    Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

    Рис. 3.

    Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

    Аналогия . Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

    Вторая четверть : . Конденсатор перезаряжается - на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

    Рис. 4.

    Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

    Аналогия . Маятник продолжает двигаться влево - от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

    Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

    Рис. 5.

    Аналогия . Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

    Третья четверть : . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

    Рис. 6.

    Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

    Конец третьей четверти : . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

    Рис. 7.

    Аналогия . Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

    Четвёртая четверть : . Ток убывает, конденсатор заряжается (рис. 8 ).

    Рис. 8.

    Аналогия . Маятник продолжает двигаться вправо - от положения равновесия к крайней левой точке.

    Конец четвёртой четверти и всего периода : . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

    Рис. 9.

    Данный момент идентичен моменту , а данный рисунок - рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

    Аналогия . Маятник вернулся в исходное положение.

    Рассмотренные электромагнитные колебания являются незатухающими - они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

    Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

    В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

    Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

    Энергетические превращения в колебательном контуре

    Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

    Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

    Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

    Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

    В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

    Таким образом,

    (1)

    Соотношение (1) применяется при решении многих задач.

    Электромеханические аналогии

    В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

    Для пружинного маятника мы имеем соотношение, аналогичное (1) :

    (2)

    Здесь, как вы уже поняли, - жёсткость пружины, - масса маятника, и - текущие значения координаты и скорости маятника, и - их наибольшие значения.

    Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

    (3)

    (4)

    (5)

    (6)

    Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

    В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

    B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

    (7)

    Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона . Мы вскоре приведём её более строгий вывод.

    Гармонический закон колебаний в контуре

    Напомним, что колебания называются гармоническими , если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

    Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока - ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

    Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

    Рис. 10. Положительное направление обхода

    Сила тока считается положительной class="tex" alt="(I > 0)"> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

    Заряд конденсатора - это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае - заряд левой пластины конденсатора.

    При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если class="tex" alt="I > 0"> , то заряд левой пластины возрастает, и потому class="tex" alt="\dot{q} > 0"> .

    Величины и меняются со временем, но энергия контура остаётся неизменной:

    (8)

    Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если - функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

    Подставляя сюда и , получим:

    Но сила тока не является функцией, тождественно равной нулю; поэтому

    Перепишем это в виде:

    (9)

    Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

    (10)

    Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

    Мы снова пришли к формуле Томсона.

    Гармоническая зависимость заряда от времени в общем случае имеет вид:

    (11)

    Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

    Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

    (12)

    Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

    Мы видим, что и сила тока меняется по гармоническому закону, на сей раз - по закону синуса:

    (13)

    Амплитуда силы тока равна:

    Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

    Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

    А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

    Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

    Рис. 11. Графики колебаний заряда и тока

    Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

    Используя формулу приведения

    запишем закон изменения тока (13) в виде:

    Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

    Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

    Вынужденные электромагнитные колебания

    Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

    Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

    Рис. 12. Вынужденные колебания

    Если напряжение источника меняется по закону:

    то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

    Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс - резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.