• Сетевые характеристики компьютера. Характеристика компьютерных сетей. Назначение, компоненты и общая структура компьютерных сетей, базовые топологии. Характеристика глобальной сети

    Введение

    В эпоху бурного развития технологий, проблемы информационной защиты встают наиболее остро. Использование автоматизированных систем обработки информации и управления обострило защиту информации, от несанкционированного доступа. Основные проблемы защиты информации в компьютерных системах возникают из-за того, что информация не является жёстко связанной с носителем. Её можно легко и быстро скопировать и передать по каналам связи. Информационная система подвержена как внешним, так и внутренним угрозам со стороны нарушителей.

    Основные проблемы защиты информации при работе в компьютерных сетях, можно условно разделить на три типа:

    · перехват информации (нарушение конфиденциальности информации),

    · модификация информации (искажение исходного сообщения или замена другой информацией),

    Сегодня защита компьютерных систем от несанкционированного доступа характеризуется возрастанием роли программных и криптографических механизмов по сравнению с аппаратными. Новые проблемы в области защиты информации уже требуют использования протоколов и механизмов со сравнительно высокой вычислительной сложностью. Одним из решений этих проблем является создание виртуальных частных сетей (Virtual Private Network -- VPN).

    АНАЛИЗ ЛОКАЛЬНОЙ ВЫЧИСЛИТЕЛЬНОЙ СЕТИ

    Структура и характеристики незащищенной сети

    Рисунок 1.1 Незащищенная автоматизированная система

    Исходная информация о незащищенной автоматизированной системе:

    · Адреса в локальных сетях частные.

    · На входах в локальные сети стоят компьютеры PROXY с реальными адресами.

    · Локальных сетей может быть сколько угодно.

    Требования к защите незащищенной автоматизированной системы:

    · Требуется защита информационного обмена при прохождении через открытый Интернет.

    · Требуется, чтобы защищенный туннель был прозрачен для пользователей, которые работают с ресурсами удаленных ЛВС.

    · Требуется, чтобы пользователи локальной сети не имели доступа к ресурсам открытого Интернета, за исключением ресурсов других локальных сетей, определенных администратором, с которыми организуется защищенное взаимодействие и, возможно, ресурсов мобильных пользователей.

    · Требуется исключить необходимость установки ПО ViPNet [Координатор] на шлюзы ЛВС.

    Угрозы и уязвимости ЛВС

    Распределенное хранение файлов.

    Распределенное хранение файлов обеспечивает пользователей прозрачным доступом к части дисковой памяти удаленного сервера. Распределенное хранение файлов предоставляет такие возможности, как удаленную работу с файлами и удаленную печать. Удаленная работа с файлами позволяет пользователям получать доступ, читать и сохранять файлы. В общем случае, удаленная работа с файлами обеспечивается путем предоставления пользователям возможности подключения к части удаленного устройства дисковой памяти (файлового сервера) так, как будто это устройство подключено напрямую. Этот виртуальный диск используется так, как будто он является локальным диском рабочей станции. Удаленная печать позволяет пользователю печатать на любом принтере, подключенном к любому компоненту ЛВС. Удаленная печать решает две проблемы пользователей: организацию фоновой печати в ходе обработки данных и совместное использование дорогих принтеров. Серверы печати ЛВС могут сразу после запроса на печать принимать весь файл, позволяя пользователям продолжать работу на их рабочих станциях, вместо того, чтобы ожидать окончания выполнения задания печати. Многие пользователи, используя один и тот же принтер, смогут оправдать покупку быстрого принтера высокого качества.

    Проблемы распределенного хранения файлов.

    Файловые серверы могут контролировать доступ пользователей к различным частям файловой системы. Это обычно осуществляется разрешением пользователю присоединить некоторую файловую систему (или каталог) к рабочей станции пользователя для дальнейшего использования как локальный диск. Это представляет две потенциальные проблемы. Во-первых, сервер может обеспечить защиту доступа только на уровне каталога, поэтому если пользователю разрешен доступ к каталогу, то он получает доступ ко всем файлам, содержащимся в этом каталоге. Чтобы минимизировать риск в этой ситуации, важно соответствующим образом структурировать и управлять файловой системой ЛВС. Следующая проблема заключается в неадекватных механизмах защиты локальной рабочей станции. Например, персональный компьютер (ПК) может, обеспечивать минимальную защиту или не обеспечивать никакой защиты информации, хранимой на нем. Копирование пользователем файлов с сервера на локальный диск персонального компьютера приводит к тому, что файл перестает быть защищенным теми средствами защиты, которые защищали его, когда он хранился на сервере. Для некоторых типов информации это может быть приемлемо. Однако другие типы информации могут требовать более сильной защиты. Эти требования фокусируются на необходимости контроля среды ПК.

    Удаленные вычисления.

    Удаленными вычислениями называют запуск приложения или приложений на удаленных компонентах. Удаленные вычисления позволяют пользователям: удаленно подключаться к другим компонентам ЛВС; удаленно выполнять приложение, находящееся на другой компоненте или удаленно запускать приложение на одной или более компонент, в то же время, создавая для пользователя представление, что они выполняются локально.

    Удаленное подключение позволяет пользователям устанавливать сеанс с удаленной ЭВМ (такой, как многопользовательская ЭВМ) так, как будто пользователь непосредственно подключен к удаленной ЭВМ. Возможность запуска приложений на одной или более компонент позволяет пользователю использовать всю вычислительную мощь ЛВС в СФС.

    Проблемы удаленного вычисления.

    Удаленные вычисления должны контролироваться таким образом, чтобы только авторизованные пользователи могли получать доступ к удаленным компонентам и приложениям. Серверы должны обладать способностью аутентифицировать удаленных пользователей, запрашивающих услуги или приложения. Эти запросы могут также выдаваться локальными и удаленными серверами для взаимной аутентификации. Невозможность аутентификации может привести к тому, что и неавторизованные пользователи будут иметь доступ к удаленным серверам и приложениям. Должны существовать некоторые гарантии в отношении целостности приложений, используемых многими пользователями через ЛВС.

    Обмен сообщениями.

    Приложения обмена сообщениями связаны с электронной почтой и возможностями телеконференций. Электронная почта является одной из наиболее важных возможностей, доступных посредством компьютерных систем и сетей. Почтовые серверы действуют, как локальные почтовые отделения, обеспечивая пользователям возможность посылать и получать сообщения через ЛВС. Возможности телеконференций позволяют пользователям активно взаимодействовать друг с другом по аналогии с телефоном.

    Проблемы топологий и протоколов.

    Топологии и протоколы, используемые сегодня, требуют, чтобы сообщения были доступны большому числу узлов при передаче к желаемому назначению. Это гораздо дешевле и легче, чем иметь прямой физический путь между каждой парой машин. В больших ЛВС прямые связи неосуществимы. Вытекающие из этого возможные угрозы включают как активный, так и пассивный перехват сообщений, передаваемых в линии. Пассивный перехват включает не только чтение информации, но и анализ трафика (использование адресов, других данных заголовка, длины сообщений, и частоту сообщений). Активный перехват включает изменение потока сообщений (включая модификацию, задержку, дублирование, удаление или неправомочное использование реквизитов).

    Проблемы службы обмена сообщениями и прочие проблемы.

    Службы Обмена сообщениями увеличивают риск для информации, хранимой на сервере или передаваемой между источником и отправителем. Неадекватно защищенная электронная почта может быть легко перехвачена, изменена или повторно передана, что влияет как на конфиденциальность, так и на целостность сообщения.

    Прочие проблемы безопасности ЛВС включают:

    · неадекватную политику управления и безопасности ЛВС;

    · отсутствие обучения особенностям использования ЛВС и защиты;

    · неадекватные механизмы защиты для рабочих станций и неадекватную защиту в ходе передачи информации.

    Слабая политика безопасности также увеличивает риск, связанный с ЛВС. Должна иметься формальная политика безопасности, которая бы определяла бы правила использования ЛВС, для демонстрации позиции управления организацией по отношению к важности защиты имеющихся в ней ценностей. Политика безопасности является сжатой формулировкой позиции высшего руководства по вопросам информационных ценностей, ответственности по их защите и организационным обязательствам. Должна иметься сильная политика безопасности ЛВС для обеспечения руководства и поддержки со стороны верхнего звена управления организацией. Политика должна определять роль, которую имеет каждый служащий при обеспечении того, что ЛВС и передаваемая в ней информация адекватно защищены.

    Использование ПК в среде ЛВС также привносит риск в ЛВС. В общем, в ПК практически отсутствуют меры защиты в отношении аутентификации пользователей, управления доступом к файлам, ревизии деятельности пользователей и т.д. В большинстве случаев защита, оказываемая информации, которая хранится и обрабатывается на сервере ЛВС, не сопровождает информацию, когда она посылается на ПК.

    Политика безопасности ЛВС в СФС должна делать упор на важности управления ЛВС и обеспечения его поддержки. Управление ЛВС должно иметь необходимые финансовые средства, время и ресурсы. Слабое управление сетью может привести к ошибкам защиты. В результате этого могут появиться следующие проблемы: ослабленная конфигурация защиты, небрежное выполнение мер защиты или даже не использование необходимых механизмов защиты.

    Отсутствие осведомленности пользователей в отношении безопасности ЛВС также увеличивает риск. Пользователи, не знакомые с механизмами защиты, мерами защиты и т.п. могут использовать их неправильно и, возможно, менее безопасно. Ответственность за внедрение механизмов и мер защиты, а также за следование правилам использования ПК в среде ЛВС обычно ложится на пользователей ПК. Пользователям должны быть даны соответствующие инструкции и рекомендации, необходимые, чтобы поддерживать приемлемый уровень защиты в среде ЛВС.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    КУРСОВАЯ РАБОТА

    на тему: «Компьютерные сети»

    Введение

    1. Компьютерные сети

    2. Локальные сети

    2.1 Определение локальной сети

    2.2 Архитектурный принцип построения сетей

    2.3 Топология локальных сетей

    3. Глобальные сети

    3.1 Характеристика глобальной сети

    3.2 Структура глобальной сети

    3.3 Типы глобальных сетей

    3.4 Пример глобальной сети - Интернет

    Список используемой литературы

    Введение

    Попробуем представить себе мир примерно тридцать пять -- сорок лет назад. Мир без общедоступных компьютерных сетей. Мир, в котором каждый компьютер должен был иметь собственное хранилище данных и собственный принтер. Мир, в котором не было электронной почты и систем обмена мгновенными сообщениями (например, ICQ). Как ни странно это звучит сейчас, но до появления компьютерных сетей все это было именно так.

    Компьютеры -- важная часть сегодняшнего мира, а компьютерные сети серьезно облегчают нашу жизнь, ускоряя работу и делая отдых более интересным.

    Практически сразу после появления ЭВМ возник вопрос о налаживании взаимодействия компьютеров друг с другом, чтобы более эффективно обрабатывать информацию, использовать программные и аппаратные ресурсы. Появились и первые сети, в то время объединявшие только большие ЭВМ в крупных компьютерных центрах. Однако настоящий "сетевой бум" начался после появления персональных компьютеров, быстро ставших доступными широкому кругу пользователей -- сначала на работе, а затем и дома. Компьютеры стали объединять в локальные сети, а локальные сети -- соединять друг с другом, подключать к региональным и глобальным сетям. В результате за последние пятнадцать-двадцать лет сотни миллионов компьютеров в мире были объединены в сети, и более миллиарда пользователей получили возможность взаимодействовать друг с другом.

    топология локальная сеть компьютер

    1 . Компьютерные сети

    При физическом соединении двух и более компьютеров образуются компьютерные сети.

    Компьютерная сеть -- система связи компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило -- различные виды электрических сигналов, световых сигналов или электромагнитного излучения.

    Назначение всех видов компьютерных сетей определяется двумя функциями:

    1) обеспечением совместной работы компьютеров и других устройств коллективного пользования (принтера, сканера и т.п.);

    2) обеспечением доступа и совместного использования аппаратных, программных и информационных ресурсов сети (дискового пространства, коллективных баз данных и др.).

    Компьютерные сети распределяются на:

    а) вычислительные;

    б) информационные;

    в) смешанные (информационно-вычислительные).

    Вычислительные сети предназначены главным образом для решения заданий пользователей с обменом данными между их абонентами. Информационные сети ориентированы в основном на предоставление информационных услуг пользователям. Смешанные сети совмещают функции первых двух.

    2. Локальные сети

    2.1 Определение локальной сети

    Способов и средств обмена информацией за последнее время предложено множество: от простейшего переноса файлов с помощью дискеты до всемирной компьютерной сети Интернет, способной объединить все компьютеры мира. Какое же место в этой иерархии отводится локальным сетям?

    Чаще всего термин " локальные сети " или "локальные вычислительные сети" (LAN, Local Area Network) понимают буквально, то есть это такие сети, которые имеют небольшие, локальные размеры, соединяют близко расположенные компьютеры. Однако достаточно посмотреть на характеристики некоторых современных локальных сетей, чтобы понять, что такое определение не точно. Например, некоторые локальные сети легко обеспечивают связь на расстоянии нескольких десятков километров. Это уже размеры не комнаты, не здания, не близко расположенных зданий, а, может быть, даже целого города.

    Неверно и довольно часто встречающееся определение локальной сети как малой сети, которая объединяет небольшое количество компьютеров. Действительно, как правило, локальная сеть связывает от двух до нескольких десятков компьютеров. Но предельные возможности современных локальных сетей гораздо выше: максимальное число абонентов может достигать тысячи.

    Наверное, наиболее точно было бы определить как локальную, такую сеть, которая позволяет пользователям не замечать связи. Еще можно сказать, что локальная сеть должна обеспечивать прозрачную связь. По сути, компьютеры, связанные локальной сетью, объединяются, в один виртуальный компьютер, ресурсы которого могут быть доступны всем пользователям, причем этот доступ не менее удобен, чем к ресурсам, входящим непосредственно в каждый отдельный компьютер. Под удобством в данном случае понимается высокая реальная скорость доступа, скорость обмена информацией между приложениями, практически незаметная для пользователя. При таком определении становится понятно, что ни медленные глобальные сети, ни медленная связь через последовательный или параллельный порты не подпадают под понятие локальной сети.

    Из данного определения следует, что скорость передачи по локальной сети обязательно должна расти по мере роста быстродействия наиболее распространенных компьютеров.

    Таким образом, главное отличие локальной сети от любой другой -- высокая скорость передачи информации по сети. Но это еще не все, не менее важны и другие факторы.

    В частности, принципиально необходим низкий уровень ошибок передачи, вызванных как внутренними, так и внешними факторами. Ведь даже очень быстро переданная информация, которая искажена ошибками, просто не имеет смысла, ее придется передавать еще раз. Поэтому локальные сети обязательно используют специально прокладываемые высококачественные и хорошо защищенные от помех линии связи.

    Особое значение имеет и такая характеристика сети, как возможность работы с большими нагрузками, то есть с высокой интенсивностью обмена. Ведь если механизм управления обменом, используемый в сети, не слишком эффективен, то компьютеры могут подолгу ждать своей очереди на передачу. И даже если эта передача будет производиться затем на высочайшей скорости и безошибочно, для пользователя сети такая задержка доступа ко всем сетевым ресурсам неприемлема. Ему ведь не важно, почему приходится ждать.

    Механизм управления обменом может гарантированно успешно работать только в том случае, когда заранее известно, сколько компьютеров (или, как еще говорят, абонентов, узлов), допустимо подключить к сети. Иначе всегда можно включить столько абонентов, что вследствие перегрузки забуксует любой механизм управления. Наконец, сетью можно назвать только такую систему передачи данных, которая позволяет объединять до нескольких десятков компьютеров, но никак не два, как в случае связи через стандартные порты.

    Таким образом, сформулировать отличительные признаки локальной сети можно следующим образом:

    1) Высокая скорость передачи информации, большая пропускная способность сети.

    2) Низкий уровень ошибок передачи (высококачественные каналы связи).

    3) ?Эффективный, быстродействующий механизм управления обменом по сети.

    4) Заранее четко ограниченное количество компьютеров, подключаемых к сети.

    При таком определении понятно, что глобальные сети отличаются от локальных, прежде всего тем, что они рассчитаны на неограниченное число абонентов. Кроме того, они используют (или могут использовать) не слишком качественные каналы связи и сравнительно низкую скорость передачи. А механизм управления обменом в них не может быть гарантированно быстрым. В глобальных сетях гораздо важнее не качество связи, а сам факт ее существования.

    Нередко выделяют еще один класс компьютерных сетей -- городские, региональные сети (MAN, Metropolitan Area Network), которые обычно по своим характеристикам ближе к глобальным сетям, хотя иногда все-таки имеют некоторые черты локальных сетей, например, высококачественные каналы связи и сравнительно высокие скорости передачи. В принципе городская сеть может быть локальной со всеми ее преимуществами.

    Правда, сейчас уже нельзя провести четкую границу между локальными и глобальными сетями. Большинство локальных сетей имеет выход в глобальную. Но характер передаваемой информации, принципы организации обмена, режимы доступа к ресурсам внутри локальной сети, как правило, сильно отличаются от тех, что приняты в глобальной сети. И хотя все компьютеры локальной сети в данном случае включены также и в глобальную сеть, специфики локальной сети это не отменяет. Возможность выхода в глобальную сеть остается всего лишь одним из ресурсов, разделяемых пользователями локальной сети.

    По локальной сети может передаваться самая разная цифровая информация: данные, изображения, телефонные разговоры, электронные письма и т.д. Кстати, именно задача передачи изображений, особенно полноцветных динамических, предъявляет самые высокие требования к быстродействию сети. Чаще всего локальные сети используются для разделения (совместного использования) таких ресурсов, как дисковое пространство, принтеры и выход в глобальную сеть, но это всего лишь незначительная часть тех возможностей, которые предоставляют средства локальных сетей. Например, они позволяют осуществлять обмен информацией между компьютерами разных типов. Полноценными абонентами (узлами) сети могут быть не только компьютеры, но и другие устройства, например, принтеры, плоттеры, сканеры. Локальные сети дают также возможность организовать систему параллельных вычислений на всех компьютерах сети, что многократно ускоряет решение сложных математических задач. С их помощью, как уже упоминалось, можно управлять работой технологической системы или исследовательской установки с нескольких компьютеров одновременно.

    2 .2 Архитектурный принцип построения сетей

    Архитектурный принцип построения сетей (за исключением одноранговых сетей, в которых компьютеры равноправны) называется "клиент - сервер".

    В одноранговой сети все компьютеры равноправны. Каждый из них может выступать как в роли сервера, т. е. предоставлять файлы и аппаратные ресурсы (накопители, принтеры и пр.) другим компьютерам, так и в роли клиента, пользующегося ресурсами других компьютеров. Например, если на вашем компьютере установлен принтер, то с его помощью смогут распечатывать свои документы все остальные пользователи сети, а вы, в свою очередь, сможете работать с Интернетом, подключение к которому осуществляется через соседний компьютер.

    Важнейшими понятиями теории сетей "клиент-сервер" являются "абонент", "сервер", "клиент".

    Абонент (узел, хост, станция) - это устройство, подключенное к сети и активно участвующее в информационном обмене. Чаще всего абонентом (узлом) сети является компьютер, но абонентом также может быть, например, сетевой принтер или другое периферийное устройство, имеющее возможность напрямую подключаться к сети.

    Сервером называется абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует их ресурсы. Таким образом, он обслуживает сеть. Серверов в сети может быть несколько, и совсем не обязательно, что сервер - самый мощный компьютер. Выделенный (dedicated) сервер - это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может помимо обслуживания сети выполнять и другие задачи. Специфический тип сервера - это сетевой принтер.

    Клиентом называется абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает, то есть сеть его обслуживает, а он ей только пользуется. Компьютер-клиент также часто называют рабочей станцией. В принципе каждый компьютер может быть одновременно как клиентом, так и сервером.

    Под сервером и клиентом часто понимают также не сами компьютеры, а работающие на них программные приложения. В этом случае то приложение, которое только отдает ресурс в сеть, является сервером, а то приложение, которое только пользуется сетевыми ресурсами -- клиентом.

    2 .3 Топология локальных сетей

    Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

    Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий, их достоинствах и недостатках надо.

    Существует три, базовые топологии сети:

    а) топология шина

    Шина (bus) -- все компьютеры параллельно подключаются к одной линии связи. Информация от каждого компьютера одновременно передается всем остальным компьютерам (рис. 1).

    Рис. 1 Сетевая топология шина

    Топология шина (или, как ее еще называют, общая шина) самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать только по очереди, так как линия связи в данном случае единственная. Если несколько компьютеров будут передавать информацию одновременно, она исказится в результате наложения (конфликта, коллизии). В шине всегда реализуется режим так называемого полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).

    В топологии шина отсутствует явно выраженный центральный абонент, через которого передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями.

    Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента. В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях. Тем не менее, из-за широкого распространения сетей с топологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.

    Рис. 2. Обрыв кабеля в сети с топологией шина

    Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен.

    В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

    Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

    При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи. Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

    Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине L пр, то полная длина шины не может превышать величины L пр. В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями.

    Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов -- репитеров или повторителей (на рис. 3 показано соединение двух сегментов, предельная длина сети в этом случае возрастает до 2 L пр, так как каждый из сегментов может быть длиной L пр). Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи.

    Рис. 3. Соединение сегментов сети типа шина с помощью репитера

    б) топология звезда;

    Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи (рис. 4). Информация от периферийного компьютера передается только центральному компьютеру, от центрального -- одному или нескольким периферийным.

    Рис. 4. Сетевая топология звезда

    Звезда -- это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты. Обмен информацией идет исключительно через центральный компьютер, на который ложится большая нагрузка, поэтому ничем другим, кроме сети, он, как правило, заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов. О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

    Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

    Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

    В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка. Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов.

    Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не более 8--16 периферийных абонентов. В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

    Звезда, показанная на рис. 4, носит название активной или истинной звезды. Существует также топология, называемая пассивной звездой, которая только внешне похожа на звезду (рис. 5). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

    В центре сети с данной топологией помещается не компьютер, а специальное устройство -- концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер, то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи.

    Рис. 5. Топология пассивная звезда и ее эквивалентная схема

    Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии, так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную шину, которая считается малоперспективной топологией.

    Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом, однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN).

    Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

    Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем при топологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

    в) топология кольцо;

    Кольцо (ring) (рис. 6).

    Рис. 6. Сетевая топология кольцо

    Кольцо -- это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов.

    Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI). Кольцо в этом отношении существенно превосходит любые другие топологии.

    Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

    Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие -- позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.

    Рис. 7. Сеть с двумя кольцами

    Сигнал в кольце проходит последовательно через все компьютеры сети, поэтому выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу сети в целом. Это существенный недостаток кольца.

    Точно так же обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

    Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи, передающих информацию в противоположных направлениях. Цель подобного решения -- увеличение (в идеале -- вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

    д) др. топологии.

    На практике нередко используют и другие топологии локальных сетей, однако большинство сетей ориентировано именно на три базовые топологии.

    Топология сети указывает не только на физическое расположение компьютеров, но и на характер связей между ними, особенности распространения информации, сигналов по сети. Именно характер связей определяет степень отказоустойчивости сети, требуемую сложность сетевой аппаратуры, наиболее подходящий метод управления обменом, возможные типы сред передачи (каналов связи), допустимый размер сети (длина линий связи и количество абонентов) необходимость электрического согласования и многое другое.

    Более того, физическое расположение компьютеров, соединяемых сетью, почти не влияет на выбор топологии. Как бы ни были расположены компьютеры, их можно соединить с помощью любой заранее выбранной топологии (рис. 8).

    В том случае, если соединяемые компьютеры расположены по контуру круга, они могут соединяться, как звезда или шина. Когда компьютеры расположены вокруг некоего центра, их допустимо соединить с помощью топологий шина или кольцо.

    Наконец когда компьютеры расположены в одну линию, они могут соединяться звездой или кольцом. Другое дело, какова будет требуемая длина кабеля.

    Рис. 8. Примеры использования разных топологий

    Необходимо отметить, что топология все-таки не является основным фактором при выборе типа сети. Гораздо важнее, например, уровень стандартизации сети, скорость обмена, количество абонентов, стоимость оборудования, выбранное программное обеспечение. Но, с другой стороны, некоторые сети позволяют использовать разные топологии на разных уровнях. Этот выбор уже целиком ложится на пользователя, который должен учитывать все перечисленные в данном разделе соображения.

    3. Глобальные сети

    3.1 Характеристика глобальной сети

    Глобальная сеть соединяет компьютеры, находящиеся в разных частях города, в разных городах и странах, на разных континентах.

    Глобальные сети Wide Area Networks, WAN), которые также называют территориальными компьютерными сетями, служат для того, чтобы предоставлять свои сервисы большому количеству конечных абонентов, разбросанных по большой территории - в пределах области, региона, страны, континента или всего земного шара. Ввиду большой протяженности каналов связи, построение глобальной сети требует очень больших затрат, в которые входит стоимость кабелей и работ по их прокладке, затраты на коммутационное оборудование и промежуточную усилительную аппаратуру, обеспечивающую необходимую полосу пропускания канала, а также эксплуатационные затраты на постоянное поддержание в работоспособном состоянии разбросанной по большой территории аппаратуры сети.

    Типичными абонентами глобальной компьютерной сети являются локальные сети предприятий, расположенные в разных городах и странах, которым нужно обмениваться данными между собой. Услугами глобальных сетей пользуются также и отдельные компьютеры.

    Глобальные сети обычно создаются крупными телекоммуникационными компаниями для оказания платных услуг абонентам. Существуют такие понятия, как оператор сети и поставщик услуг сети. Оператор сети (network operator) - это та компания, которая поддерживает нормальную работу сети. Поставщик услуг, часто называемый также провайдером (service provider), - та компания, которая оказывает платные услуги абонентам сети.

    Гораздо реже глобальная сеть полностью создается какой-нибудь крупной корпорацией (такой, например, как Dow Jones или "Транснефть") для своих внутренних нужд. В этом случае сеть называется частной.

    Ввиду большой стоимости глобальных сетей существует долговременная тенденция создания единой глобальной сети, которая может передавать данные любых типов: компьютерные данные, телефонные разговоры, факсы, телеграммы, телевизионное изображение, телетекст (передача данных между двумя терминалами), видеотекс (получение хранящихся в сети данных на свой терминал) и т. д., и т. п. Тем не менее, каждая из технологий, как компьютерных сетей, так и телефонных, старается сегодня передавать "чужой" для нее трафик с максимальной эффективностью, а попытки создать интегрированные сети на новом витке развития технологий продолжаются под преемственным названием Broadband ISDN (B-ISDN), то есть широкополосной (высокоскоростной) сети с интеграцией услуг. Сети B-ISDN будут основываться на технологии АТМ, как универсальном транспорте, и поддерживать различные службы верхнего уровня для распространения конечным пользователям сети разнообразной информации - компьютерных данных, аудио- и видеоинформации, а также организации интерактивного взаимодействия пользователей.

    Хотя в основе локальных и глобальных вычислительных сетей лежит один и тот же метод - метод коммутации пакетов, глобальные сети имеют достаточно много отличий от локальных сетей.

    3 .2 Структура глобальной сети

    Типичный пример структуры глобальной компьютерной сети приведен на рис. 9. Здесь используются следующие обозначения: S (switch) - коммутаторы, К - компьютеры, R (router) - маршрутизаторы, MUX (multiplexor)- мультиплексор, UNI (User-Network Interface) - интерфейс пользователь - сеть и NNI (Network-Network Interface) - интерфейс сеть - сеть. Кроме того, офисная АТС обозначена аббревиатурой РВХ, а маленькими черными квадратиками - устройства DCE,о которых будет рассказано ниже.

    Рис. 9. Пример структуры глобальной сети

    Сеть строится на основе некоммутируемых (выделенных) каналов связи, которые соединяют коммутаторы глобальной сети между собой. Коммутаторы называют также центрами коммутации пакетов (ЦКП), то есть они являются коммутаторами пакетов.

    Коммутаторы устанавливаются в тех географических пунктах, в которых требуется ответвление или слияние потоков данных конечных абонентов или магистральных каналов, переносящих данные многих абонентов. Естественно, выбор мест расположения коммутаторов определяется многими соображениями, в которые включается также возможность обслуживания коммутаторов квалифицированным персоналом, наличие выделенных каналов связи в данном пункте, надежность сети, определяемая избыточными связями между коммутаторами.

    Абоненты сети подключаются к коммутаторам в общем случае также с помощью выделенных каналов связи. Эти каналы связи имеют более низкую пропускную способность, чем магистральные каналы, объединяющие коммутаторы, иначе сеть бы не справилась с потоками данных своих многочисленных пользователей. Для подключения конечных пользователей допускается использование коммутируемых каналов, то есть каналов телефонных сетей, хотя в таком случае качество транспортных услуг обычно ухудшается. Принципиально замена выделенного канала на коммутируемый ничего не меняет, но вносятся дополнительные задержки, отказы и разрывы канала по вине сети с коммутацией каналов, которая в таком случае становится промежуточным звеном между пользователем и сетью с коммутацией пакетов.

    3 .3 Типы глобальных с етей

    Приведенная на рис. 6.2 глобальная вычислительная сеть работает в наиболее подходящем для компьютерного трафика режиме - режиме коммутации пакетов. Оптимальность этого режима для связи локальных сетей доказывают не только данные о суммарном трафике, передаваемом сетью в единицу времени, но и стоимость услуг такой территориальной сети. Обычно при равенстве предоставляемой скорости доступа сеть с коммутацией пакетов оказывается в 2-3 раза дешевле, чем сеть с коммутацией каналов, то есть публичная телефонная сеть.

    Поэтому при создании корпоративной сети необходимо стремиться к построению или использованию услуг территориальной сети со структурой, подобной структуре, приведенной на рис. 6.2, то есть сети с территориально распределенными коммутаторами пакетов.

    Однако часто такая вычислительная глобальная сеть по разным причинам оказывается недоступной в том или ином географическом пункте. В то же время гораздо более распространены и доступны услуги, предоставляемые телефонными сетями или первичными сетями, поддерживающими услуги выделенных каналов. Поэтому при построении корпоративной сети можно дополнить недостающие компоненты услугами и оборудованием, арендуемыми у владельцев первичной или телефонной сети.

    В зависимости от того, какие компоненты приходится брать в аренду, принято различать корпоративные сети, построенные с использованием:

    выделенных каналов;

    коммутации каналов;

    коммутации пакетов.

    Последний случай соответствует наиболее благоприятному случаю, когда сеть с коммутацией пакетов доступна во всех географических точках, которые нужно объединить в общую корпоративную сеть. Первые два случая требуют проведения дополнительных работ, чтобы на основании взятых в аренду средств построить сеть с коммутацией пакетов.

    а) выделенные каналы;

    Выделенные (или арендуемые - leased) каналы можно получить у телекоммуникационных компаний, которые владеют каналами дальней связи (таких, например, как "РОСТЕЛЕКОМ"), или от телефонных компаний, которые обычно сдают в аренду каналы в пределах города или региона.

    Использовать выделенные линии можно двумя способами. Первый состоит в построении с их помощью территориальной сети определенной технологии, например frame relay, в которой арендуемые выделенные линии служат для соединения промежуточных, территориально распределенных коммутаторов пакетов, как в случае, приведенном на рис. 10.

    Второй вариант - соединение выделенными линиями только объединяемых локальных сетей или конечных абонентов другого типа без установки транзитных коммутаторов пакетов, работающих по технологии глобальной сети (рис. 6.4). Второй вариант является наиболее простым с технической точки зрения, так как основан на использовании маршрутизаторов или удаленных мостов в объединяемых локальных сетях и отсутствии протоколов глобальных технологий. По глобальным каналам передаются те же пакеты сетевого или канального уровня, что и в локальных сетях.

    Рис. 10. Использование выделенных каналов

    Именно второй способ использования глобальных каналов получил специальное название "услуги выделенных каналов", так как в нем действительно больше ничего из технологий собственно глобальных сетей с коммутацией пакетов не используется.

    Выделенные каналы очень активно применялись совсем в недалеком прошлом и применяются сегодня, особенно при построении ответственных магистральных связей между крупными локальными сетями, так как эта услуга гарантирует пропускную способность арендуемого канала. Однако при большом количестве географически удаленных точек и интенсивном смешанном трафике между ними использование этой службы приводит к высоким затратам за счет большого количества арендуемых каналов.

    б) глобальные сети с коммутацией каналов;

    Сегодня для построения глобальных связей в корпоративной сети доступны сети с коммутацией каналов двух типов - традиционные аналоговые телефонные сети и цифровые сети с интеграцией услуг ISDN. Достоинством сетей с коммутацией каналов является их распространенность, что характерно особенно для аналоговых телефонных сетей.

    Телефонные сети, полностью построенные на цифровых коммутаторах, и сети ISDN свободны от многих недостатков традиционных аналоговых телефонных сетей. Они предоставляют пользователям высококачественные линии связи, а время установления соединения в сетях ISDN существенно сокращено.

    Однако даже при качественных каналах связи, которые могут обеспечить сети с коммутацией каналов, для построения корпоративных глобальных связей эти сети могут оказаться экономически неэффективными. Так как в таких сетях пользователи платят не за объем переданного трафика, а за время соединения, то при трафике с большими пульсациями и, соответственно, большими паузами между пакетами оплата идет во многом не за передачу, а за ее отсутствие. Это прямое следствие плохой приспособленности метода коммутации каналов для соединения компьютеров.

    Тем не менее, при подключении массовых абонентов к корпоративной сети, например сотрудников предприятия, работающих дома, телефонная сеть оказывается единственным подходящим видом глобальной службы из соображений доступности и стоимости (при небольшом времени связи удаленного сотрудника с корпоративной сетью).

    в) глобальные сети с коммутацией пакетов.

    В 80-е годы для надежного объединения локальных сетей и крупных компьютеров в корпоративную сеть использовалась практически одна технология глобальных сетей с коммутацией пакетов - Х.25. Сегодня выбор стал гораздо шире. Можно воспользоваться услугами территориальных сетей TCP/IP, которые доступны сегодня как в виде недорогой и очень распространенной сети Internet, так и в виде коммерческих глобальных сетей TCP/IP, изолированных от Internet и предоставляемых в аренду телекоммуникационными компаниями.

    В Интернет все данные пересылаются в виде пакетов. Пакет - это специальная последовательность бит, несущих собственно данные, а также служебную информацию об адресах получателя и отправителя информации, номере пакета, коды для проверки его целостности и другие. Общая длина пакета составляет от 100 до 2000 байт.

    Каждый пакет может продвигаться по сети своим маршрутом, что делает сеть не зависимой от аварии или блокировки отдельного узла. Перенаправлением пакетов в зависимости от нагрузки сети занимаются маршрутизаторы. А временное хранение пакетов в местах пересылки позволяет выполнить проверку их целостности и перезапросить поврежденные пакеты.

    3 .4 Пр имер глобальной сети - Интернет

    Интернет - это всемирная информационная компьютерная сеть, которая объединяет в единое целое множество компьютерных сетей и отдельных компьютеров, предоставляющих обширную информацию в общее пользование и не является коммерческой организацией.

    Компьютер пользователя с помощью линии связи подключается к компьютеру провайдера, который, в свою очередь подключен к другому компьютеру сети и т.д. Информация в сети хранится как на компьютерах провайдера, так и на специальных компьютерах, которые называются информационными серверами. Компьютеры, к которым подключаются многие другие компьютеры, называют серверами. Провайдером называется организация, через которую рядовые компьютеры подключаются к глобальной сети.

    Пользователи в Интернет работают по единым правилам. В качестве общего языка в сети Интернет используются протоколы обмена данными. Протоколы - это стандарты, определяющие формы представления и способы пересылки сообщений, процедуры их интерпретации, правила совместной работы различного оборудования в сетях.

    Протокол - это правила взаимодействия. Например, дипломатический протокол предписывает, как поступать при встрече зарубежных гостей или при проведении приемов. Сетевой протокол предписывает правила работы компьютерам, которые подключены к сети. Стандартные протоколы заставляют разные компьютеры "говорить на одном языке". Таким образом осуществляется возможность подключения к Интернет разнотипных компьютеров (IBM, Macintosh), работающих под управлением различных операционных систем (Windows, UNIX, MS DOS).

    Следует отметить децентрализованную структуру этой сети. В мире нет центрального управляющего органа, следящего за размещаемой в Internet информацией. Эту роль выполняют различные подключенные к Internet сети, которые и определяют, какая информация будет в ней размещаться и как она будет передаваться. Такая полностью распределенная структура делает Internet очень гибкой и предоставляет возможность поддерживать неограниченное количество пользователей. Однако подключенные к Internet сети должны удовлетворять определенным стандартам. Эти стандарты утверждаются несколькими добровольными организациями. Например, Совет по архитектуре Internet (Internet Architecture Board -- IAB) рассматривает и утверждает протоколы передачи и стандарты нумерации. Комитент по технологическим нормам Internet устанавливает стандарты повседневной работы сети. Союз Internet публикует различные стандарты и осуществляет координацию между различными контролирующими органами Internet, провайдерами услуг и пользователями.

    Основу сети Интернет составляет группа протоколов TCP/IP.

    Протокол TCP (Transmission Control Protocol) - транспортного уровня, он управляет тем, как происходит передача информации (данные "нарезаются" на пакеты и маркируются).

    IP (Internet Protocol) - протокол сетевого уровня, добавляет к пакету IP-адреса получателя и отравителя и отвечает на вопрос, как проложить маршрут для доставки информации.

    Каждый компьютер, включенный в сеть - хост, имеет свой уникальный IP-адрес. Этот адрес выражается четырьмя байтами, например: 234.049.122.201, и регистрируется в Информационном центре сети- InterNIC или в Network Solutions Inc (NSI). Организация IP-адреса такова, что каждый компьютер, через который проходит TCP-пакет, может определить, кому из ближайших "соседей" его нужно переслать.

    Для удобства пользователей в Интернет введена доменная адресация. Домены - группы компьютеров, имеющие единое управление и образующие иерархическую структуру. Доменное имя отражает иерархию доменов и состоит из сегментов, разделенных точкой. Например, interweb.spb.ru - адрес электронной справочной системы в Санкт-Петербурге. Самый последний (справа) называется именем домена верхнего уровня. Среди них различают географические и тематические.

    Географические адреса, чаще двухбуквенные, определяют принадлежность владельца имени к сети определенной страны. Например, ru - Россия, de - Германия, us - Соединенные Штаты и др.

    Тематические адреса, обычно трех- и четырехбуквенные, позволяют определить сферу деятельности их владельцев. Например,edu - образовательные учреждения, com - коммерческие организации, store - Интернет-магазины.

    Для установления соединения между компьютерами в сети нужно знать адрес домена, включающего этот компьютер.

    Вывод

    Существуют 2 способа передачи информации между компьютерами:

    С помощью носителей информации: магнитных дисков и магнитных лент, оптических дисков и т.д. (недостатки - медленный и неудобный).

    С помощью линий связи: локальных или глобальных.

    Глобальные сети распространяют свое действие по всему миру и используют все каналы связи, включая спутниковые.

    В крупных коммерческих и образовательных организациях для ведения работ активно используются локальные сети, построенные на основе единых стандартов, принятых в глобальных сетях. В зависимости от решаемых задач и мероприятий, обеспечивающих безопасность работы и доступ к сети, их разделяют на внутренние (Intranet) и внешние (Extranet) корпоративные сети.

    При создании компьютерных сетей является важным обеспечение совместимости по электрическим и механическим характеристикам и совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных.

    Список используемой литературы

    1. Ю. Шафрин, "Основы компьютерной технологии". М., АБФ, 2002

    2. А.М. Кенин, Н.С. Печенкина, "IBM PC для пользователей или как научится работать на компьютере". Екатеринбург, "АРД ЛТД", 1999

    3. "Навигатор игрового мира", №№ 3(11), 4(12), 7(15), 2004

    4. http://www.dokanet.net/

    5. http://ovt.edurm.ru/komseti.htm

    Размещено на Allbest.ru

    Подобные документы

      Описание функций и видов (вычислительные, информационные, смешанные) компьютерных сетей. Изучение архитектурного построения и топологии локальных сетей. Характеристика, структура и типы (коммутация каналов, пакетов) глобального соединения компьютеров.

      курсовая работа , добавлен 24.02.2010

      Классификация компьютерных сетей в технологическом аспекте. Устройство и принцип работы локальных и глобальных сетей. Сети с коммутацией каналов, сети операторов связи. Топологии компьютерных сетей: шина, звезда. Их основные преимущества и недостатки.

      реферат , добавлен 21.10.2013

      Назначение и классификация компьютерных сетей. Обобщенная структура компьютерной сети и характеристика процесса передачи данных. Управление взаимодействием устройств в сети. Типовые топологии и методы доступа локальных сетей. Работа в локальной сети.

      реферат , добавлен 03.02.2009

      Создание компьютерных сетей с помощью сетевого оборудования и специального программного обеспечения. Назначение всех видов компьютерных сетей. Эволюция сетей. Отличия локальных сетей от глобальных. Тенденция к сближению локальных и глобальных сетей.

      презентация , добавлен 04.05.2012

      Классификация компьютерных сетей. Назначение компьютерной сети. Основные виды вычислительных сетей. Локальная и глобальная вычислительные сети. Способы построения сетей. Одноранговые сети. Проводные и беспроводные каналы. Протоколы передачи данных.

      курсовая работа , добавлен 18.10.2008

      Основные признаки классификации компьютерных сетей как нового вида связи и информационного сервиса. Особенности локальных и глобальных сетей. Объекты информационных сетевых технологий. Преимущества использования компьютерных сетей в организации.

      курсовая работа , добавлен 23.04.2013

      Системы пакетной обработки данных. Появление первых глобальных и локальных компьютерных сетей. Классификационные признаки компьютерных сетей. Четыре основных вида компьютерных преступлений, их характеристика. Распространение вирусов через Интернет.

      реферат , добавлен 29.03.2014

      Основные концепции, определяющие современное состояние и тенденции развития компьютерных сетей. Аспекты и уровни оргаизации сетей, от физического до уровня прикладных программ. Назначение и роли локальных сетей. Сетевые структуры. Бескабельные каналы.

      курс лекций , добавлен 15.01.2010

      Понятие и структура компьютерных сетей, их классификация и разновидности. Технологии, применяемые для построения локальных сетей. Безопасность проводных локальных сетей. Беспроводные локальные сети, их характерные свойства и применяемые устройства.

      курсовая работа , добавлен 01.01.2011

      Компьютерные сети и их классификация. Аппаратные средства компьютерных сетей и топологии локальных сетей. Технологии и протоколы вычислительных сетей. Адресация компьютеров в сети и основные сетевые протоколы. Достоинства использования сетевых технологий.

    Введение

    История компьютерных сетей берёт своё начало с момента понимания человеком необходимости объединения вычислительных и иных возможностей нескольких ЭВМ для совместной работы над большими информационными массивами, а также хранения, обработки и передачи больших объёмов данных. Характеристика компьютерных сетей может нести в себе различные сведения, но, пожалуй, самыми важными компонентами, которые включают в себя компьютерные сети основные понятия для построения которых будут рассмотрены ниже, являются продукты межсетевого обмена.

    Актуальность темы. Планирование IP-адресов, безусловно, является одной из критически важных функций, необходимых в общем процессе планирования и выполнения проекта развертывания IPv6. Это понятно, поскольку для внедрения IPv6 требуется адресное пространство IPv6, а также необходимо обеспечить управление текущим пространством IPv4 одновременно с добавлением пространства IPv6. Однако общий процесс развертывания IPv6 требует не только адресного пространства IPv6, но и уверенности в том, что сетевая и компьютерная инфраструктура сможет обеспечить обработку и поддержку адресного пространства IPv6.

    Цель курсовой работы – рассмотреть планирование адресации в компьютерной сети.

    Для достижения поставленной цели необходимо решить ряд задач:

    1. Дать определение компьютерной сети и охарактеризовать ее;

    2. Рассмотреть протоколы IPv4 и IPv6, провести сравнительный анализ;

    3. Охарактеризовать планирование IP адресации для компьютерной сети VLSM.

    Курсовая работа состоит из введения, трех параграфов, заключения и списка литературы.

    Современное человечество практически не представляет свою жизнь без компьютеров, а ведь они появились не так уж давно. За последние двадцать лет компьютеры стали неотъемлемой частью всех сфер деятельности: от офисных нужд до образовательных, тем самым создав необходимость развивать возможности вычислительной техники и разрабатывать сопутствующее программное обеспечение.

    Объединение компьютеров в сеть позволило не только повысить производительность труда, но и снизить затраты на их содержание, а также сократить время передачи данных. Другими словами, компьютерные сети преследуют две цели: совместное использование программного обеспечения и аппаратуры, а также обеспечение открытого доступа к ресурсам данных.

    Компьютерные сети – средства межсетевого обмена. Стоит отметить, что ранок этих устройств является одним из самых быстрорастущих. Основным предназначением средств межсетевого обмена является обеспечение взаимосвязи между пользователями, объединёнными в огромную, и часто распределённую по большой территории локальную сеть.



    Компьютерные сети включают в себя шесть видов продуктов, осуществляющих межсетевой обмен.

    Повторители. Повторителем называется аппаратное устройство, которое функционирует на физическом уровне модели OSI и обеспечивает возможность соединение воедино пары сегментов одной компьютерной сети.

    Концентраторы. Основным предназначением концентраторов является выполнение задачи монтажных узлов, которые обеспечивают соединение каждого автономного сетевого устройства и сегмента. Существует несколько видов концентраторов, представленных пассивными, активными и интеллектуальными.

    Мосты. Данным термином обозначаются средства, которые предназначены для осуществления передачи пакетов данных между двумя сетями. Мосты делают возможной ситуацию, когда программы и протоколы рассматривают объединённые сети в качестве единого целого. Помимо передачи данных, мостами может выполняться их фильтрация.

    Маршрутизаторы. С помощью маршрутизаторов осуществляется логическое соединение необходимое отдельным сетям. При этом объединяемые сети используют один и тот же протокол. Понятно, что маршрутизаторы – это протоколозависимые устройства, которые должны быть наделены способностью поддерживать определённые протоколы маршрутизации. Именно наличие маршрутизаторов в сети делает возможным наличие множества путей передачи пакетов. Кроме того маршрутизатор – это "интеллектуальное" устройство, способное определить оптимальный путь каждого пакета из широкого перечня возможных маршрутов.

    Шлюзы. Самое распространённое определение термина "шлюз", относит это понятие к любому аппаратному средству либо программному пакету, предназначенному для объединения пары разнородных систем. В этом понимании, шлюз можно считать коммуникационным сервером или сервером доступа.

    Тот факт, что работа шлюзов отличается «многоуровневостью» выделяет их среди маршрутизаторов, мостов и повторителей, способных работать только на одном иерархическом уровне (это может быть сетевой, канальный или физический уровень, соответственно). Кроме того маршрутизаторы, мосты и повторители не способны выполнять преобразование данных.

    Коммутаторы. Коммутатор – это устройство, главным предназначением которого является перенаправление входных данных на один из выходов. К примеру, на вход коммутатора поступают пакеты данных, а его выход подключен к шине Ethernet. В данном варианте устройство получит название коммутатор Ethernet

    В коммутаторе должны присутствовать средства организации нужных соединений, а также инструменты, позволяющие преобразовывать входную информацию в корректный формат на выходе.

    Построение компьютерных сетей происходит по принципу «клиент-сервер». При этом клиент – это архитектурный компонент, который с помощью логина и пароля пользуется возможностями сервера. Сервер же, в свою очередь, предоставляет свои ресурсы остальным участникам сети. Это может быть хранение, создание общей базы данных, использование средств ввода-вывода и т.д.

    Рис. 1. Построение компьютерных сетей по принципу «клиент-сервер»

    Компьютерные сети бывают нескольких видов:

    Локальные;

    Региональные;

    Глобальные.

    Здесь справедливо будет отметить, на каких принципах строятся различные компьютерные сети.

    Организация локальных компьютерных сетей. Обычно такие сети объединяют людей, находящихся на близком расстоянии, поэтому используются чаще всего в офисах и на предприятиях для хранения и обработки данных, передачи её результатов остальным участникам.

    Существует такое понятие, как «топология сети». Проще говоря, это геометрическая схема объединения компьютеров в сеть. Таких схем существуют десятки, однако мы рассмотрим лишь базовые: шина, кольцо и звезда.

    Рис. 2. Топология сети «Кольцо»

    1. Шина – это канал для связи, который объединяет узлы в сеть. Каждый из узлов может принимать информацию в любой удобный момент, а передавать - только если шина свободна.

    2. Кольцо. При такой топологии рабочие узлы связаны последовательно по кругу, то есть первая станция связана со второй и так далее, а последняя связывается с первой, тем самым замыкая кольцо. Основной недостаток такой архитектуры состоит в том, что при сбое работы хотя бы одного элемента парализуется вся сеть.

    3. Звезда – соединение, при котором узлы лучами соединяются с центром. Эта модель соединения пошла с тех далёких времён, когда ЭВМ были довольно большими и только головная машина получала и обрабатывала информацию.

    Рис. 3. Топология сети «Звезда»

    Что касается глобальных сетей, то тут всё гораздо сложнее. На сегодняшний день их существует более 200. Самая известная из них – Интернет.

    Основное их отличие от локальных – отсутствие основного управленческого центра.

    Такие компьютерные сети осуществляют работу по двум принципам:

    Программы-серверы, размещённые на узлах сети, которые занимаются обслуживание пользователей;

    Программы-клиенты, размещённые на пользовательских ПК и пользующиеся услугами сервера.

    Глобальные сети дают пользователям доступ к различным услугам. Подключиться к таким сетям можно двумя способами: через коммутируемую телефонную линию и по выделенному каналу.

    2. Основные понятия IPv4 и IPv6 (сравнительная характеристика)

    IP-адреса(Internet Protocol version 4 , интернет протокол версии 4) – представляют собой основной тип адресов, используемый на сетевом уровне модели OSI, для осуществления передачи пакетов между сетями. IP-адреса состоят из четырех байт, к примеру 192.168.100.111.

    Присвоение IP-адресов хостам осуществляется:

    § вручную, настраивается системным администратором во время настройки вычислительной сети;

    § автоматически, с использование специальных протоколов (в частности, с помощью протокола DHCP - Dynamic Host Configuration Protocol, протокол динамической настройки хостов).

    Протокол IPv4 разработан в сентябре 1981 года.

    Протокол IPv4 работает на межсетевом (сетевом) уровне стека протокола TCP/IP. Основной задачей протокола является осуществление передачи блоков данных (дейтаграмм) от хоста-отправителя, до хоста-назначения, где отправителями и получателями выступают вычислительные машины, однозначно идентифицируемые адресами фиксированной длины (IP-адресами). Также интернет протокол IP осуществляет, в случае необходимости, фрагментацию и сбору отправляемых дейтаграмм для передачи данных через другие сети с меньшим размером пакетов.

    Недостатком протокола IP является ненадежность протокола, то есть перед началом передачи не устанавливается соединение, это говорит о том, что не подтверждается доставка пакетов, не осуществляется контроль корректности полученных данных (с помощью контрольной суммы) и не выполняется операция квитирования (обмен служебными сообщения с узлом-назначения и его готовностью приема пакетов).

    Протокол IP отправляет и обрабатывает каждую дейтаграмму как независимую порцию данных, то есть не имея никаких других связей с другими дейтаграммами в глобальной сети интернет.

    После отправки дейтаграммы протоколом IP в сеть, дальнейшие действия с этой дейтаграммой никак не контролируются отправителем. Получается, что если дейтаграмма, по каким-либо причинам, не может быть передана дальше по сети, она уничтожается. Хотя узел, уничтоживший дейтаграмму, имеет возможность сообщить о причине сбоя отправителю, по обратному адресу (в частности с помощью протокола ICMP). Гарантию доставки данных возложены на протоколы вышестоящего уровня (транспортный уровень), которые наделены для этого специальными механизмами (протокол TCP).

    Как известно, на сетевом уровне модели OSI работают маршрутизаторы. Поэтому, одной из самых основных задач протокола IP – это осуществление маршрутизации дейтаграмм, другими словами, определение оптимального пути следования дейтаграмм (с помощью алгоритмов маршрутизации) от узла-отправителя сети к любому другому узлу сети на основании IP адреса.

    Рис. 4. Алгоритм работы протокола IP на каком-либо узле сети принимающего дейтаграмму из сети выглядит

    Хотя сегодня наиболее распространенным протоколом доступа ко Всемирной паутине и средством передачи данных является IPv4 (по крайней мере, для Windows-систем), новая разработка шестой версии с заявленной поддержкой в последних «операционках» Windows выглядит намного предпочтительнее.

    Как известно, в компьютерных системах с ОС Windows на борту для доступа в интернет используется система протоколов TCP/IP, предусматривающая присвоение каждому терминалу определенного уникального IP-адреса, который ни у одной машины не повторяется (имеется в виду внешний IP). Но сегодня многие все больше поглядывают в сторону протокола IPv6. Что это такое, как его включить и настроить, сейчас и будет рассмотрено. Кроме того, можно будет увидеть существенную разницу между IPv4 и IPv6, а также узнать перспективы внедрения новой технологии в недалеком будущем.

    Что представляет собой протокол IPv6? Если говорить кратко и понятно, то это система, отвечающая за генерирование, присвоение и распределение уникальных статических и динамических IP-адресов компьютерным терминалам, разбросанным по всему миру, посредством DHCP-сервера, причем таким образом, чтобы ни один адрес никогда не повторялся. В принципе, все сегодня известные распределительные протоколы работают по этому принципу. Но самым перспективным из всех них считается IPv6. Без доступа к Интернету сегодня мало кто себя представляет, количество компьютеров или тех же мобильных девайсов возросло настолько, что существующая система просто не в состоянии генерировать новые адреса.

    В принципе, в плане основных алгоритмов, заложенных в систему функционирования IPv6, этот протокол практически идентичен изначальному подходу. Разница только в присвоении и распределении адресов компьютерным терминалам и системе безопасности.

    Рядовой пользователь при использовании доступа в интернет в большинстве случаев с IP-адресами практически не сталкивается, поскольку за все процедуры установки соединения отвечает так называемая система доменных имен, сокращенно обозначаемая DNS. Однако, чтобы лучше понять тему: «IPv6: что это такое?», следует немного разобраться в основных принципах функционирования этого протокола.

    На заре развития интернет-технологий был разработан специальный метод идентификации компьютерных терминалов для быстрого и удобного доступа во Всемирную паутину. Как тогда предполагалось, каждая машина должна иметь уникальный идентификатор, причем такой, который бы не повторялся ни разу.

    Цель такого подхода заключалась в маршрутизации и передаче данных в Сети или объединенных сетях между серверами и отдельными компьютерами (например, электронная почта). Ведь отсылка письма или сообщения должна производиться конкретному адресату. А при двух и более одинаковых IP-адресах терминалов доставка может быть осуществлена кому угодно. Тогда-то еще не было официальных почтовых серверов, а использовались протоколы POP3 и SMTP.

    Рис. 5. Структура IP пакетов версии 4 представлена

    § Версия - для IPv4 значение поля должно быть равно 4.

    § IHL - (Internet Header Length) длина заголовка IP-пакета в 32-битных словах (dword). Именно это поле указывает на начало блока данных в пакете. Минимальное корректное значение для этого поля равно 5.

    § Тип обслуживания (Type of Service, акроним TOS) - байт, содержащий набор критериев, определяющих тип обслуживания IP-пакетов, представлен на рисунке.

    Именно в те годы был разработан протокол IPv4, предполагавший создание уникального адреса в виде четырех чисел по 8 бит каждое, что в сумме давало 32 бита. Таким образом, речь шла о создании порядка четырех миллиардов ни разу не повторяющихся адресов.

    Сегодня ситуация изменилась, и, как оказалось, протокол IPv4 уже не в состоянии генерировать новые адреса. Некоторые специалисты утверждают, что он исчерпал свои возможности еще к 2009 году. Тут-то многие ученые умы и задумались над тем, как расширить основные параметры. Вообще-то эти разработки в виде дополнительной надстройки для IPv4 были начаты еще в конце 70-х и тогда получили название протокола ST, потом – ST2, а чуть позже – неофициальное название IPv5. Но эта разработка так и не прижилась, даже не была взята на вооружение в плане перспективного развития. Сегодня же считается, что самым новым и наиболее востребованным вскоре станет протокол IPv6.

    Качество работы сeти характеризуют следующие свойства: производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость.

    К основным характеристикам производительности сeти относятся:

    ü время реакции – время, которое определяется как время между возникновением запроса к какому-либо сетевому сервису и получением ответа на него;

    ü пропускная способность – характеристика, которая отражает объем данных, переданных сeтью в единицу времени;

    ü задержка передачи – интервал между моментом поступления пакета на вход какого-либо сетевого устройства и моментом его появления на выходе этого устройства.

    Для оценкинадежности сетей используются различные характеристики, в том числе: коэффициент готовности , означающий долю времени, в течение которого система может быть использована; безопасность , то есть способность системы защитить данные от несанкционированного доступа; отказоустойчивость – способность системы работать в условиях отказа некоторых ее элементов.

    Расширяемость означает возможность сравнительно легкого добавления отдельных элементов сeти (пользователей, компьютеров, приложений, сервисов), наращивания длины сегментов сeти и замены существующей аппаратуры более мощной.

    Масштабируемость означает, что сeть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сeти не ухудшается.

    Прозрачность - свойство сeти скрывать от пользователя детали своего внутреннего устройства, упрощая тем самым его работу в сeти.

    Управляемость сeти подразумевает возможность централизованно контролировать состояние основных элементов сeти, выявлять и разрешать проблемы, возникающие при работе сeти, выполнять анализ производительности и планировать развитие сeти.

    Совместимость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение.

    Сетевое оборудование и программные компоненты управления сeтью

    Основными компонентами сeти являются рабочие станции, серверы, передающие среды (кабeли) и сетевое оборудование.

    Рабочими станциями называются компьютеры сeти, на которых пользователями сeтиреализуются прикладные задачи.

    Серверы сeти – это аппаратно-программные системы, выполняющие функции управления распределением сетевых ресурсов общего доступа. Сервером может быть любой подключенный к сeти компьютер, на котором находятся ресурсы, используемые другими устройствами локальной сeти. В качестве аппаратной части сервера используется достаточно мощные компьютеры.

    При выборе типакабeля учитывают следующие их характеристики:

    ü стоимость установки и последующего обслуживания;

    ü скорость передачи данных;

    ü максимальная дальность передачи информации, т. е. расстояние, на котором гарантируется качественная связь без применения специальных усилителей-повторителей (репитеров);

    ü безопасность передачи данных, в том числе помехозащищенность.

    Тип кабeля

    Основная сложность при выборе подходящего типакабeля состоит в том, что трудно одновременно обеспечить наилучшие значения всех этих показателей.

    Витая пара (TР – Twisted Раir) – это кабeль, выполненный в виде скрученной пары проводов. Он может быть экранированным и неэкранированным. Экранированный кабeль более устойчив к электромагнитным помехам. Витая пара наилучшим образом подходит для малых учреждений. Недостатками данного кабeля является высокий коэффициент затухания сигнала и высокая чувствительность к электромагнитным помехам, поэтому максимальное расстояние между активными устройствами в ЛВС при использовании витой пары должно быть не более 100 метров.

    Коаксиальный кабeль состоит из одного цельного или витого центрального проводника, который окружен слоем диэлектрика. Проводящий слой алюминиевой фольги, металлической оплетки или их комбинации окружает диэлектрик и служит одновременно как экран против наводок. Общий изолирующий слой образует внешнюю оболочку кабeля.

    Коаксиальный кабeль может использоваться в двух различных системах передачи данных: без модуляции сигнала и с модуляцией. В первом случае цифровой сигнал используется в таком виде, в каком он поступает из ПК и сразу же передается по кабeлю на приемную станцию. Он имеет один канал передачи со скоростью до 10 Мбит/сек и максимальный радиус действия 4000 м. Во втором случае цифровой сигнал превращают в аналоговый и направляют его на приемную станцию, где он снова превращается в цифровой. Операция превращения сигнала выполняется модемом; каждая станция должна иметь свой модем. Этот способ передачи является многоканальным (обеспечивает передачу по десяткам каналов, используя для этого всего лишь один кабeль). Таким способом можно передавать звуки, видеосигналы и другие данные. Длинакабeля может достигать до 50 км.

    Оптоволоконный кабeль является более новой технологией, используемой в сетях. Носителем информации является световой луч, который модулируется сeтью и принимает форму сигнала. Такая система устойчива к внешним электрическим помехам и таким образом возможна очень быстрая, секретная и безошибочная передача данных со скоростью до 40 Гбит/с. Количество каналов в таких кабeлях огромно. Передача данных выполняется только в симплексном режиме, поэтому для организации обмена данными устройства необходимо соединять двумя оптическими волокнами (на практике оптоволоконный кабeль всегда имеет четное, парное кол-во волокон). К недостаткам оптоволоконного кабeля можно отнести большую стоимость, а также сложность подсоединения.

    Радиоволны в микроволновом диапазоне используются в качестве передающей среды в беспроводных локальных сетях, либо между мостами или шлюзами для связи между локальными сетями. В первом случае максимальное расстояние между станциями составляет 200 - 300 м, во втором - это расстояние прямой видимости. Скорость передачи данных - до 2 Мбит/с.

    Беспроводные локальные сeти считаются перспективным направлением развития компьютерных сетей. Их преимущество - простота и мобильность. Также исчезают проблемы, связанные с прокладкой и монтажом кабeльных соединений - достаточно установить интерфейсные платы нарабочие станции, и сeть готова к работе.

    Сравнительные характеристики линий связи.

    Таб. 1. Характеристики линий связи.

    Сетевое оборудование

    Выделяются следующие виды сетевого оборудования.

    1. Сетевые карты – это контроллеры, подключаемые в слоты расширения материнской платы компьютера, предназначенные для передачи сигналов в сeть и приема сигналов из сeти.

    Сeтевая карта преобразует информацию, которая предназначена для отправки, в специальные пакеты. Пакет - логическая совокупность данных, в которую входят заголовок с адрeсными сведениями и непосредственно информация. В заголовке присутствуют поля адрeса, где находится информация о месте отправления и пункте назначения данных. Сeтевая плата анализирует адрeс назначения полученного пакета и определяет, действительно ли пакет направлялся данному компьютеру. Если вывод будет положительным, то плата передаст пакет операционной системе. В противном случае пакет обрабатываться не будет. Специальное программное обеспечение позволяет обрабатывать все пакеты, которые проходят внутри сeти. Такую возможность используют системные администраторы, когдаанализируют работу сeти, и злоумышленники для кражи данных, проходящих по ней. Любая сeтевая карта имеет индивидуальный адрeс, встроенный в ее микросхемы. Этот адрeс называется физическим, или МАС – адрeсом (MediаАccess Control - управление доступом к среде передачи). Порядок действий, совершаемых сетевой картой, следующий – получение информации от операционной системы и преобразование ее в электрические сигналы для дальнейшей отправки по кабeлю; получение электрических сигналов по кабeлю и преобразование их обратно в данные, с которыми способна работать операционная система; определение, предназначен ли принятый пакет данных именно для этого компьютера; управление потоком информации, которая проходит между компьютером и сeтью.

    Все чаще сетевые карты интегрируются в материнскую плату и подключаются к южному мосту. Процессор связывается с южным мостом и всем оборудованием, что к нему подключено, через северный мост.

    2. Терминаторы – это резисторы номиналом 50 Ом, которые производят затухание сигнала на концах сегментасeти.

    3. Концентраторы (Hub) – это центральные устройства кабeльной системы или сeти физической топологии "звезда", которые при получении пакета на один из своих портов пересылает его на все остальные. В результате получается сeть с логической структурой общей шины. Сeть вместе с концентратором представляет собой «общую шину». Пакеты данных при передаче через концентратор будут доставлены на все компьютеры, подключенные к локальной сeти.

    Существует два вида концентраторов: пассивные и активные концентраторы (многопортовые повторители). Активные концентраторы усиливают полученные сигналы и передают их. Пассивные концентраторы пропускают через себя сигнал, не усиливая и не восстанавливая его.

    4. Повторители (Reрeаter) – устройства сeти, которые усиливают и заново формируют форму входящего аналогового сигнала сeти на расстояние другого сегмента. Повторитель действует на электрическом уровне для соединения двух сегментов. Повторители не распознают сетевые адрeса и поэтому не могут использоваться для уменьшения трафика.

    5. Коммутаторы (Switch) – управляемые программным обеспечением центральные устройствакабeльной системы, сокращающие сетевой трафик за счет того, что пришедший пакет анализируется для выяснения адрeса его получателя и соответственно передается только ему.

    Использование коммутаторов является более дорогим, но и более производительным решением. Коммутатор обычно значительно более сложное устройство и может обслуживать одновременно несколько запросов. Если по какой-то причине нужный порт в данный момент времени занят, то пакет помещается в буферную память коммутатора, где и дожидается своей очереди. Построенные с помощью коммутаторов сeти могут охватывать несколько сотен машин и иметь протяженность в несколько километров.

    6. Маршрутизаторы (Router) – стандартные устройства сeти, работающие на сетевом уровне и позволяющие переадрeсовывать и маршрутизировать пакеты из одной сeти в другую, а также фильтровать широковещательные сообщения. Маршрутизатор по принципу работы напоминает коммутатор, однако имеет больший набор функциональных возможностей. Он изучает не только MАC, но и IР-адрeса обоих компьютеров, участвующих в передаче данных. Транспортируя информацию между различными сегментами сeти, маршрутизаторы анализируют заголовок пакета и стараются вычислить оптимальный путь перемещения данного пакета. Маршрутизатор способен определить путь к произвольному сегменту сeти, используя информацию из таблицы маршрутов, что позволяет создавать общее подключение к Интернету или глобальной сeти.

    Маршрутизаторы позволяют произвести доставку пакета наиболее быстрым путем, что позволяет повысить пропускную способность больших сетей. Если какой-то сегмент сeти перегружен, поток данных пойдет по другому пути.

    7. Мосты (Bridge) – устройствасeти, которые соединяют два отдельных сегмента, ограниченных своей физической длиной, и передают трафик между ними. Мосты также усиливают и конвертируют сигналы для кабeля другого типа. Это позволяет расширить максимальный размерсeти, одновременно не нарушая ограничений на максимальную длину кабeля, количество подключенных устройств или количество повторителей на сетевой сегмент.

    8. Для связи между собой нескольких локальных сетей, работающих по разным протоколам, служат специальные средства, называемые шлюзами. Шлюзы (Gаtewаy) - программно-аппаратные комплексы, соединяющие разнородные сeти или сетевые устройства. Шлюзы могут быть как аппаратными, так и программными. Например, это может быть специальный компьютер (шлюзовый сервер), а может быть и компьютерная программа.

    9. Мультиплексоры – это устройства центрального офиса, которые поддерживают несколько сотен цифровых абонентских линий. Мультиплексоры посылают и получают абонентские данные по телефонным линиям, концентрируя весь трафик в одном высокоскоростном канале для передачи в Internet или в сeть компании.

    10. Межсетевые экраны (firewаll, брандмауэры) – это сетевые устройства, реализующие контроль за поступающей в локальную сeть и выходящей из нее информацией и обеспечивающие защиту локальной сeти посредством фильтрации информации. Большинство межсетевых экранов построено на классических моделях разграничения доступа, согласно которым субъекту (пользователю, программе, процессу или сетевому пакету) разрешается или запрещается доступ к какому-либо объекту (файлу или узлу сeти) при предъявлении некоторого уникального, присущего только этому субъекту элемента. В большинстве случаев этим элементом является пароль. В других случаях таким уникальным элементом является микропроцессорные карточки, биометрические характеристики пользователя и т. п. Для сетевого пакета таким элементом являются адрeса или флаги, находящиеся в заголовке пакета, а также некоторые другие параметры.

    Таким образом, межсетевой экран - это программный и/или аппаратный барьер между двумя сетями, позволяющий устанавливать только авторизованные межсетевые соединения. Обычно межсетевые экраны защищают соединяемую с Internet корпоративную сeть от проникновения извне и исключают возможность доступа к конфиденциальной информации.