• Система счисления. Непозиционные системы счисления Какие системы счисления непозиционные

    контрольная работа

    Позиционные и непозиционные системы счисления

    Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами.

    В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы.

    В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией. Первая известная нам система, основанная на позиционном принципе - шестидесятеричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим - десятки.

    В настоящее время позиционные системы счисления более широко распространены, чем непозиционные. Это объясняется тем, что они позволяют записывать большие числа с помощью сравнительно небольшого числа знаков. Еще более важное преимущество позиционных систем - это простота и легкость выполнения арифметических операций над числами, записанными в этих системах.

    Наиболее употребительной оказалась индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной, так как в ней десять цифр.

    Различие между позиционной и непозиционной систем счисления легче всего понять на примере сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Бoльшая цифра соответствует бoльшему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.

    Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 555 7 - число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы - это тоже число, и его указывают в обычной десятичной системе. Любое целое число в позиционной системе можно записать в форме многочлена:

    Х s ={A n A n-1 A n-2 ...A 2 A 1 } s =A n ·S n-1 +A n-1 ·S n-2 +A n-2 ·S n-3 +...+A 2 ·S 1 +A 1 ·S 0

    где S - основание системы счисления, А n - цифры числа, записанного в данной системе счисления, n - количество разрядов числа.

    Так, например число 6293 10 запишется в форме многочлена следующим образом:

    6293 10 =6·10 3 + 2·10 2 + 9·10 1 + 3·10 0

    Примеры позиционных систем счисления:

    · Двоичная (или система счисления с основанием 2) это положительная целочисленная позиционная (поместная) система счисления, позволяющая представить различные численные значения с помощью двух символов. Чаще всего это 0 и 1.

    · Восьмеричная -- позиционная целочисленная система счисления с основанием 8. Для представления чисел в ней используются цифры 0 до 7. Восьмеричная система часто используется в областях, связанных с цифровыми устройствами. Ранее широко использовалась в программировании и компьютерной документации, однако в настоящее время почти полностью вытеснена шестнадцатеричной.

    · Десятичная система счисления -- позиционная система счисления по целочисленному основанию 10. Наиболее распространённая система счисления в мире. Для записи чисел наиболее часто используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называемые арабскими цифрами.

    · Двенадцатеричная (широко использовалась в древности, в некоторых частных областях используется и сейчас) -- позиционная система счисления с целочисленным основанием 12. Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. Некоторые народы Нигерии и Тибета до сих пор используют двенадцатеричную систему счисления, но отголоски ее можно найти практически в любой культуре. В русском языке есть слово "дюжина", в английском "dozen", в некоторых местах слово двенадцать употребляют вместо «десять», как круглое число, например, подождите 12 минут.

    · Шестнадцатеричная (наиболее распространена в программировании, а также в шрифтах) -- позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 до 15. Широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами.

    · Шестидесятеричная (измерение углов и, в частности, долготы и широты) -- позиционная система счисления по целочисленному основанию 60. Использовалась в древние времена на Ближнем Востоке. Последствиями этой системы счисления является деление углового и дугового градуса (а также часа) на 60 минут и минуты на 60 секунд.

    Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины, однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32.

    Чтобы оперировать с числами, записанными в таких нетрадиционных системах, нужно иметь в виду, что принципиально они ничем не отличаются от привычной десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.

    Другие системы счисления не используются в основном, потому что в повседневной жизни люди привыкли пользоваться десятичной системой счисления, и не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления, так как оперировать числами, записанными в двоичном виде, довольно просто.

    Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.

    Введение во фракталы

    Логарифмическая функция в задачах

    Пример43 . Решить систему уравнений Решение Преобразуем второе уравнение систему, применяя определение логарифма и учитывая, что выражение под знаком логарифма должно быть строго положительным: Ответ: . Пример 44...

    Позиционные игры

    Позиционные игры

    Проектирование уроков математики по теме "Нумерация" с использованием современных средств обучения

    Впервые позиционная система счисления возникла в древнем Вавилоне. В Индии система работает в виде позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел позаимствовала арабская нация, у них, в свою очередь...

    Система счисления - это способ записи (изображения) чисел. Различные системы счисления, которые существовали раньше и которые используются в настоящее время, делятся на две группы: · позиционные, · непозиционные...

    Система счисления. Запись действий над числами

    Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами...

    Система счисления. Запись действий над числами

    Двоичная система счисления была придумана математиками и философами ещё до появления компьютеров (XVII -- XIX вв.). Некоторые идеи, лежащие в основе двоичной системы, по существу были известны в Древнем Китае...

    Система счисления. Запись действий над числами

    Наиболее часто встречающиеся системы счисления - это двоичная, шестнадцатеричная и десятичная и восьмеричная...

    1.1 История возникновения различных систем счисления Первобытному человеку считать почти не приходилось. "Один", "два" и "много" - вот все его числа. Но нам - современным людям - приходится иметь дело с числами буквально на каждом шагу...

    Системы счисления и основы двоичных кодировок

    В самой древней нумерации употреблялся лишь знак "|" для единицы, и каждое натуральное число записывалось повторением символа единицы столько раз, сколько единиц содержится в этом числе...

    Системы счисления и основы двоичных кодировок

    Кроме десятичной системы счисления возможны позиционные системы счисления с любым другим натуральным основанием. В разные исторические периоды многие народы широко использовали различные системы счисления...

    Системы счисления и основы двоичных кодировок

    1.5.1 Сложение и вычитание В системе с основанием я для обозначения нуля и первых с-1 натуральных чисел служат цифры 0, 1, 2, ..., с - 1. Для выполнения операции сложения и вычитания составляется таблица сложения однозначных чисел...

    Системы счисления и основы двоичных кодировок

    Столь привычная для нас десятичная система оказалась неудобной для ЭВМ. Если в механических вычислительных устройствах, использующих десятичную систему, достаточно просто применить элемент с множеством состояний (колесо с девятью зубьями)...

    Фракталы - новая ветвь математики

    Понятие L-систем, тесно связанное с самоподобными фракталами, появилось только в 1968 году благодаря Аристриду Линденмайеру. Изначально L-системы были введены при изучении формальных языков...

    Введение

    Тема реферата по курсу «Информатика-1» - «Системы счисления».

    Цель написания реферата: Ознакомится с понятием системы счисления и классификацией; переводом чисел из одной системы счисления в другую.

    Понятие системы счисления. Позиционные и непозиционные системы счисления

    целый число алгебраический двоичный

    Системой счисления называют систему приемов и правил, позволяющих устанавливать взаимно-однозначное соответствие между любым числом и его представлением в виде совокупности конечного числа символов. Множество символов, используемых для такого представления, называют цифрами.

    Система счисления:

    даёт представления множества чисел (целых и/или вещественных);

    даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

    отражает алгебраическую и арифметическую структуру чисел.

    Системы счисления подразделяются на позиционные и непозиционные. В непозиционных системах любое число определяется как некоторая функция от численных значений совокупности цифр, представляющих это число. Цифры в непозиционных системах счисления соответствуют некоторым фиксированным числам. Пример непозиционной системы - римская система счисления.

    Исторически первыми системами счисления были именно непозиционные системы. Одним из основных недостатков является трудность записи больших чисел. Запись больших чисел в таких системах очень громоздкая и алфавит системы чрезвычайно велик.

    В вычислительной технике непозиционные системы не применяются. 3

    Систему счисления называют позиционной, если одна и та же цифра может принимать различные численные значения в зависимости от номера разряда этой цифры в совокупности цифр, представляющих заданное число. Пример такой системы - арабская десятичная система счисления.

    Основание позиционной системы счисления определяет ее название. В вычислительной технике применяются двоичная, восьмеричная, десятичная и шестнадцатеричная системы.

    В настоящее время позиционные системы счисления более широко распространены, чем непозиционные. Это объясняется тем, что они позволяют записывать большие числа с помощью сравнительно небольшого числа знаков. Еще более важное преимущество позиционных систем - это простота и легкость выполнения арифметических операций над числами, записанными в этих системах.

    Приведем примеры, где можно встретить употребление позиционных систем счисления:

    двоичная в дискретной математике, информатике, программировании;

    десятичная - используется повсеместно;

    двенадцатеричная - счёт дюжинами;

    шестнадцатеричная - используется в программировании, информатике;

    шестидесятеричная - единицы измерения времени, измерение углов и, в частности, координат, долготы и широты.

    Изучая кодировки, я понял, что недостаточно хорошо понимаю системы счислений. Тем не менее, часто использовал 2-, 8-, 10-, 16-ю системы, переводил одну в другую, но делалось все на “автомате”. Прочитав множество публикаций, я был удивлен отсутствием единой, написанной простым языком, статьи по столь базовому материалу. Именно поэтому решил написать свою, в которой постарался доступно и по порядку изложить основы систем счисления.

    Введение

    Система счисления - это способ записи (представления) чисел.

    Что под этим подразумевается? Например, вы видите перед собой несколько деревьев. Ваша задача - их посчитать. Для этого можно - загибать пальцы, делать зарубки на камне (одно дерево - один палец\зарубка) или сопоставить 10 деревьям какой-нибудь предмет, например, камень, а единичному экземпляру - палочку и выкладывать их на землю по мере подсчета. В первом случае число представляется, как строка из загнутых пальцев или зарубок, во втором - композиция камней и палочек, где слева - камни, а справа - палочки

    Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, - на однородные и смешанные.

    Непозиционная - самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек - то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет.

    Позиционная система - значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления - позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 - кол-во десяток и аналогично значению 50, а 3 - единиц и значению 3. Как видим - чем больше разряд - тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.

    Однородная система - для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд - 0, 2-й - 5, 3-й - 4), а 4F5 - нет, поскольку символ F не входит в набор цифр от 0 до 9.

    Смешанная система - в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример - система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.

    Непозиционные системы

    Как только люди научились считать - возникла потребность записи чисел. В начале все было просто - зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления - единичная.
    Единичная система счисления
    Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
    Но эта система обладает явными неудобствами - чем больше число - тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.

    Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.

    Древнеегипетская десятичная система
    В Древнем Египте использовались специальные символы (цифры) для обозначения чисел 1, 10, 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 . Вот некоторые из них:

    Почему она называется десятичной? Как писалось выше - люди стали группировать символы. В Египте - выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ - представление числа 10 в какой-то степени.

    Числа в древнеегипетской системе счисления записывались, как комбинация этих
    символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345:

    Вавилонская шестидесятеричная система
    В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин - для обозначения единиц и “лежачий” - для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32:

    Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
    Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения - в позиционной с основанием 60. Число 92:

    Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:

    Теперь число 3632 следует записывать, как:

    Шестидесятеричная вавилонская система - первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени - час состоит из 60 минут, а минута из 60 секунд.

    Римская система
    Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления - это набор стоящих подряд цифр.

    Методы определения значения числа:

    1. Значение числа равно сумме значений его цифр. Например, число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2=32
    2. Если слева от большей цифры стоит меньшая, то значение равно разности между большей и меньшей цифрами. При этом, левая цифра может быть меньше правой максимум на один порядок: так, перед L(50) и С(100) из «младших» может стоять только X(10), перед D(500) и M(1000) - только C(100), перед V(5) - только I(1); число 444 в рассматриваемой системе счисления будет записано в виде CDXLIV = (D-C)+(L-X)+(V-I) = 400+40+4=444.
    3. Значение равно сумме значений групп и цифр, не подходящих под 1 и 2 пункты.
    Помимо цифирных, существуют и буквенные (алфавитные) системы счисления, вот некоторые из них:
    1) Славянская
    2) Греческая (ионийская)

    Позиционные системы счисления

    Как упоминалось выше - первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. По каким-то причинам, в Европе за этой системой закрепилось название “арабская”.
    Десятичная система счисления
    Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.

    Для примера возьмем число 503. Если бы это число было записано в непозиционной системе, то его значение равнялось 5+0+3 = 8. Но у нас - позиционная система и значит каждую цифру числа необходимо умножить на основание системы, в данном случае число “10”, возведенное в степень, равную номеру разряда. Получается, значение равно 5*10 2 + 0*10 1 + 3*10 0 = 500+0+3 = 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, 503 = 503 10 .

    Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы.

    Двоичная система счисления
    Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Тем не менее, рассматриваемая система была создана за долго до изобретения вычислительных машин и уходит “корнями” в цивилизацию Инков, где использовались кипу - сложные верёвочные сплетения и узелки.

    Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра - либо 0, либо 1.

    Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание “2”, возведенное в степень, равную разряду. Таким образом, число 101 2 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 5 10 .

    Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа - 0 и 1?

    Чтобы компьютер мог работать с двоичными числами (кодами), необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое - единице. Для запоминания отдельного числа используется регистр - группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров - это оперативная память. Число, содержащееся в регистре - машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство (АЛУ). Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа - достаточно указать номера ячеек (регистров), в которых они находятся, а не сами числа. Адреса записываются в 8- и 16-ричной системах (о них будет рассказано ниже), поскольку переход от них к двоичной системе и обратно осуществляется достаточно просто. Для перевода из 2-й в 8-ю число необходимо разбить на группы по 3 разряда справа налево, а для перехода к 16-ой - по 4. Если в крайней левой группе цифр не достает разрядов, то они заполняются слева нулями, которые называются ведущими. В качестве примера возьмем число 101100 2 . В восьмеричной - это 101 100 = 54 8 , а в шестнадцатеричной - 0010 1100 = 2С 16 . Отлично, но почему на экране мы видим десятичные числа и буквы? При нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц). Программа драйвер клавиатуры и экрана обращается к кодовой таблице символов (например, Unicode, позволяющая закодировать 65536 символов), определяет какому символу соответствует полученный код и отображает его на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде, а программным способом преобразуются в изображения на экране.

    Восьмеричная система счисления
    8-я система счисления, как и двоичная, часто применяется в цифровой технике. Имеет основание 8 и использует для записи числа цифры от 0 до 7.

    Пример восьмеричного числа: 254. Для перевода в 10-ю систему необходимо каждый разряд исходного числа умножить на 8 n , где n - это номер разряда. Получается, что 254 8 = 2*8 2 + 5*8 1 + 4*8 0 = 128+40+4 = 172 10 .

    Шестнадцатеричная система счисления
    Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF - белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.

    В качестве примера возьмем число 4F5 16 . Для перевода в восьмеричную систему - сначала преобразуем шестнадцатеричное число в двоичное, а затем, разбив на группы по 3 разряда, в восьмеричное. Чтобы преобразовать число в 2-е необходимо каждую цифру представить в виде 4-х разрядного двоичного числа. 4F5 16 = (100 1111 101) 2 . Но в 1 и 3 группах не достает разряда, поэтому заполним каждый ведущими нулями: 0100 1111 0101. Теперь необходимо разделить полученное число на группы по 3 цифры справа налево: 0100 1111 0101 = 010 011 110 101. Переведем каждую двоичную группу в восьмеричную систему, умножив каждый разряд на 2 n , где n - номер разряда: (0*2 2 +1*2 1 +0*2 0) (0*2 2 +1*2 1 +1*2 0) (1*2 2 +1*2 1 +0*2 0) (1*2 2 +0*2 1 +1*2 0) = 2365 8 .

    Помимо рассмотренных позиционных систем счисления, существуют и другие, например:
    1) Троичная
    2) Четверичная
    3) Двенадцатеричная

    Позиционные системы подразделяются на однородные и смешанные.

    Однородные позиционные системы счисления
    Определение, данное в начале статьи, достаточно полно описывает однородные системы, поэтому уточнение - излишне.
    Смешанные системы счисления
    К уже приведенному определению можно добавить теорему: “если P=Q n (P,Q,n – целые положительные числа, при этом P и Q - основания), то запись любого числа в смешанной (P-Q)-ой системе счисления тождественно совпадает с записью этого же числа в системе счисления с основанием Q.”

    Опираясь на теорему, можно сформулировать правила перевода из P-й в Q-ю системы и наоборот:

    1. Для перевода из Q-й в P-ю, необходимо число в Q-й системе, разбить на группы по n цифр, начиная с правой цифры, и каждую группу заменить одной цифрой в P-й системе.
    2. Для перевода из P-й в Q-ю, необходимо каждую цифру числа в P-й системе перевести в Q-ю и заполнить недостающие разряды ведущими нулями, за исключением левого, так, чтобы каждое число в системе с основанием Q состояло из n цифр.
    Яркий пример - перевод из двоичной системы счисления в восьмеричную. Возьмем двоичное число 10011110 2 , для перевода в восьмеричное - разобьем его справа налево на группы по 3 цифры: 010 011 110, теперь умножим каждый разряд на 2 n , где n - номер разряда, 010 011 110 = (0*2 2 +1*2 1 +0*2 0) (0*2 2 +1*2 1 +1*2 0) (1*2 2 +1*2 1 +0*2 0) = 236 8 . Получается, что 10011110 2 = 236 8 . Для однозначности изображения двоично-восьмеричного числа его разбивают на тройки: 236 8 = (10 011 110) 2-8 .

    Смешанными системами счисления также являются, например:
    1) Факториальная
    2) Фибоначчиева

    Перевод из одной системы счисления в другую

    Иногда требуется преобразовать число из одной системы счисления в другую, поэтому рассмотрим способы перевода между различными системами.
    Преобразование в десятичную систему счисления
    Имеется число a 1 a 2 a 3 в системе счисления с основанием b. Для перевода в 10-ю систему необходимо каждый разряд числа умножить на b n , где n - номер разряда. Таким образом, (a 1 a 2 a 3) b = (a 1 *b 2 + a 2 *b 1 + a 3 *b 0) 10 .

    Пример: 101 2 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 5 10

    Преобразование из десятичной системы счисления в другие
    Целая часть:
    1. Последовательно делим целую часть десятичного числа на основание системы, в которую переводим, пока десятичное число не станет равно нулю.
    2. Полученные при делении остатки являются цифрами искомого числа. Число в новой системе записывают, начиная с последнего остатка.
    Дробная часть:
    1. Дробную часть десятичного числа умножаем на основание системы, в которую требуется перевести. Отделяем целую часть. Продолжаем умножать дробную часть на основание новой системы, пока она не станет равной 0.
    2. Число в новой системе составляют целые части результатов умножения в порядке, соответствующем их получению.
    Пример: переведем 15 10 в восьмеричную:
    15\8 = 1, остаток 7
    1\8 = 0, остаток 1

    Записав все остатки снизу вверх, получаем итоговое число 17. Следовательно, 15 10 = 17 8 .

    Преобразование из двоичной в восьмеричную и шестнадцатеричную системы
    Для перевода в восьмеричную - разбиваем двоичное число на группы по 3 цифры справа налево, а недостающие крайние разряды заполняем ведущими нулями. Далее преобразуем каждую группу, умножая последовательно разряды на 2 n , где n - номер разряда.

    В качестве примера возьмем число 1001 2: 1001 2 = 001 001 = (0*2 2 + 0*2 1 + 1*2 0) (0*2 2 + 0*2 1 + 1*2 0) = (0+0+1) (0+0+1) = 11 8

    Для перевода в шестнадцатеричную - разбиваем двоичное число на группы по 4 цифры справа налево, затем - аналогично преобразованию из 2-й в 8-ю.

    Преобразование из восьмеричной и шестнадцатеричной систем в двоичную
    Перевод из восьмеричной в двоичную - преобразуем каждый разряд восьмеричного числа в двоичное 3-х разрядное число делением на 2 (более подробно о делении см. выше пункт “Преобразование из десятичной системы счисления в другие”), недостающие крайние разряды заполним ведущими нулями.

    Для примера рассмотрим число 45 8: 45 = (100) (101) = 100101 2

    Перевод из 16-ой в 2-ю - преобразуем каждый разряд шестнадцатеричного числа в двоичное 4-х разрядное число делением на 2, недостающие крайние разряды заполняем ведущими нулями.

    Преобразование дробной части любой системы счисления в десятичную

    Преобразование осуществляется также, как и для целых частей, за исключением того, что цифры числа умножаются на основание в степени “-n”, где n начинается от 1.

    Пример: 101,011 2 = (1*2 2 + 0*2 1 + 1*2 0), (0*2 -1 + 1*2 -2 + 1*2 -3) = (5), (0 + 0,25 + 0,125) = 5,375 10

    Преобразование дробной части двоичной системы в 8- и 16-ую
    Перевод дробной части осуществляется также, как и для целых частей числа, за тем лишь исключением, что разбивка на группы по 3 и 4 цифры идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа.

    Пример: 1001,01 2 = 001 001, 010 = (0*2 2 + 0*2 1 + 1*2 0) (0*2 2 + 0*2 1 + 1*2 0), (0*2 2 + 1*2 1 + 0*2 0) = (0+0+1) (0+0+1), (0+2+0) = 11,2 8

    Преобразование дробной части десятичной системы в любую другую
    Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в ноль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.

    Для примера переведем 10,625 10 в двоичную систему:
    0,625*2 = 1,25
    0,250*2 = 0,5
    0,5*2 = 1,0
    Записав все остатки сверху вниз, получаем 10,625 10 = (1010), (101) = 1010,101 2

    Основные понятия

    Система счисления - это совокупность правил записи чисел посредством конечного набора символов (цифр).

    Системы счисления бывают:

    • непозиционными (в этих системах значение цифры не зависит от ее позиции - положения в записи числа);
    • позиционными (значение цифры зависит от позиции).

    Непозиционные системы счисления

    Примеры: унарная, римская, древнерусская и др.

    Позиционные системы счисления

    Основание системы счисления - количество различных цифр, используемых в этой системе. Вес разряда - отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде

    p i = s i ,

    Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем - запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

    Перевод в десятичную систему счисления

    По определению веса разряда

    p i = s i ,
    где i - номер разряда, а s - основание системы счисления.

    Тогда, обозначив цифры числа как a i , любое число, записанное в позиционной системе счисления, можем представить в виде:

    x = a n s n + a n-1 s n-1 + ... + a 2 s 2 + a 1 s 1 + a 0 s 0 + a -1 s -1 + ...

    Например, для системы счисления с основанием 4:

    1302.2 4 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1

    Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

    1302.2 4 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1 =
    = 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =
    = 64 + 48 + 2 + 0,5 = 114,5

    Таким образом, для перевода числа из любой системы счисления в десятичную следует:

    1. пронумеровать разряды исходного числа;
    2. записать сумму, слагаемые которой получаются как произведения очередной цифры на основание системы счисления, возведенное в степень, равную номеру разряда;
    3. выполнить вычисления и записать полученный результат (указав основание новой системы счисления - 10).

    Примеры:

    Перевод из десятичной системы счисления

    Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

    1302 4 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

    Иначе это можно записать так:

    114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 1302 4

    Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 - это младшая цифра при записи в четверичной системе. Частное же будет равно

    (1 ⋅ 4 + 3) ⋅ 4 + 0

    Деление его на 4 даст остаток - следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

    В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

    1. Выполнить последовательное деление с остатком исходного числа и каждого полученного частного на основание новой системы счисления.
    2. Записать вычисленные остатки, начиная с последнего (т.е. в обратном порядке)

    Примеры:

    Системы счисления с кратными основаниями

    При работе с компьютерами широко применяют двоичную систему счисления (поскольку на ней основано представление информации в компьютере), а также восьмеричную и шестнадцатеричную, запись в которых более компактна и удобна для человека. С другой стороны, благодаря тому что 8 и 16 - степени 2, переход между записью в двоичной и одной из этих систем осуществляется без вычислений.

    Достаточно заменить каждый разряд шестнадцатеричной записи четырьмя (16=24 ) разрядами двоичной (и наоборот) по таблице.

    шестнадцатеричная -> двоичная
    A 3 2 E
    1010 0011 0010 1110
    двоичная -> шестнадцатеричная
    (00)10 1010 0111 1101
    2 A 7 D

    Аналогично происходит и перевод между двоичной и восьмеричной системой, только разряд восьмеричной соответствует трем разрядам двоичной (8=2 3)

    восьмеричная -> двоичная
    5 3 2 1
    101 011 010 001
    двоичная -> восьмеричная
    (0)10 101 001 111 101
    2 5 1 7 5

    Арифметика

    Арифметические операции в позиционной системе с любым основанием производятся по одним и тем же правилам: сложение, вычитарние и умножение «в столбик», а деление - «уголком». Рассмотрим пример выполнения действий сложения и вычитания в двоичной, восьмеричной и шестнадцатеричной системах счисления.

    Сложение

    Двоичная система:

    (перенос)
    1 0 0 1 1 0 1 1
    1 0 0 1 1 1 0

    1 1 1 0 1 0 0 1
    7 6 5 4 3 2 1 0 (номера разрядов)

    В нулевом разряде: 1 + 0 = 0

    В первом разряде: 1 + 1 = 2. 2 переносится в старший (2-й) разряд, обращаясь в единицу переноса. В первом разряде остается 2 - 2 = 0.

    Во втором разряде: 0 + 1 + 1 (перенос) = 2; Переносим в старший разряд,

    Продолжая вычисления, получим:

    10011011 2 + 1001110 2 = 11101001 2

    Восьмеричная система:


    (перенос)
    3 4 2 6 1

    4 4 3 5

    4 0 7 1 6
    4 3 2 1 0 (номера разрядов)

    Выполняем вычисления аналогично двоичной системе, но в старший разряд переносим 8. Получаем:

    34261 8 + 4435 8 = 40716 8

    Шестнадцатеричная система:



    (перенос)

    A 3 9 1

    8 5 3 4

    1 2 8 C 5
    4 3 2 1 0 (номера разрядов)

    A391 16 + 8534 16 = 128C5 16

    Вычитание

    Двоичная система:



    (перенос)
    1 0 0 1 1 0 1 1
    1 0 0 1 1 1 0


    1 0 0 1 1 0 1
    7 6 5 4 3 2 1 0 (номера разрядов)

    Единичная система счисления

    Необходимость в записи чисел стала возникать у людей еще в древности после того, как они научились считать. Свидетельством этого являются археологические находки в местах стойбищ первобытных людей, которые относятся к периоду палеолита ($10$-$11$ тыс. лет до н.э.). Изначально количество предметов изображали, используя определенные знаки: черточки, насечки, кружочки, нанесенные на камни, дерево или глину, а также узлы на веревках.

    Рисунок 1.

    Ученые эту систему записи чисел называют единичной (унарной) , поскольку число в ней образовано повторением одного знака, который символизирует единицу.

    Недостатки системы:

      при написании большого числа необходимо использовать большое количество палочек;

      возможно легко ошибиться при нанесении палочек.

    Позднее, чтобы облегчить счет, эти знаки люди стали объединять.

    Пример 1

    С примерами использования единичной системы счисления можно встретится и в нашей жизни. Например, маленькие дети пытаются изобразить на пальцах сколько им лет, или же счетные палочки используют для обучения счету в первом классе.

    Единичная система не совсем удобна, так как записи выглядят очень длинно и их нанесение довольно утомительно, поэтому со временем стали появляться более практичые в использовании системы счисления.

    Вот некоторые примеры.

    Древнеегипетская десятичная непозиционная система счисления

    Данная система счисления появилась около 3000 лет до н.э. в результате того, что жители Древнего Египта придумали свою числовую систему, в которой при обозначении ключевых чисел $1$, $10$, $100$ и т.д. были использованы иероглифы, что было удобным при написании на глиняных дощечках, которые заменяли бумагу. Другие числа составлялись из них с помощью сложения. Сначала записывалось число высшего порядка, а затем низшего. Умножали и делили египтяне, последовательно удваивая числа. Каждая цифра могла повторяться до $9$ раз. Примеры чисел данной системы приведены ниже.

    Рисунок 2.

    Римская система счисления

    Данная система принципиально не намного отличается от предыдущей и сохранилась до наших дней. В ее основе находятся знаки:

      $I$ (один палец) для числа $1$;

      $V$ (раскрытая ладонь) для числа $5$;

      $X$ (две сложенные ладони) для $10$;

      для обозначения чисел $100$, $500$ и $1000$ использовались первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

    При составлении чисел римляне использовали следующие правила:

      Число равно сумме значений расположенных подряд нескольких одинаковых «цифр», образующих группу первого вида.

      Число равно разности значений двух «цифр», если слева от большей стоит меньшая. В этом случае от значения большей отнимается значение меньшей. Вместе они образуют группу второго вида. При этом левая «цифра» может быть меньше правой максимально на $1$ порядок: перед $L(50)$ и $C(100$) из «младших» может стоять только $Х(10$), перед $D(500$) и $M(1000$) – только $C(100$), перед $V(5) – I(1)$.

      Число равно сумме значений групп и «цифр», не вошедших в группы $1$ или $2$ вида.

    Рисунок 3.

    Римскими цифрами пользуются издревле: ими обозначаются даты, номера томов, разделов, глав. Раньше считал, что обычные арабские цифры можно легко подделать.

    Алфавитные системы счисления

    Данные системы счисления более совершенны. К ним относятся греческая, славянская, финикийская, еврейская и другие. В этих системах числа от $1$ до $9$, а также количество десятков (от $10$ до $90$), сотен (от $100$ до $900$) были обозначены буквами алфавита.

    В древнегреческой алфавитной системе счисления числа $1, 2, ..., 9$ обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел $10, 20, ..., 90$ применялись следующие $9$ букв а для обозначения чисел $100, 200, ..., 900$ – последние $9$ букв.

    У славянских народов числовые значения букв устанавливались в соответствии с порядком славянского алфавита, использовавшего изначально глаголицу, а затем кириллицу.

    Рисунок 4.

    Замечание 1

    Алфавитная система использовалась и в древней Руси. До конца $XVII$ века в качестве цифр использовались $27$ букв кириллицы.

    Непозиционные системы счисления имеют ряд существенных недостатков:

      Существует постоянная потребность введения новых знаков для записи больших чисел.

      Невозможно представлять дробные и отрицательные числа.

      Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.