• Вирусология. Контрольные вопросы Репродукция днкгеномных вирусов основные этапы, особенности репродукции. Репродукция вирусов с двухнитевыми рнк Химический состав вирионов репродукция вирусов

    Репродукция вирусов в клетке - продуктивная инфекция – единый процесс, условно подразделяемый на несколько этапов:
    1.адсорбция вирионов на летке
    2. Проникновение вирусов в клетку
    3. Депротеинизация вириона и освобождение его нуклеиновой кислоты (генома)
    4. Экспрессия вирусного генома, синтез компонентов вириона (транскрипция, трансляция, репликация)
    5. формирование вирионов
    6. Выход нового поколения вирионов из клетки

    Первые 3 этапа – подготовительные. Собственно репродукция – с 4 этапа.

    1. Адсорбция вирионов на клетке – осуществляется при наличии специфических рецепторов. У простых вирусов – поверхностные прикрепительные белки, у сложных – прикрепительных белков роль играют гликопротеины, образующие шипики на суперкапсиде.
    Рецепторы на поверхности клеточной мембраны могут иметь различную природу, их количество достигает 10 4 и более на клетку. Адсорбция начинается как неспецифическая, а продолжается как специфическая (вирус «узнается» и связывается комплементарным рецептором). Тропизм вирусов – избирательное поражение клеток и тканей у определенных видов организмов (наличие комплементарных рецепторов на них).

    2. Проникновение вирионов в клетку

    Путем рецепторного эндоцитоза (виропексиса ) – в месте адсорбции вируса образуется эндосома (впячивание), содержащая вирус. Она объединяется с клеточной лизосомой и вакуолью, образует рецептосому (проникают и простые и ложные вирусы этим путем).
    - путем слияния мембран суперкапсида вируса и клетки. Осуществляется белками слияния. Нуклеокапсид оказывается в цитоплазме клетки. Характерно для сложных вирусов, обладающих F-белками слияния или другими гликопротеинами (например, гемагглютинин вируса гриппа).
    - Возможно сочетание.

    3. депротеинизация вирусов («раздевание»). Цель- освобождение нуклеиновой кислоты для индукции репродукции вируса.
    Вирусы, проникшие в клетку рецепторным эндоцитозом, покидают рецептосому путем слияния мембран (сложные вирусы) или при участии капсидных поверхностных белков (простые вирусы). При этом лизосомальными ферментами и ферментами мембраны рецептосомы проводится частичная депротеинизация. Продолжается «раздевание» в цитоплазме протеазами и другими клеточными ферментами.
    Если вирус проникает в клетку способом слияния мембран, депротеинизация начинается при уже при проникновении с помощью ферментов клеточной мембраны. Продолжается в цитоплазме.

    Освобождение генома может быть полным, а может неплным (остаются внутренние белки или капсидные, которые в дальнейшем защищают нуклеиновую кислоту от нуклеаз цитоплазмы).

    4. экспрессия вирусного генома. Иногда требует транспортировки в ядро.

    А) транскрипция – образование на матрице генома комплементарных и-РНК

    Б) трансляция – перевод генетической информации с и-РНК в последовательность аминокислот. Проводится и-РНК на клеточных рибосомах с подавлением синтеза клеточных белков. Вирусные белки могут формироваться: с коротких моноцистронных и-РНК (отдельные белки, на рибосомах), с длинных полицистронных и-РНК (гигантский полипептид, на полисомах, впоследствие нарезается на отдельные белки).

    Особенности:
    - вирусы с двунитевой ДНК: геномная ДНК -> транскрипция -> и-РНК -> трансляция -> белок (сперва ранние неструктурные, потом поздние структурные)

    Осуществляется в ядре (у большинства вирусов) – клеточная транскриптаза, в цитоплазме – вирусная транскриптаза.

    РНК – геномная РНК одновременно и-РНК: геномная +РНК > трансляция > белок (гигантский полипептид, который нарезается протеазами)
    - минус-РНК: геномная –РНК > транскрипция > и-РНК > трансляция > белок
    осуществляется собственными транскриптазами

    Ретровирусы (онкогенные вирусы и возбудители ВИЧ-инфекции) – диплоидный геном из двух идентичных однонитевых +РНК и ревертазой (обратной транскриптазой) (такой же путь передачи возможно у вируса гепатита В и клещевого энцефалита: геномная РНК > провирус (комплементарная ДНК) > транскрипция > и-РНК > трансляция > белок

    Репликация: синтез на матрице исходного генома вируса множества идентичных копий. В ядре (у большинства) и в цитоплазме. Процесс начинается после накопления неструктурных ранних белков. Осуществляется вирусными клеточными полимеразами. Осуществляется сразу полностью.

    У двунитевых ДНК-геномов – с помощью репликазы по полуконсервативному типу, подобно клеточным ДНК

    Однонитевые +РНК геном - с помощью вирус-индуцированной РНК-полимеразы. На исходной +РНК формируется –РНК (двунитевый промежуточный репликативный комплекс), которая отщепляется, на ней формируется +РНК, идентичная исходной. происходит накопление множества копий генома.

    Однонитевые –РНК геном – с помощью РНК-зависимой РНК-полимеразы, тоже через двунитевый промежуточный репликативный комплекс

    У ретровирусов – те же стадии, что и при транскрипции, с обязательной репликацией провирусной ДНК в хромосому клетки. На матрице провирусной ДНК реплицируются копии однонитевых +РНК.
    Для ретровирусов характерно сочетание интегративной и продуктивной инфекции (при преобладании интегративной наблюдается персистенция вируса).

    В результате экспрессии в клетке накапливаются копии вирусных геномов и структурные белки. Эти процессы происходят в разных частях клетки, и такой способ репродукции называется разобщенным (дизъюнктивным).

    5. Формирование вирионов из компонентов вируса. В цитоплазме.

    Простые вирусы: пустеем самосборки, капсид по спиральному или кубическому типу формируется. Получается нуклеокапсид.

    Сложные вирусы формируются в несколько этапов. Образуется нуклеокапсид, затем они взаимодействуют с модифицированными мембранами клетки, одеваются суперкапсидной оболочкой, у некоторых вирусов под суперкапсидом формируется М-слой.

    6. Выход вирионов из клетки

    При лизисе клетки («по взрувному типу», характерен для простых вирусов)

    Путем почкования (сложные вирусы, одновременно приобретают суперкапсид). Клетка погибает не сразу, успевает выделить новые поколения вирусов до истощения ее ресурсов.

  • 4. Классификация бактерий. Принципы современной систематики и номенклатуры, основные таксономические единицы. Понятие о виде, варианте, культуре, популяции, штамме.
  • 5. Методы микроскопии. Микроскопический метод диагностики инфекционных заболеваний.
  • 6. Методы окраски микробов и их отдельных структур.
  • 7. Морфология и химический состав бактерий. Протопласты. L – формы бактерий.
  • 8. Ультраструктура бактерий.
  • 9. Спорообразование у бактерий. Патогенные спорообразующие микробы.
  • 10. Капсулы у бактерий. Методы их обнаружения.
  • 11. Жгутики и включения у бактерий. Методы их обнаружения.
  • 14. Рост и размножение бактерий. Кинетика размножения бактериальной популяции.
  • 15. Морфология и ультраструктура риккетсий. Морфология и ультраструктура хламидий. Патогенные виды.
  • 16. Морфология и ультраструктура спирохет. Классификация, патогенные виды. Методы выделения.
  • 17. Морфология и ультраструктура микоплазм. Патогенные для человека виды.
  • 18. Систематика и номенклатура вирусов. Принципы современной классификации вирусов.
  • 19. Эволюция и происхождение вирусов. Основные отличия вирусов от бактерий.
  • 20. Морфология, ультраструктура и химический состав вирусов. Функции основных химических компонентов вируса.
  • 21. Репродукция вирусов. Основные фазы репродукции вирусов. Методы индикации вирусов в исследуемом материале.
  • 22. Вирусологический метод диагностики. Методы культивирования вирусов.
  • 23. Культуры клеток. Классификация клеточных культур. Питательные среды для культур клеток. Методы индикации вирусов в культуре клеток.
  • 24. Морфология, ультраструктура и химический состав фагов. Этапы репродукции фагов. Различия между вирулентными и умеренными фагами.
  • 25. Распространение фагов в природе. Методы обнаружения и получения фагов. Практическое использование фагов.
  • 26. Бактериологический метод диагностики инфекционных заболеваний.
  • 27. Питательные среды, их классификация. Требования, предъявляемые к питательным средам.
  • 28. Ферменты бактерий, их классификация. Принципы конструирования питательных сред для изучения ферментов бактерий.
  • 29. Основные принципы культивирования бактерий. Факторы, влияющие на рост и размножение бактерий. Культуральные свойства бактерий.
  • 30. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий.
  • 31. Микрофлора почвы, воды, воздуха. Патогенные виды, сохраняющиеся во внешней среде и передающиеся через почву, воду, пищевые продукты, воздух.
  • 32. Санитарно – показательные микроорганизмы. Коли – титр, коли – индекс, методы определения.
  • 34. Взаимоотношения между микроорганизмами в ассоциациях. Микробы – антагонисты, их использование в производстве антибиотиков и других лечебных препаратов.
  • 35. Влияние на микробы физических, химических и биологических факторов.
  • 36. Стерилизация и дезинфекция. Методы стерилизации питательных сред и лабораторной посуды.
  • 38. Формы и механизмы наследственной изменчивости микроорганизмов. Мутации, репарации, их механизмы.
  • 43. Генетика вирусов. Внутривидовой и межвидовой обмен генетическим материалом.
  • 44. Основные группы антимикробных химиопрепаратов, применяемых в терапии и профилактики инфекционных болезней.
  • 45. Антибиотики. Классификация. Механизмы действия антибактериальных препаратов на микробы.
  • Репродукция вируса в клетке происходит в несколько фаз:

      Первая фаза - адсорбция вируса на поверхности клетки, чувствительной к данному вирусу.

      Вторая фаза - проникновение вируса в клетку хозяина путем виропексиса.

      Третья фаза - «раздевание» вирионов, освобождение нуклеиновой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем слияния оболочки вириона и клетки-хозяина. В этом случае вторая и третья фазы объединяются в одну.

    В зависимости от типа нуклеиновой кислоты этот процесс совершается следующим образом.

      Репродукция происходит в ядре: аденовирусы, герпес, паповавирусы. Используют ДНК-зависимую РНК - полимеразу клетки.

      Репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК полимеразу.

      Рибовирусы с позитивным геномом (плюс-нитиевые): пикорна-, тога-, коронавирусы. Транскрипции нет.

    РНК ->белок

      Рибовирусы с негативным геномом (минус- нитевые): грипп, корь, паротит, орто-, парамиксовирусы.

    (-)РНК -> иРНК -> белок (иРНК комплементарная (-)РНК). Этот процесс идет при участии специального вирусного фермента - вирионная РНК-зависимая PHK-полимераза (в клетке такого фермента быть не может).

      Ретровирусы

    (-)РНК -> ДНК -> иРНК ->белок (и РНК гомологична РНК). В этом случае процесс образования ДНК на базе (-)РНК возможен при участии фермента - РНК-зависимой ДНК-полимеразы (обратной транскриптазы или ревертазы)

      Четвертая фаза - синтез компонентов вириона. Нуклеиновая кислота вируса образуется путем репликации. На рибосомы клетки транслируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

      Пятая фаза - сборка вириона. Путем самосборки образуются нуклеокапсиды.

      Шестая фаза - выход вирионов из клетки. Простые вирусы, например, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

    Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

    Иной путь - интегративный - заключается в том, что после проникновения вируса в клетку и "раздевания" вирусная нуклеиновая кислота интегрирует в клеточный геном, то есть встраивается в определенном месте в хромосому клетки и затем в виде так называемого прови-руса реплицируется вместе с ней. Для ДНК- и РНК-содержащих вирусов этот процесс совершается по-разному. В первом случае вирусная ДНК интегрирует в клеточный геном. В случае РНК-содержащих вирусов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента "обратной транскриптазы" образуется ДНК, которая встраивается в клеточный геном. Провирус несет дополнительную генетическую информацию, поэтому клетка приобретает новые свойства. Вирусы, способные осуществить такой тип взаимодействия с клеткой, на­зываются интегративными. К интегративным вирусам относятся некоторые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус иммунодефицита человека, умеренные бактериофаги.

    Кроме обычных вирусов, существуют прионы - белковые инфекционные частицы, не содержащие нуклеиновую кислоту. Они имеют вид фибрилл, размером до 200 нм. Вызывают у человека и у животных медленные инфекции с поражением мозга: болезнь Крейтцфельда-Якоба, куру, скрепи и другие.

    Методы индикации вирусов в исследуемом материале.

    О репродукции вирусов в культурах клеток судят по их цитопатическому действию (ЦПД), которое носит разный характер в зависимости от вида вируса, по бляшкообра- манию на клеточном монослое, покрытом тонким агаровым слоем, гемадсорбции эритроцитов и другим тестам.

    Таким образом, индикация вирусов производится микроскопически по наличию ЦПД, бляшкообразованию на клеточном монослое, гемадсорбции эритроцитов, добавленных к клеточной культуре вируса, а также в реакции гемагглютинации с исследуемым вируссодержащим материалом. Реакцию гемагглютинации вызывают вирусы, содержащие в составе своего капсида или суперкапсида гемагглютинин.

    Ретровирусы - оболочечные, сферические вирусы, которые выходят почкованием через клеточную мембрану хозяина. Они имеют приблизительно 100 нм в диаметре. Геном состоит из двух идентичных линейных односпиральных молекул РНК. Икосаэдральный нуклеокапсид содержит спиральный рибонуклеопротеид и окружен оболочкой состоящей из гликопротеидов и липидов.

    Характерная особенность ретровирусов - присутствие в вирионе необычного фермента - РНК зависимой ДНК полимеразы или обратной транскриптазы (отсюда имяretro, о значающее обратно). В отличие от классической транскрипции генетической информации от ДНК на РНК, фермент обратная транскриптаза готовит ДНК-копию РНК-генома ретровируса - первоначально РНК-ДНК гибрид, а затем его двухспиральную ДНК-форму. Двухспиральная ДНК-форма ретровирусного генома, называемаяпровирусом , и нтегрирует в ДНК инфицированной клетки-хозяина. Именно от провируса транслируются все ретровирусные белки. Заражение онкогенным ретровирусом не ведет к цитолизу или гибели инфицированных клеток, но провирус остается интегрированным в ДНК клетки-хозяина до конца жизни клетки и воспроизводится вместе с клеточным геномом при размножении клеток.

    В то время как все онкогенные РНК-содержащие вирусы принадлежат семейству Retroviridae, н е все ретровирусы онкогенны. СемействоRetroviridae классифицируется на три подсемейства.

    • 1. Oncovirinae включает все онкогенные РНК содержащие вирусы (прежде называемое онкорнавирус).
    • 2. Spumavirinaeсодержит неонкогенные "пенистые вирусы" (spuma = пена) вызывающие бессимптомные инфекции у нескольких видов животных и представляющие собой загрязняющие примеси первичных культур клеток, в которых они вызывают пенистое перерождение.
    • 3. Lentivirinaeвключает как вирусы вызывающие "замедленные инфекции" (lentus= медленно) у животных, так и вирусы человеческих и животных иммунодефицитов.

    Ретровирусы широко распространены; их находят почти у всех позвоночных, включая животных, птиц и рептилий. Основываясь на круге хозяев и типах вызываемых болезней, онкогенные Ретровирусы можно разделить на следующие группы:

    • 1. Вирусы лейкозно-саркоматозного комплекса птиц . Группа антигенно родственных вирусов, которые вызываютAvianлейкозы (вирусы лимфоматоза, миелобластоза и эритробластоза) или саркому у домашних птиц (вирус саркомы Рауса, ВСР).
    • 2. Вирусы мышиных лейкозов. Эта группа состоит из нескольких штаммов вирусов мышиной лейкемии и вирусов саркомы, названных по имени исследователи впервые описавших их (например Гросс, Френд, Молони, Раушер).
    • 3. Вирус опухоли молочной железы мышей. Этот вирус имеется в некоторых линиях мышей, у которых часто встречается рак молочной железы. Он известен как "молочный фактор" или "вирус Биттнера". Он размножается в молочной железе и передается от матери потомству через грудное молоко. Мыши могут быть заражены через рот, через подкожную или внутрибрюшинную инъекцию. Рак молочной железы развивается только у мышей восприимчивых линий после латентного периода в 6-12 месяцев.
    • 4. Вирусы лейкозов и сарком других животных. Большое количество вирусов было выделено из лейкозов и сарком различных видов животных - кошек, хомяков, крыс, морских свинок и обезьян.
    • 5. Т-лимфотропные вирусы человека (HTLV). Ретровирусы, названные "человеческие Т-лимфотропные вирусы" были выделены в 1980 из культур клеток от взрослых больных кожной T-клеточной лимфомой (грибковый микоз) и лейкемией (синдром Сезара) в США. Подобные вирусы были выделены от больных Т-клеточной лейкемией в Японии и Карибском бассейне. HTLV1-го типа имеются во всем мире, но распространенность заболеваний ограничена эндемичными областями. Помимо Т-клеточной лейкемии,HTLV-Iтакже связан с тропическим спастическим парапарезом, демиелинирующей болезнью. Вирус в основном инфицирует T4 (CD4) клетки. На инфицированных T-клетках обнаруживается большое количество рецепторов к ИЛ-2. Близко родственныеHTLV-IIтакже связаны с T-клеточными злокачественными новообразованиями. Известно, чтоHTLV-инфекция передается при переливании крови и другими способами введения лейкоцитов.

    Видовая специфичность. Ретровирусы обычно поражают только один вид хозяина, специфика обусловлена главным образом присутствием вирусных рецепторов на поверхности клетки-хозяина. В зависимости от их способности расти в клетках другого вида, ретровирусы делятся на 1) экотропные (размножаются только в клетках естественного хозяина);

    2) амфитропные (размножаются в клетках естественного и чужих видов); и 3) ксенотропные (размножаются только в клетках чужих видов, но не в клетках естественных хозяев).

    Передача вирусов. Возможны два типа передачи ретровирусов. Экзогенные ретровирусы распространяются горизонтально. Большинство онкогенных ретровирусов являются экзогенными. Эндогенные ретровирусы передаются вертикально от родителей потомствупровирусом, интегированным в геном половых клеток. Эндогенный ретровирусный провирус ведет себя как клеточный ген и подчинен регулирующему влиянию клетки-хозяина. Эндогенные ретровирусы обычно "молчащие", не трансформируют клетки и не вызывают какое-либо заболевание. Они могут быть обнаружены либо из-за "активации" после воздействия радиации или химикатов, или методом гибридизации нуклеиновой кислоты.

    Резистентность. Ретровирусы неустойчивы, инактивируются при 56 о С в течение 30 минут, слабыми кислотами, эфиром и формалином. Они устойчивы при - 30 о С

    Морфология. Ретровирусы существуют в виде четырех морфологических типов. Частицы типа А существуют только внутри клеток. Они имеют 60-90 нм в диаметре и содержат кольцевидный нуклеоид, окруженный мембраной. Они могут являться формой предшественника других типов. Типы B, C и D являются внеклеточными. Диаметр В частицы - 100-130nm, с эксцентрическим нуклеоидом и несут поверхностные шипики. Частицы С типа имеют центральный нуклеоид и гладкую поверхностную мембрану. ЧастицыDтипа еще не охарактеризованы. Они имеют эксцентрический нуклеоид и несут короткие поверхностные шипики.

    Большинство ретровирусов - частицы С типа. Вирус рака молочных железы мыши - частица типа B, а вирус рака молочной железы обезьян Мэзон-Пфайзера - частица типа D.

    Антигены. Имеется два типа антигенов - типоспецифические гликопротеидные антигены, расположенные на оболочке, и группо-специфические нуклеопротеидные антигены, расположенные в ядре вириона. Перекрестные реакции между поверхностными антигенами ретровирусов от различных видов хозяев не наблюдаются.

    Геномная структура. Ретровирусы имеют относительно простую геномную структуру.

    Провирус стандартного ретровируса (такого как недефектный вирус лейкоза птиц или мышей) состоит из трех генов, требуемых для вирусной репликации - gag,pol, иenv. Ген gag кодирует белки нуклеокапсида, которые являются группоспецифическими антигенами , ген pol кодирует РНК-зависимую ДНК-полимеразу, ген env кодирует гликопротеиды оболочки. С обоих концов провируса имеется длинный концевой повтор (LTR), непосредственно связывающийся с ДНК клетки-хозяина. LTR-участки обеспечивают контроль регуляции функции генов провируса.

    Некоторые ретровирусы (трансрегулирующие вирусы) типа HTLV или HIV несут четвертый ген tat после env гена. Это - трансактивирующий ген, который регулирует функцию вирусных генов.

    Стандартные онкогенные ретровирусы типа вирусов хронической лейкемии является медленными трансформирующими вирусами, т о есть они имеют низкий онкогенный потенциал и стимулируют злокачественное преобразование вообще только клеток крови после длительного латентного периода. Они не трансформирует культивируемые клетки. Они способны к нормальной репликации. Напротив, острые трансформирующие вирусы - высоко онкогенны и вызывают злокачественное развитие после короткого латентного периода в недели или месяцы. Они могут вызывать различные типы сарком, карцином, лейкозов и также трансформировать клетки в культуре. Однако, наиболее сильные трансформирующие вирусы неспособны нормально реплицироваться, потому что они содержат в своем геноме дополнительный ген, вирусный онкоген (V-onc ген) который заменяет некоторых из генов, существенных для репликации вируса. ТакиеV-onc вирусы могут репродуцироваться только при коинфекции со стандартным помощником ретровируса. Вирус саркомы Рауса, который несет онкогенsrc (произносится "сарк"), наиболее хорошо изученный среди острых трансформирующих вирусов, отличается способностью реплицироваться, то есть он может нормально реплицироваться, потому что обладает полным комплектом gag, pol, и env генов. Большинство острых трансформирующих вирусов дефектны в отношении репликации.

    Взаимодействие вируса с клеткой хозяина - это сложный многоступенчатый процесс, который начинается с адсорбции вирусных частиц на рецепторах клетки хозяина и продолжается после их проникновения внутрь клетки. В результате такого взаимодействия развивается либо продуктивная, либо абортивная, либо интегративная форма клеточной инфекции. При п р.о дуктивной форме происходит размножение, точнее репродукция (лат. reproduce-воспроизводить) вируса, при абортивной - ее нарушение на одном из этапов, при интегративной - интеграция вирусной нуклеиновой кислоты в клеточный геном.

    РЕПРОДУКЦИЯ ВИРУСОВ

    Как отмечалось выше, вирусы являются самореплицирующейся формой, неспособной к бинарному делению, в отличие от микроорганизмов с клеточной организацией. В 50-х годах было установлено, что размножение, или репродукция, вирусов происходит путем репликации их нуклеиновой кислоты и биосинтеза белков с последующей самосборкой вириона. Этот процесс происходит в разных частях клетки - ядре или цитоплазме, вследствие чего получил название дизъюнктивного, т. е. разобщенного размножения.

    Вирусная репродукция представляет собой уникальную форму выражения чужеродной (вирусной) информации в клетках человека и животных, насекомых, растений и бактерий, которая состоит в подчинении клеточных матрично-генетических механизмов вирусной информации.

    1-я стадия - адсорбция - характеризуется прикреплением вириона к клеточным рецепторам, представляющим собой глико-протеины клеточной мембраны, содержащей нейраминовую кислоту. Такие рецепторы имеются у ряда клеток, в частности эритроцитов, на которых адсорбируются1 многие вирусы. Для орто- и парамиксовирусов специфическими рецепторами являются гликолипиды, содержащие сиаловую кислоту (ганглиозиды), для других - белки или липиды клеточной мембраны.

    Рецепторами вирусов являются так называемые «прикрепительные» белки, располагающиеся в составе капсидов простых вирионов и суперкапсидов сложных вирионов. Они могут иметь форму нитей (фибры у аденовирусов) или шипов (глико-протеиновые образования на внешней оболочке орто- и парамиксо-, рабдо-, арено- и буньявирусов).

    Первый этап адсорбции определяется неспецифическими силами межмолекулярного притяжения, второй - специфической структурной гомологией или комплементарностью рецепторов чувствительных клеток и вирусов.

    2-я стадия - проникновение вируса в клетку хозяина происходит путем виропексиса и слияния мембран. Виропексис есть не что иное, как частный случай рецепторного эндоцитоза, который состоит в инвагинации участка плазматической мембраны, где имеются углубления, покрытые рецепторами снаружи, на которых адсорбируется вирус (рис. 5.3). Затем происходит образование вакуоли вокруг вируса, в составе которой он находится в цитоплазме клетки хозяина. Описанный способ проникновения вирусных частиц характерен для аденовирусов, вируса гриппа и др.

    Проникновение вирусной частицы в клетку хозяина может произойти и путем слияния мембран (рис. 5.4). В этом случае вирусная оболочка сливается с плазматической мембраной клетки хозяина, в результате чего внутренние структуры («сердцевина») вириона оказываются в цитоплазме зараженной клетки, а при слиянии с ядерной мембраной - в клеточном ядре.

    3-я стадия - «раздевание» вирионов - заключается в их депротеинизации и освобождении от суперкапсида и капсида, препятствующих репликации вирусной нуклеиновой кислоты. «Раздевание» вириона начинается сразу же после его прикрепления к клеточным рецепторам и продолжается в эндоцитарной вакуоли и ее слиянии с лизосомами при участии протеолитических ферментов, а также в ядерных порах и околоядерном пространстве при слиянии с ядерной мембраной.

    4-я стадия заключается в транскрипции и репликации вирусных геномов. Транскрипция вирусного генома двунитевых ДНК-содержащих вирусов происходит, так же как и клеточного генома, по триаде ДНК->- иРНК->- белок (рис. 5.5, а). Различия касаются только происхождения фермента ДНК-зависимой РНК-полимеразы, необходимой для данного процесса. У вирусов, геном которых транскрибируется в цитоплазме клетки хозяина (например, вирус оспы), имеется собственная вирусспецифическая РНК-полимераза. Вирусы, геномы которых транскрибируются в ядре (папова- и аденовирусы, вирусы герпеса), используют содержащуюся там клеточную РНК-полимеразу II или III.

    1. Вирусы с негативным геномом (минус-нитевые, рис. 5.5, б), к которым относятся орто-, парамиксо- и рабдовирусы (см. табл. 5.1), имеют в своем составе вирусспецифическую РНК-полимеразу или транскриптазу. Они синтезируют «РНК на матрице геномной РНК. Подобный фермент отсутствует в нормальных клетках, но синтезируется клетками, зараженными вирусами.

    Он находится в составе как однонитевых, так и двунитевых РНК-содержащих вирусов.

    2. У вирусов с положительным геномом к которым относятся пикорна-, тогавирусы и др.,функцию иРНК выполняет сам геном, который транслирует содержащуюся в нем информацию на рибосомы клетки хозяина.

    3. Особняком стоит группа РНК-содержащих ретровирусов,в составе которых имеется обратная транскриптаза, или ревертаза. Уникальность этого фермента состоит в его способности переписывать информацию с РНК на ДНК. Этот процесс назывется обратной транскрипцией

    Как отмечалось выше, количество генов в вирусном геноме весьма ограничено. Поэтому для увеличения количества вирусной информации существует своеобразный трансляционный механизм, функционирующий через иРНК, который передает значительно больше информации, чем записано в вирусной нуклеиновой кислоте. Это достигается разными путями, например при транскрипции информации с переписывающихся участков ДНК на «РНК путем сплайсинга (вырезание бессмысленных кодонов и сшивание концов), а также при считывании антикодонами гРНК одной и той же молекулы иРНК с разных нуклеоти-дов. При этом образуются новые триплеты, увеличивающие количество транслируемой информации.

    Регуляция транскрипции осуществляется клеточными и вирусспецифическими механизмами. Она заключается в последовательном считывании информации с так называемых «ранних» и «поздних» генов. В первых закодирована информация для синтеза вирусспецифических ферментов транскрипции и репликации, во вторых - для синтеза капсидных белков.

    Вирусспецифическая информация транслируется на рибосомы клетки хозяина, которые предварительно освобождаются от клеточных белков и собираются в вирусспецифические полисомы г-еплилацпл пируиныл геномов заключается в синтезе молекул ДНК или РНК, которые накапливаются в фондах этих нуклеиновых кислот, использующихся при сборке вирионов.

    Репликация вирусной ДНК происходит на обеих нитях при участии клеточной ДНК-полимеразы. У однонитевых вирусов вначале образуется вторая нить (репликативная форма).

    Репликация вирусных РНК происходит только при участии того же вирусспецифического фермента, который катализирует транскрипцию вирусного генома. У плюс-нитевых вирусов репликация РНК практически не отличается от их транскрипции. У минус-нитевых вирусов репликация отличается от транскрипции длиной образовавшихся дочерних молекул РНК. При репликации они полностью соответствуют по своей протяженности материнской нити, а при транскрипции образуются укороченные молекулы иРНК.

    У ретровирусов репликация, так же как и транскрипция ДНК, происходит в составе клеточного генома при участии клеточной ДНК-полимеразы.

    5-я стадия - сборка вириона - состоит прежде всего в образовании нуклеокапсидов. Поскольку синтез вирусных нуклеиновых кислот и белков в клетке происходит в разных структурах клетки, необходима транспортировка составных частей вириона в одно место сборки. При этом вирусные белки и нуклеиновые кислоты обладают способностью узнавать и самопроизвольно соединяться друг с другом. В основе самосборки простых вирионов лежит способность вирусных полипептидов соединяться в капсомеры, которые, располагаясь вокруг осей симметрии, образуют многогранник. В других случаях полипептиды в виде спирали окружают вирусную нуклеиновую кислоту.

    Многие простые вирионы собираются на репликативных комплексах- мембранах эндоплазматического ретикулума."У сложных вирионов сборка нуклеокапсида начинается на репликативных комплексах, а затем продолжается на плазматической мембране, с наружной стороны которой располагаются суперкапсидные гликопротеиды. Затем гликопротеидные и примыкающие к ним с другой стороны нуклеокапсидные участки выпячиваются через клеточную мембрану, образуя почку, как это имеет место у орто- и парамиксовирусов, рабдовирусов. После отделения почки, содержащей нуклеокапсид и суперкапсидные белки, образуются свободные вирионы. Они либо через клеточную плазматическую мембрану проходят во внеклеточное пространство, либо через мембрану эндоплазматического ретикулума проникают в вакуоль эндоплазматической сети. При этом мембранные липиды обволакивают почку, вытесняя из нее белки. Многие ДНК-содержащие вирусы, например вирус герпеса, собираются в ядре клетки на ее мембране, где образуются нуклеокапсиды. Затем они отпочковываются в перинуклеарное пространство, приобретая внешнюю оболочку. Дальнейшее формирование вириона происходит в мембранах цитоплазматического ретикулума и в аппарате гольджи, куда вирус транспортируется на поверхность клетки.

    6-я стадия - выход вирусных частиц из клетки - происходит двумя путями. Простые вирусы, лишенные суперкапсида, например пикорнавирусы, аденовирусы и др., вызывают деструкцию клетки и попадают во внеклеточное пространство. Другие вирусы, имеющие липопротеидную внешнюю оболочку, выходят из клетки путем почкования, в результате чего в течение длительного времени она сохраняет свою жизнеспособность. Такой путь характерен для вируса гриппа и др.

    Репродукция вирусов

    Для вирусов характерен дизъюнктивный (от disjuncus -- разобщенный) способ репродукции-размножения. Потомство вируса возникает в результате сборки нуклеиновых кислот и белковых субъединиц, которые синтезируются раздельно клеткой хозяина. Проникновение вируса в клетку и воспроизведение себе подобных проходит в несколько фаз: проникновение в клетку хозяина, синтез ферментов, необходимых для репликации вирусных нуклеиновых кислот, синтез вирусных частей, сборка и композиция зрелых вирионов, выход зрелых вирионов из клетки.

    Фаза I -- адсорбция вириона на поверхности клетки.

    Протекает в две стадии: первая -- неспепифическая, когда вирус удерживается на поверхности клетки благодаря возникновению противоположных зарядов между отдельными участками мембраны клеток и вируса. Эта фаза взаимодействия вируса с клеткой обратима, на нее оказывают влияние такие факторы, как рН и солевой состав среды.

    Вторая стадия -- специфическая, когда взаимодействуют специфические рецепторы вируса и рецепторы клетки, комплементарные друг другу. По химической природе рецепторы клетки могут быть мукопротеидашг (или мукополисахаридами) и липопротеидами. Разные вирусы фиксируются на разных рецепторах: вирусы гриппа, парагриппа, аденовирусы -- на мукопротеидах, а вирусы клещевого энцефалита, полиомиелита -- на липопротеидах.

    Фаза II -- проникновение вируса в клетку. Электроноскопические наблюдения за процессом проникновения вирусов в чувствительные к ним клетки показали, что оно осуществляется посредством механизма, напоминающего пиноцитоз, или, как чаще называют, виропексис. В месте адсорбции вируса клеточная стенка втягивается внутрь клетки, образуется вакуоль, в которой оказывается вирион. Параллельно клеточные ферменты (липазы и протеазы) вызывают депротеинизацию вириона -- растворение белковой оболочки и освобождение нуклеиновой кислоты.

    Фаза III -- скрытый период (период эклипса -- исчезновения). В этот период в клетке невозможно определить наличие инфекционного вируса ни химическими, ни электронно-микроскопическими, ни серологическими методами. О сущности этого явления и его механизмов пока известно мало. Предполагается, что в скрытой фазе нуклеиновая кислота вируса проникает в хромосомы клетки и вступает с ними в сложные генетические взаимоотношения.

    Фаза IV -- синтез компонентов вириона. В этой фазе вирус и клетка представляют единое целое, вирусная нуклеиновая кислота выполняет генетическую функцию, индуцирует образование ранних белков и изменяет Функцию рибосом. Ранние белки подразделяются на:

    а) белки-ингибиторы (репрессоры), подавляющие метаболизм клеток

    б) белки-ферменты (полимеразы), обеспечивающие синтез вирусных нуклеиновых кислот.

    Синтез нуклеиновых кислот и белков протекает неодновременно и в разных структурных частях клетки. У вирусов, содержащих ДНК или РНК, эти процессы имеют некоторые различия и особенности.

    Фаза V -- формирование зрелых вирионов. Процесс «сборки» вируса осуществляется в результате соединения компонентов вирусной частицы. У сложных вирусов в этом процессе принимают участие клеточные структуры и происходит включение в вирусную частицу липидпых, углеводных, белковых компонентов клетки хозяина.

    Процесс формирования вирионов начинается спустя определенное время после того, как начал осуществляться синтез составляющих их компонентов. Продолжительность этого периода довольно вариабельна и предопределяется природой вируса -- для РНК-содержащих обычно короче, чем для ДНК-вирусов. Например, продукция полных вирусных частиц осповакцины начинается приблизительно спустя 5--6 ч после инфицирования клеток и продолжается в течение последующих 7--8 ч, т. е. после того как синтез вирусной ДНК уже завершен.

    Между нуклеиновой кислотой и соответствующим белковыми субъединицами образуются очень прочные связи, о чем свидетельствуют трудности отделения белка от вирусной нуклеиновой кислоты. Большую прочность вирусной частице придают входящие в ее состав углеводы и особенно липиды.

    Формирование вирионов, так же как и синтез компонентов вируса, происходит в разных местах клетки, при участии различных клеточных структур. После завершения процесса формирования образуется зрелая дочерняя вирусная частица, обладающая всеми свойств вами родительского вириона. Но иногда наблюдается образование так называемых неполных вирусов, которые состоят или только из нуклеиновой кислоты, или из белка, или из вирусных частиц, формирование которых остановилось в какой-то промежуточной стадии.

    Фаза VI -- выход зрелых вирионов из клетки. Существуют два основных механизма выхода зрелых вирионов из клетки: 1) выход вириона с помощью почкования. В этом случае наружная оболочка вириона происходит из клеточной мембраны, она содержит как материал клетки хозяина, так и вирусный материал; 2) выход зрелых вирионов из клетки через бреши в мембране. Эти вирусы не имеют наружной оболочки. При таком механизме выхода вирусов клетка, как правило, погибает и в среде появляется большое количество вирусных частиц.

    Особенности репродукции вирусов

    1. Периоды осуществления продуктивной вирусной инфекции

    2. Репликация вируса

    3. Трансляция

    1. Продуктивная вирусная инфекция осуществляется в 3 периода:

    · начальный период включает стадии адсорбции вируса на клетке, проникновения в клетку, дезинтеграции (депротеинизации) или "раздевания" вируса. Вирусная нуклеиновая кислота была доставлена в соответствующие клеточные структуры и под действием лизосомальных ферментов клетки освобождается от защитных белковых оболочек. В итоге формируется уникальная биологическая структура: инфицированная клетка содержит 2 генома (собственный и вирусный) и 1 синтетический аппарат (клеточный);

    · после этого начинается вторая группа процессов репродукции вируса, включающая средний и заключительный периоды, во время которых происходят репрессия клеточного и экспрессия вирусного генома. Репрессию клеточного генома обеспечивают низкомолекулярные регуляторные белки типа гистонов, синтезируемые в любой клетке. При вирусной инфекции этот процесс усиливается, теперь клетка представляет собой структуру, в которой генетический аппарат представлен вирусным геномом, а синтетический аппарат -- синтетическими системами клетки.

    2. Дальнейшее течение событий в клетке направлено на репликацию вирусной нуклеиновой кислоты (синтез генетического материала для новых вирионов) и реализацию содержащейся в ней генетической информации (синтез белковых компонентов для новых вирионов). У ДНК-содержащих вирусов, как в прокариотических, так и в эукариотических клетках, репликация вирусной ДНК происходит при участии клеточной ДНК-зависимой ДНК-полимеразы. При этом у однонитевых ДНК-содержащих вирусов сначала образуется комплементарная нить -- так называемая репликативная форма, которая служит матрицей для дочерних молекул ДНК.

    3. Реализация генетической информации вируса, содержащейся в ДНК, происходит следующим образом: при участии ДНК-зависимой РНК-полимеразы синтезируются и-РНК, которые поступают на рибосомы клетки, где и синтезируются вирусспецифические белки. У двунитевых ДНК-содержащих вирусов, геном которых транскрибируется в цитоплазме клетки хозяина, это собственный геномный белок. Вирусы, геномы которых транскрибируются в ядре клетки, используют содержащуюся там клеточную ДНК-зависимую РНК-полимеразу.

    У РНК-содержащих вирусов процессы репликации их генома, транскрипции и трансляции генетической информации осуществляются иными путями. Репликация вирусных РНК, как минус-, так и плюс-нитей, осуществляется через репликативную форму РНК (комплементарную исходной), синтез которой обеспечивает РНК-зависимая РНК-полимераза -- это геномный белок, который есть у всех РНК-содержащих вирусов. Репликативная форма РНК минус-нитевых вирусов (плюс-нить) служит не только матрицей для синтеза дочерних молекул вирусной РНК (минус-нитей), но и выполняет функции и-РНК, т. е. идет на рибосомы и обеспечивает синтез вирусных белков (трансляцию).

    У плюс-нитевых РНК-содержащих вирусов функцию трансляции выполняют ее копии, синтез которых осуществляется через репликативную форму (минус-нить) при участии вирусных РНК-зависимых РНК-полимераз.

    У некоторых РНК-содержащих вирусов (реовирусы) имеется совершенно уникальный механизм транскрипции. Он обеспечивается специфическим вирусным ферментом -- ревертазой (обратной транскриптазой) и называется обратной транскрипцией. Суть ее состоит в том, что вначале на матрице вирусной РНК при участии обратной транскрипции образуется транскрипт, представляющий собой одну нить ДНК. На нем с помощью клеточной ДНК-зависимой ДНК-полимеразы синтезируется,вторая нить и формируется двунитевой ДНК-транскрипт. С него обычным путем через образование и-РНК происходит реализация информации вирусного генома.

    Результатом описанных процессов репликации, транскрипции и трансляции является образование дочерних молекул вирусной нуклеиновой кислоты и вирусных белков, закодированных в геноме вируса.

    После этого наступает третий, заключительный период взаимодействия вируса и клетки. Из структурных компонентов (нуклеиновых кислот и белков) на мембранах цитоплазматического ретикулума клетки собираются новые вирионы. Клетка, геном которой был репрессирован (подавлен), обычно гибнет. Вновь сформировавшиеся вирионы пассивно (в результате гибели клетки) или активно (путем почкования) покидают клетку и оказываются в окружающей ее среде.

    Таким образом, синтез вирусных нуклеиновых кислот и белков и сборка новых вирионов происходят в определенной последовательности (разобщены во времени) и в разных структурах клетки (разобщен в пространстве), в связи с чем способ репродукции вирусов и был назван дизъюнктивным (разобщенным). При абортивной вирусной инфекции процесс взаимодействия вируса с клеткой по тем или иным причинам прерывается до того, как произошло подавление клеточного генома. Очевидно, что в этом случае генетическая информация вируса реализована не будет и репродукции вируса не происходит, а клетка сохраняет свои функции неизменными. вирион клетка вирус

    При латентной вирусной инфекции в клетке одновременно функционируют оба генома, а при вирусиндуцированных трансформациях вирусный геном становится частью клеточного, функционирует и наследуется вместе с ним.

    Список литературы

    1. В. А. Сергеев и др., «Ветеринарная вирусология». - Москва, 2002.

    2. Вирусология. Под редакцией Филдса Б., Найта Д., тт. 1-3, М., 1989.

    3. Госманов Р.Г., Колычев Н.М. Ветеринарная вирусология. М.: КолосС. - 2003.

    4. Белоусова Р.В., Преображенская Э.А., Третьякова И.В. Ветеринарная вирусология: Учебник для вузов (под ред. Белоусовой Р.В.). - М.: КолосС. - 2007