• Взаимодействие вируса с клеткой. Репродукция (размножение) вирусов. Фазы репродукции вируса Процесс образования вириона состоит из следующих этапов

    Взаимодействие вирусов с клетками хозяев и репродукция вирусов.

    Вирусы проходят в клетке сложный цикл развития. Морфогенез вирусов представляет собой основной этап этого развития и состоит из формообразовательных процессов приводящих к образованию вириона как заключению формы развития вируса. Онтогенез и репродукция развития вируса регулируется геномом.

    В 50-х годах установлено, что размножение вируса происходит путем репродукции, т.е. воспроизведение нуклеиновых и белков с последующей сборкой вириона. Эти процессы происходят в разных частях клетки, например в ядре и цитоплазме (дизъюнктивный способ репродукции). Вирусная репродукция представляет собой уникальную форму, выражения чужеродной инфекции в клетках человека, животных, насекомых и бактерий.

    Морфогенез регулируется с помощью морфогенетических генов. Существует прямопропорциональная зависимость между сложностью ультраструктуры вириона и его морфогенеза. Чем сложнее организация вириона, тем больший путь развития проходит вирус. Весь этот процесс осуществляется с помощью специальных ферментов. Т.к. вирусы не имеют собственного метаболизма то нуждается в ферментах. Однако у вирусов обнаружено свыше 10 ферментов, разных по происхождению и функциональному значению.

    По происхождению: вирионные, вирус-индуцированные, клеточные, модифицированные вирусами. Первые входят в состав многих ДНК и РНК содержащих вирусов. ДНК-зависимая РНК-полимераза, протеинкиназа, АТФ-аза, рибонуклеаза, РНК-зависимая РНК-полимераза, экзонуклеаза и другие.

    К вирионным формам относятся: гемоглютиннин и нейраминидаза, лизоцим.

    Вирус-индуцирующие – это ферменты, структура которых закодирована в геноме, а синтез происходит на рибосоме хозяина – ранние вирионные белки.

    Клеточные – включают ферменты клетки хозяина, не являются вирусоспецифическими, однако при взаимодействии с вирусами активность может модифицироваться.

    По функциональному значению ферменты делятся на 2 группы:

    Участвующие в репликации и транскрипции;

    Нейраминидаза, лизоцим и АТФ-аза, которые способствуют проникновению вируса в клетку и выходу зрелых вирионов из клетки.

    Репродукция вирионов характеризуется сменой стадий:

    Транскрипция - переписывание ДНК на РНК – осуществляется с помощью фермента РНК-полимеразы, продуктами является биосинтез и-РНК. ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. РНК-содержащие вирусы ф-ю и-РНК выолняет сам геном. У некоторых РНК-содержащих вирусов передача генетической информации осуществляется по формуле РНК-РНК-белок. К этой группе вирусов относятся – пикорновирусы, корновирусы.

    Синтез белка происходит в результате трансляции в РНК.

    Согласно современным данным различают 3 основных периода в цикле репродукции:

    1.Начальный (подготовительный)2.Средний (латентный)3.Конечный (заключительный)

    Каждый из периодов включает ряд этапов:

    Первый этап

    1.Адсорбция вируса на клетке.

    2.Проникновение в клетку.

    3.Депротеинизация (высвобождение нуклеиновой кислоты).

    Второй этап

    1.Биосинтез ранних вирусных белков

    2.Биосинтез вирусных компонентов

    Третий этап

    1.Формирование зрелых вирионов

    2.Выход зрелых вирионов из клетки.

    1.Адсорбция – физико-химический процесс, является следствием разности зарядов. Эта стадия обратима на ее исход оказывает влияние кислотность среды, температура и другие процессы.

    Основную роль в адсорбции вируса играет взаимодействие вируса с комплементарными рецепторами клетки. По химической природе они относятся к мукополипротейдам. На степень скорости адсорбции влияют гормоны действующие на рецепторы. Адсорбция вируса может и не наступить, что связано с различной чувствительностью клеток к вирусам. Чувствительность, в свою очередь определяется:

    Наличием в клеточной оболочке и цитоплазме ферментов, способных разрушить оболочку и освободить нуклеиновую кислоту.

    Наличием ферментов, материала, обеспечивающих синтез вирусных компонентов.

    2.Проникновение вируса в клетку:

    Вирус проникает 3 путями – путем непосредственного впрыскивания (характерно для фагов); путем разрушения клеточной оболочки (путь сплавления – характерно для вирусов растений); путем пиноцитоза (характерен для вирусов позвоночных).

    3.Репродукция ДНК-содержащих вирусов.

    Под воздействием ферментов у ДНК-содержащих вирусов осуществляется синтез и-РНК, и-РНК посылается на рибосомы чувствительной клетки. На рибосомах клетки начинается синтез ранних вирионных белков (наделены свойствами – ферментами, блокируют клеточный метаболизм).

    Ранние вирионные белки дают начало образованию ранних вирионных кислот.

    По мере накопления ранних вирионных белков они блокируют себя и процесс перестраивается на рибосомном аппарате. Идет сборка вирионов и вновь сформировавшиеся вирионы покидают клетку-мать.

    4.Выход вириона из клетки:

    1.Просачиваются через оболочку клетки и одеваются суперкапсидом, в состав в состав которого включаются компоненты клетки: липиды, полисахариды. В данном случае клетка сохраняет свою жизнедеятельность затем погибает. В некоторых случаях в процессе репродукции процессы могут происходить в течение нескольких лет, но жизнедеятельность сохраняется. При этом способе зрелые вирионы из клетки выходят постепенно и относительно длительно. Этот путь характерен для сложных вирусов, имеющих двойную оболочку.

    Аномальные вирусы.

    В процессе репродукции образуются различные аномальные вирусы. Усилиями академика Жданова в последние годы были открыты псевдовирусы, состоящие из РНК-вируса и белков клетки, образующих капсид. Они обладают инфекционными свойствами, но в силу особенности капсида не поддаются действию антител, образующих ответ на этот вирус.

    Явление образования таких вирусов объясняется длительным вирусоносительством при наличии в организме специфических АТ.

    Причинами формирования таких вирионов являются:

    1.Высокая множественность, в результате чего клетка не в состоянии обеспечить все потомство энергетическим материалом.

    2.Действие интерферона – он влияет на синтез ДНК и РНК вирусов.


    Похожая информация.


    Оглавление темы "Вирусология. Репродукция вирусов. Генетика вирусов.":
    1. Вирусология. История вирусологии. Шамберлан. Ру. Пастер. Ивановский.
    2. Репродукция вирусов. Репродукция +РНК-вирусов. Пикорнавирусы. Репродукция пикорнавирусов.
    3. Тогавирусы. Репродукция тогавирусов. Ретровирусы. Репродукция ретровирусов.

    5. Репродукция ДНК-вирусов. Репликативный цикл ДНК-содержащих вирусов. Репродукция паповавирусов. Репродукция аденовирусов.
    6. Репродукция герпесвирусов. Репликативный цикл герпесвирусов. Поксвирусы. Репродукция поксвирусов.
    7. Репродукция вируса гепатита В. Репликативный цикл вируса гепатита В.
    8. Генетика вирусов. Характеристика вирусных популяций. Генофонд вирусных популяций.
    9. Мутации вирусов. Спонтанные мутации вирусов. Индуцированные мутации вирусов. Проявление мутаций вирусов в фенотипе.
    10. Генетические взаимодействия между вирусами. Рекомбинации и перераспределение генов вирусами. Обмен фрагментами генома вирусами. Антигенный шифт.

    -РНК-вирусы проникают в клетку путём слияния (парамиксовирусы) либо виропексиса (рабдо- и ортомиксовирусы). Для эффективной репродукции вирусная -РНК должна быть преобразована в +РНК - аналог клеточной мРНК (рис. 5-3).

    Рис. 5-3. Репродуктивный цикл -РНК-содержащих вирусов . Проникновение вируса в клетку происходит после его адсорбции и слияния с клеточной оболочкой (1). После высвобождения вирусной -РНК происходит синтез +РНК на матрице -РНК, катализируемый РНК-зависимой РНК-пол имеразой, входящей в состав вириона (2), что приводит к образованию полных и коротких нитей. Короткие +РНК-нити участвуют в синтезе ферментов и белков для дочерних популяций (3). Среди последних особую значимость имеют белок М (4) и гликопротеины оболочки, встраивающиеся в клеточную стенку на этапах, предшествующих отпочковыванию. Полная цепь +РНК служит матрицей для синтеза молекул -РНК дочерних популяций (5). Вирионы дочерних популяций собираются на участках клеточной мембраны, модифицированных белком М (6), и высвобождаются почкованием, захватывая её фрагмент, служащий в дальнейшем суперкапсидом (7).

    -РНК-вирусы. Репродукция -РНК-вирусов

    Ранняя стадия репродукции . После высвобождения генома вирусная транскриптаза (РНК зависимая РНК-полимераза) запускает синтез +РНК. При этом «шаблоном» для вирусной транскриптазы служит вирусный рибонуклеопротеин (то есть РНК и внутренние белки) В результате образуются полные и короткие молекулы-копии +РНК.

    Поздняя стадия репродукции . Полные плюс-нити служат матрицами для синтеза молекул -РНК, составляющих геномы дочерней популяции. Короткие плюс-нити участвуют в синтезе ферментов и белков. Вирусные белки (гемагглютинин и нейраминидаза) взаимодействуют участками клеточной мембраны. Там же сорбируются и вирусные М-белки (белки матрикса) Они проявляют выраженную гидрофобность за счёт содержания до 75% нейтральных аминокислот. Это свойство даёт им способность взаимодействовать с белками и липидами клеточные мембраны и быть посредником сборки вирусных частиц. С одной стороны, М-белок распознает участки включения гликопротеинов вируса в мембрану, с другой - его специфически распознает нуклеокапсид и связывается с ним. Сборка дочерних популяций завершается после присоединения нуклеокапсида к клеточной мембране. Их высвобождение происходит путём почкования через модифицированные участки мембраны. Отпочковывающиеся вирусные частицы захватывают её фрагменты, служащие в дальнейшем суперкапсидами.


    Репродукция вирусов с двухнитевыми РНК

    Двухнитевые РНК-вирусы представлены семейством Reoviridae (рео- и ротавирусы). Они не имеют суперкапсида и организованы по типу кубической симметрии. С вирусной РНК связана РНК-зависимая РНК-полимераза. Вирусы отличает удлинённый репродуктивный цикл и тенденция к накоплению продуктов вирусспецифического синтеза внутри клеток. После высвобождения генома в цитоплазме клеток РНК-полимераза осуществляет синтез молекул мРНК (+РНК на одной нити -РНК. В результате образуется до 11 функциональных молекул мРНК, соответствуюших по размерам 11 сегментам одной нити -РНК. Молекулы транслируются в 11 первичных полипептидных продуктов. Их последующее расщепление приводит к образованию в заражённых клетках до 16 вторичных полипептидов. Семь первичных и два вторичных полипептида входят в состав вирусных частиц, остальные первичные и вторичные полипептиды выполняют каталитические и регуляторные функции. Параллельно, синтезированная в ходе трансляции вирусная РНК-полимераза запускает синтез минус-нитей на матрице +РНК с последующим их соединением в двухнитевую молекулу РНК. Выход образовавшихся вирионов сопровождается гибелью клетки.

    Репродукция вирусов

    Для вирусов характерен дизъюнктивный (от disjuncus -- разобщенный) способ репродукции-размножения. Потомство вируса возникает в результате сборки нуклеиновых кислот и белковых субъединиц, которые синтезируются раздельно клеткой хозяина. Проникновение вируса в клетку и воспроизведение себе подобных проходит в несколько фаз: проникновение в клетку хозяина, синтез ферментов, необходимых для репликации вирусных нуклеиновых кислот, синтез вирусных частей, сборка и композиция зрелых вирионов, выход зрелых вирионов из клетки.

    Фаза I -- адсорбция вириона на поверхности клетки.

    Протекает в две стадии: первая -- неспепифическая, когда вирус удерживается на поверхности клетки благодаря возникновению противоположных зарядов между отдельными участками мембраны клеток и вируса. Эта фаза взаимодействия вируса с клеткой обратима, на нее оказывают влияние такие факторы, как рН и солевой состав среды.

    Вторая стадия -- специфическая, когда взаимодействуют специфические рецепторы вируса и рецепторы клетки, комплементарные друг другу. По химической природе рецепторы клетки могут быть мукопротеидашг (или мукополисахаридами) и липопротеидами. Разные вирусы фиксируются на разных рецепторах: вирусы гриппа, парагриппа, аденовирусы -- на мукопротеидах, а вирусы клещевого энцефалита, полиомиелита -- на липопротеидах.

    Фаза II -- проникновение вируса в клетку. Электроноскопические наблюдения за процессом проникновения вирусов в чувствительные к ним клетки показали, что оно осуществляется посредством механизма, напоминающего пиноцитоз, или, как чаще называют, виропексис. В месте адсорбции вируса клеточная стенка втягивается внутрь клетки, образуется вакуоль, в которой оказывается вирион. Параллельно клеточные ферменты (липазы и протеазы) вызывают депротеинизацию вириона -- растворение белковой оболочки и освобождение нуклеиновой кислоты.

    Фаза III -- скрытый период (период эклипса -- исчезновения). В этот период в клетке невозможно определить наличие инфекционного вируса ни химическими, ни электронно-микроскопическими, ни серологическими методами. О сущности этого явления и его механизмов пока известно мало. Предполагается, что в скрытой фазе нуклеиновая кислота вируса проникает в хромосомы клетки и вступает с ними в сложные генетические взаимоотношения.

    Фаза IV -- синтез компонентов вириона. В этой фазе вирус и клетка представляют единое целое, вирусная нуклеиновая кислота выполняет генетическую функцию, индуцирует образование ранних белков и изменяет Функцию рибосом. Ранние белки подразделяются на:

    а) белки-ингибиторы (репрессоры), подавляющие метаболизм клеток

    б) белки-ферменты (полимеразы), обеспечивающие синтез вирусных нуклеиновых кислот.

    Синтез нуклеиновых кислот и белков протекает неодновременно и в разных структурных частях клетки. У вирусов, содержащих ДНК или РНК, эти процессы имеют некоторые различия и особенности.

    Фаза V -- формирование зрелых вирионов. Процесс «сборки» вируса осуществляется в результате соединения компонентов вирусной частицы. У сложных вирусов в этом процессе принимают участие клеточные структуры и происходит включение в вирусную частицу липидпых, углеводных, белковых компонентов клетки хозяина.

    Процесс формирования вирионов начинается спустя определенное время после того, как начал осуществляться синтез составляющих их компонентов. Продолжительность этого периода довольно вариабельна и предопределяется природой вируса -- для РНК-содержащих обычно короче, чем для ДНК-вирусов. Например, продукция полных вирусных частиц осповакцины начинается приблизительно спустя 5--6 ч после инфицирования клеток и продолжается в течение последующих 7--8 ч, т. е. после того как синтез вирусной ДНК уже завершен.

    Между нуклеиновой кислотой и соответствующим белковыми субъединицами образуются очень прочные связи, о чем свидетельствуют трудности отделения белка от вирусной нуклеиновой кислоты. Большую прочность вирусной частице придают входящие в ее состав углеводы и особенно липиды.

    Формирование вирионов, так же как и синтез компонентов вируса, происходит в разных местах клетки, при участии различных клеточных структур. После завершения процесса формирования образуется зрелая дочерняя вирусная частица, обладающая всеми свойств вами родительского вириона. Но иногда наблюдается образование так называемых неполных вирусов, которые состоят или только из нуклеиновой кислоты, или из белка, или из вирусных частиц, формирование которых остановилось в какой-то промежуточной стадии.

    Фаза VI -- выход зрелых вирионов из клетки. Существуют два основных механизма выхода зрелых вирионов из клетки: 1) выход вириона с помощью почкования. В этом случае наружная оболочка вириона происходит из клеточной мембраны, она содержит как материал клетки хозяина, так и вирусный материал; 2) выход зрелых вирионов из клетки через бреши в мембране. Эти вирусы не имеют наружной оболочки. При таком механизме выхода вирусов клетка, как правило, погибает и в среде появляется большое количество вирусных частиц.

    Особенности репродукции вирусов

    1. Периоды осуществления продуктивной вирусной инфекции

    2. Репликация вируса

    3. Трансляция

    1. Продуктивная вирусная инфекция осуществляется в 3 периода:

    · начальный период включает стадии адсорбции вируса на клетке, проникновения в клетку, дезинтеграции (депротеинизации) или "раздевания" вируса. Вирусная нуклеиновая кислота была доставлена в соответствующие клеточные структуры и под действием лизосомальных ферментов клетки освобождается от защитных белковых оболочек. В итоге формируется уникальная биологическая структура: инфицированная клетка содержит 2 генома (собственный и вирусный) и 1 синтетический аппарат (клеточный);

    · после этого начинается вторая группа процессов репродукции вируса, включающая средний и заключительный периоды, во время которых происходят репрессия клеточного и экспрессия вирусного генома. Репрессию клеточного генома обеспечивают низкомолекулярные регуляторные белки типа гистонов, синтезируемые в любой клетке. При вирусной инфекции этот процесс усиливается, теперь клетка представляет собой структуру, в которой генетический аппарат представлен вирусным геномом, а синтетический аппарат -- синтетическими системами клетки.

    2. Дальнейшее течение событий в клетке направлено на репликацию вирусной нуклеиновой кислоты (синтез генетического материала для новых вирионов) и реализацию содержащейся в ней генетической информации (синтез белковых компонентов для новых вирионов). У ДНК-содержащих вирусов, как в прокариотических, так и в эукариотических клетках, репликация вирусной ДНК происходит при участии клеточной ДНК-зависимой ДНК-полимеразы. При этом у однонитевых ДНК-содержащих вирусов сначала образуется комплементарная нить -- так называемая репликативная форма, которая служит матрицей для дочерних молекул ДНК.

    3. Реализация генетической информации вируса, содержащейся в ДНК, происходит следующим образом: при участии ДНК-зависимой РНК-полимеразы синтезируются и-РНК, которые поступают на рибосомы клетки, где и синтезируются вирусспецифические белки. У двунитевых ДНК-содержащих вирусов, геном которых транскрибируется в цитоплазме клетки хозяина, это собственный геномный белок. Вирусы, геномы которых транскрибируются в ядре клетки, используют содержащуюся там клеточную ДНК-зависимую РНК-полимеразу.

    У РНК-содержащих вирусов процессы репликации их генома, транскрипции и трансляции генетической информации осуществляются иными путями. Репликация вирусных РНК, как минус-, так и плюс-нитей, осуществляется через репликативную форму РНК (комплементарную исходной), синтез которой обеспечивает РНК-зависимая РНК-полимераза -- это геномный белок, который есть у всех РНК-содержащих вирусов. Репликативная форма РНК минус-нитевых вирусов (плюс-нить) служит не только матрицей для синтеза дочерних молекул вирусной РНК (минус-нитей), но и выполняет функции и-РНК, т. е. идет на рибосомы и обеспечивает синтез вирусных белков (трансляцию).

    У плюс-нитевых РНК-содержащих вирусов функцию трансляции выполняют ее копии, синтез которых осуществляется через репликативную форму (минус-нить) при участии вирусных РНК-зависимых РНК-полимераз.

    У некоторых РНК-содержащих вирусов (реовирусы) имеется совершенно уникальный механизм транскрипции. Он обеспечивается специфическим вирусным ферментом -- ревертазой (обратной транскриптазой) и называется обратной транскрипцией. Суть ее состоит в том, что вначале на матрице вирусной РНК при участии обратной транскрипции образуется транскрипт, представляющий собой одну нить ДНК. На нем с помощью клеточной ДНК-зависимой ДНК-полимеразы синтезируется,вторая нить и формируется двунитевой ДНК-транскрипт. С него обычным путем через образование и-РНК происходит реализация информации вирусного генома.

    Результатом описанных процессов репликации, транскрипции и трансляции является образование дочерних молекул вирусной нуклеиновой кислоты и вирусных белков, закодированных в геноме вируса.

    После этого наступает третий, заключительный период взаимодействия вируса и клетки. Из структурных компонентов (нуклеиновых кислот и белков) на мембранах цитоплазматического ретикулума клетки собираются новые вирионы. Клетка, геном которой был репрессирован (подавлен), обычно гибнет. Вновь сформировавшиеся вирионы пассивно (в результате гибели клетки) или активно (путем почкования) покидают клетку и оказываются в окружающей ее среде.

    Таким образом, синтез вирусных нуклеиновых кислот и белков и сборка новых вирионов происходят в определенной последовательности (разобщены во времени) и в разных структурах клетки (разобщен в пространстве), в связи с чем способ репродукции вирусов и был назван дизъюнктивным (разобщенным). При абортивной вирусной инфекции процесс взаимодействия вируса с клеткой по тем или иным причинам прерывается до того, как произошло подавление клеточного генома. Очевидно, что в этом случае генетическая информация вируса реализована не будет и репродукции вируса не происходит, а клетка сохраняет свои функции неизменными. вирион клетка вирус

    При латентной вирусной инфекции в клетке одновременно функционируют оба генома, а при вирусиндуцированных трансформациях вирусный геном становится частью клеточного, функционирует и наследуется вместе с ним.

    Список литературы

    1. В. А. Сергеев и др., «Ветеринарная вирусология». - Москва, 2002.

    2. Вирусология. Под редакцией Филдса Б., Найта Д., тт. 1-3, М., 1989.

    3. Госманов Р.Г., Колычев Н.М. Ветеринарная вирусология. М.: КолосС. - 2003.

    4. Белоусова Р.В., Преображенская Э.А., Третьякова И.В. Ветеринарная вирусология: Учебник для вузов (под ред. Белоусовой Р.В.). - М.: КолосС. - 2007


    1. Адсорбция - процесс прикрепления вирусных частиц к поверхности клетки.
    2. Инъекция - проникновение вирусной частицы в клетку и высвобождение вирусной НК из белкового капсида (у бактериофагов - введение в клетку НК).
    3. Репликация молекул вирусной НК - происходит за счет нуклеотидов в клетке.
    4. Синтез вирусных белков (белков капсида и ферментов) - происходит на рибосомах клетки.
    5. Сборка вирусных частиц - осуществляется из синтезированных пораженной клеткой вирусных НК и вирусных белков.
    6. Выход вирусных частиц из пораженной клетки. У бактерий часто сопровождается лизисом (разрушением) клетки, у эукариот происходит путем выпячивания оболочки клетки и "выталкивания" вирусных частиц в окружающую среду. В целом есть 3 способа: а)литический (все вирусы выходят во внешнюю среду, клетка погибает), б)персистентный (постепенный выход), в)латентный (в течение некоторого времени клетки не обнаруживают вирус).

    1. Общее представление о репродукции вирусов.

    2. Типы взаимодействия вирусов с клеткой.

    3. Взаимодействие по типу острой инфекции.

    4. Цитоцидная инфекция и гибель клетки.

    5. Реакция клетки на вирусную инфекцию.

    В жизненном цикле вирусов происходит копирование нуклеиновой кислоты с последующим синтезом вирусных белков и самоорганизацией компонентов в зрелую вирусную частицу и выходом из зараженной клетки. Этот процесс называется репродукция.

    После проникновения вируса в клетку-хозяина и высвобождения нуклеиновой кислоты от вирионных оболочек (инфицирования клетки) геном вируса реализует свой патогенный потенциал, в результате чего на молекуле вирусной нуклеиновой кислоты синтезируется и-РНК, которая регулирует синтез вирусоспецифического белка. В последующем происходит репликация вирусной нуклеиновой кислоты (синтез большого числа копий нуклеиновой кислоты), которая одевается в капсид из синтезированных ранее вирусоспецифических белков с формированием зрелых вирионов.

    Синтез и-РНК (трансляция) и копий нуклеиновой кислоты (репликация) осуществляется с помощью ферментов, так называемых полимераз (репликаз), которые могут быть либо вирусоспецифическим (кодируемыми вирусным геномом и синтезируемыми в процессе репродукции), либо клеточными (входящим в состав клетки и используемыми вирусами для собственной репродукции).

    При репродукции вирусов сохраняются следующие закономерности:

    1. Источником мономеров для нуклеиновых кислот служат нуклеотиды клеток (дезоксирибонуклеотидфосфаты и рибонуклеотидфосфаты).

    2. Источником мономеров для белков служат аминокислоты

    3. Синтез белков вирусов происходит на рибосомах клетки-хозяина и не зависит от синтеза нуклеиновой кислоты вируса.

    4. Источником энергии для синтеза служат АТФ клетки.

    Репродукция вирусов происходит в несколько этапов:

    I. События, ведущие к адсорбции, проникновению вируса в клетку, освобождению вирусного генома и модификации его таким образом, что он становиться способным вызывать развитие инфекции. Этот этап называется фазой инфицирования . Он включает в себя:

    1. Адсорбция вируса на клетке.

    2. Проникновение вирус внутрь клетки.

    3. Депротенизация (раздевание вируса).

    II. Этап репродукции, в котором происходит экспрессия вирусного генома . Он включает в себя:

    1. Транскрипция.

    2. Трансляция.

    3. Репликация генома.

    4. Сборка компонентов вириона.

    5. Выход вируса из клетки.

    При взаимодействии вируса с клеткой развивается инфекция и формы этого взаимодействия могут быть различными.



    Различают две формы взаимодействия вируса с клеткой (в зависимости от длительности пребывания в клетке и стратегии генома):

    I. Автономный тип взаимодействия.

    При этом вирусный геном функционирует автономно от генома клетки. Вирусы, автономно размножающиеся относят к вирулентным .

    На уровне клетки этот тип взаимодействия может протекать в виде:

    1. продуктивной инфекции – при этом происходит образование нового поколения вирусов.

    2. абортивной инфекции – при этом вирусной генерации не образуются по причине наличия:

    Дефектного вируса;

    Резистентной клетки;

    Вирулентного вируса в низкой дозе.

    В зависимости от судьбы зараженной клетки также выделяют также:

    3. литическую инфекцию – при этом происходит гибель клетки и образовавшаяся в процессе репродукции генерация вирусов покидает клетку.

    4. нелитическую инфекцию. В этом случае гибели клетки не происходит, и образования новой генерации вирусов также не наблюдается (абортивная инфекция) или образуется ограниченное число вирионов, покидающих клетку и не вызывающих ее гибели (ограниченная инфекция).

    На уровне организма автономный тип взаимодействия проявляется в форме следующих инфекций:

    1. Острая инфекция, характеризующаяся коротким инкубационным периодом, непродолжительным течением, полным развитием клинических признаков и формированием иммунитета. Острая инфекция соответствует автономному продуктивному литическому типу взаимодействия.

    2. Иннапарантная инфекция (агнл. Inapparent – невидимый), характеризующаяся отсутствием внешних клинических признаков и сопровождающаяся незначительной репродукцией вируса. Иннапарантная инфекция соответствует автономному продуктивному нелитическому типу взаимодействия

    II. Интеграционный тип взаимодействия.

    При этом типе взаимодействия нуклеиновая кислота вируса встраивается в клеточный геном и она функционирует в составе клеточного генома. Существует несколько механизмов интеграции вирусной нуклеиновой кислоты в клеточный геном. Обязательным условием интеграции геномов является циркуляризация вирусной нуклеиновой кислоты (замыкание молекулы НК в круг). Такое явление становится возможным за счет присутствия комплементарных друг другу участков на обоих концах цепи нуклеиновой кислоты.



    Нуклеиновая кислота ДНК-геномных вирусов встраивается непосредственно в молекулярную нуклеиновую кислоту (гепаднавирусы, паповавирусы и др.). Нуклеиновая кислота РНК-геномных вирусов не может встраиваться непосредственно в ДНК клетки из-за различия в их химическом построении. В этой связи РНК-содержащие вирусы (ретровирусы) сначала синтезируют на цепи РНК нить ДНК. Такой обратный синтез нуклеиновых кислот является возможным только благодаря присутствию в составе вирионов ретровирусов специального фермента.

    Интегрированная в клеточный геном вирусная нуклеиновая кислота может сохраняться в течение очень длительного времени (до нескольких лет). Такое состояние длительного присутствия вирусного генома в клетке называется персистенцией. В этом случае наследуемые свойства клетки меняются.

    Участок комплексной нуклеиновой кислоты, который содержит вирусоспецифическую последовательность нуклеотидов, называется провирусом. При определенных условиях происходит активизация провируса, то есть формируется новое поколение вирионов, которые покидают зараженную клетку.

    На уровне клетки интеграционный тип взаимодействия также может протекать в виде:

    1. продуктивной инфекции

    2. абортивной инфекции

    3. литической инфекции

    4. нелитической инфекции.

    На уровне организма интеграционный тип взаимодействия протекает в форме следующих инфекций:

    1. Хроническая инфекция, характеризующаяся длительным течением, развитием клинических признаков незначительной интенсивности, формированием нестерильного иммунитета.

    2. Латентная инфекция, характеризующаяся длительным бессимптомным периодом (персистенцией) с периодическим обострением инфекционного процесса под действием факторов различной природы.

    3. Медленная инфекция, вызываемая довирусными частицами – прионами и характеризующаяся очень длительным (до нескольких лет) инкубационным периодом с последующим переходом инфекционного процесса в острую фазу, поражением нервной системы невоспалительного характера, неизменной гибелью организма.

    Острой инфекцией называют инфекцию, которая характеризуется коротким инкубационным периодом, полным развитием клинических признаков и заканчивающейся выздоровлением или смертью. При острых вирусных инфекциях наблюдают полный цикл репродукции вируса с выходом зрелых вирионов из пораженной клетки и последующей ее гибелью. Острая инфекция соответствует автономному продуктивному литическому взаимодействию вируса с клеткой.

    Для возникновения острой инфекции необходим вирулентный вирус и чувствительная клетка. Этапы репродукции вируса при этом виде инфекции включают:

    АДСОРБЦИЯ – прикрепление вирусной частицы к клеточной поверхности.

    Для адсорбции вирусы используют необходимые для жизнедеятельности клетки рецепторы физиологической регуляции.

    Обычно взаимодействие и адсорбция вируса происходит путем случайного контакта вириона с протеином рецепторного участка цитоплазматической мембраны клетки, чаще гликопротеином. Наличие этих рецепторов обусловливает специфичность (тропизм) вируса. Эти протеины чаще являются рецепторами для связывания физиологических гормонов и других биологически активных веществ (например, вирус бешенства прикрепляется к рецепторам нейронов, ответственных за связывание ацетилхолина, вирус оспы – рецепторов эпителиоцитов для связывания фактора роста эпидермальных клеток).

    На вирионе также присутствуют специфические белки для облегчения прикрепления. Это могут быть специальные углубления на капсиде (энтеровирусы) или протеиновые выступы по углам икосаэдра (аденовирусы) или шипы на суперкапсиде (вирус гриппа)

    Если вирус прикрепляется к несвойственным рецепторам, то инфицирования клетки не происходит.

    ПЕНЕТРАЦИЯ И ДЕПРОТЕНИЗАЦИЯ ВИРИОНА – попадание вируса в клеточную цитоплазму.

    Пенетрация вируса происходит сразу после адсорбции. Для разных вирусов механизм пенетрации различный. Так, для некоторых вирусов достаточно проникновения одной нуклеиновой кислоты, а для других необходим механизм, обеспечивающий проникновение вместе с нуклеиновой кислотой вирионных ферментов, необходимых для дальнейшей репродукции вирусов (РНК-зависимых ДНК- полимераз). В целом этот процесс может длиться от нескольких минут до нескольких часов.

    На данный момент известно три механизма пенетрации (проникновения внутрь цитоплазмы) вирусов:

    1. Механизм проникновения, характерный для мелких простоорганизованных вирусов. При этом после адсорбции капсида на цитоплазматической мембране клетки внутрь ее проникает только вирусная нуклеиновая кислота.

    2. Механизм проникновения, характерный для отдельных сложноорганизованных вирусов (парамиксовирусы, ортомиксовирусы). При этом суперкапсид интегрируется с цитоплазматической мембраной клетки из-за их сильного подобия, и внутрь клетки проникает оголенный капсид с РНК вируса и вирусоспецифической полимеразой.

    3. Механизм проникновения, характерный для большинства сложноорганизованных вирусов. При этом внутрь клетки путем эндоцитоза проникает полная вирусная частица с последующим образованием везикулы (рецептосомы) . Это явление называют виропексис. В этом случае вирион прикрепляется к специальному поверхностному белку клетки – клатрину. Образовавшиеся везикулы отделяются от цитоплазматической мембраны и входят внутрь цитоплазмы. Затем везикулы сливаются с лизосомами, ферменты которых раздевают вирус; реже суперкапсид интегрируется с мембраной лизосомы с последующим выходом капсида внутрь цитоплазмы клетки.

    ТРАНСКРИПЦИЯ, ТРАНСЛЯЦИЯ – переписывание информации с ДНК на РНК, синтез белка на молекуле РНК.

    Механизм транскрипции различен у РНК- и ДНК-геномных вирусов.

    У ДНК-геномных вирусов сама матричная ДНК формирует и-РНК. Большинство ДНК-содержащих вирусов использует клеточный фермент, и поэтому транскрипция и репликация у таких вирусов происходит внутри ядра клетки. У вирусов семейства Poxviridae транскрипция происходит при участии вирусного фермента (ДНК-зависимой РНК-полимеразы), входящей в состав вириона и проникающего внутрь клетки вместе с вирусной нуклеиновой кислотой. В этом случае вирус не нуждается в наличии клеточных ферментов и размножается в цитоплазме клетки.

    Жизненный цикл всех ДНК-геномных вирусов идет по схеме

    ДНК ® и-РНК ® белок.

    Транскрипция РНК-геномных вирусов может идти по разным механизмам в связи с наличием у отдельных вирусов различного типа РНК (однонитчатая РНК с позитивным геномом, однонитчатая РНК с негативным геномом, двунитчатой РНК).

    У отдельных вирусов (пикорнавирусы и др.) сама РНК вируса выполняет функцию и-РНК. Такой тип нуклеиновой кислоты назван позитивным. При этом РНК вируса прикрепляется к рибосомам клетки и начинается процесс трансляции. На рибосомах синтезируется одна гигантская молекула полипептида, которая затем расщепляется на отдельные фрагменты. Эти фрагменты под действием клеточных и вирионных ферментов модифицируются, и такие модифицированные молекулы полипептидов являются целыми вирусными белками. Жизненный цикл таких вирусов идет по схеме РНК ® белок.

    РНК-геномные вирусы с негативным геномом (парамиксовирусы) для транскрипции используют РНК-зависимую полимеразу, входящую в состав вириона. Этот фермент на –нити РНК строит комплементарную +нить РНК, которая затем поступает на рибосомы, и начинается процесс трансляции вирусного белка. Жизненный цикл таких вирусов идет по схеме

    РНК ® и-РНК ® белок.

    У РНК-геномных вирусов с двунитчатой молекулой РНК (реовирусы) вирионная транскриптаза раздваивает молекулу и на минус–нити синтезирует и-РНК. Жизненный цикл таких вирусов также идет по схеме

    РНК ® и-РНК ® белок.

    К группе РНК-геномных вирусов относят семейство Retroviridae, которое имеет особый жизненный цикл. У таких вирусов процесс транскрипции начинается с синтеза на плюс-нити РНК минус–нити ДНК. Этот процесс происходит при участии фермента РНК-зависимая ДНК-полимераза. Данный синтез осуществляется в две фазы: сначала формируется гибрид РНК-ДНК, затем происходит разрушение РНК-нити гибрида с высвобождением нити ДНК. В последующем на этой нити достраивается вторая нить ДНК (провирусная ДНК), на которой затем синтезируется и-РНК. Жизненный цикл таких вирусов идет по схеме РНК ® ДНК ® и-РНК ® белок

    Трансляция – процесс перевода генетической информации в специфическую последовательность аминокислот белка. Он происходит в несколько этапов:

    Инициация. Процесс распознавания рибосомой и-РНК и их связывание. Трансляция начинается, когда рибосома связывается с инициаторным кодоном, сюда же прикрепляются инициаторные белки, регулирующие процесс трансляции. Вирус также вводит свои белки-ингибиторы, угнетающие трансляцию клеточной и-РНК;

    Элонгация – наращивание полипептидной цепи;

    Терминация – прекращение трансляции, когда рибосома достигает терминирующего кодона.

    РЕПЛИКАЦИЯ – синтез новых молекул нуклеиновой кислоты вируса.

    Репликация ДНК-геномных вирусов происходит либо при участии клеточных ферментов, либо собственных вирусоспецифических ферментов. У мелких ДНК-геномных вирусов (парвовирусы) молекула нуклеиновой кислоты содержит ограниченное количество генов (3), кодирующих структурные белки, поэтому для репликации вирусной ДНК используется клеточный фермент. У более крупных вирусов размер нуклеиновой кислоты достаточен для кодирования как структурных, так и функциональных белков. Например, в нуклеиновой кислоте герпес вирусов имеется около 100 генов, часть из которых кодирует ферменты, необходимые для репликации ДНК вируса. Поэтому в процессе транскрипции и трансляции первыми синтезируемыми белками являются вирусоспецифические полимеразы.

    Механизм репликации РНК-геномных вирусов различен. У вирусов, содержащих однонитчатую молекулу РНК при участии вирусных ферментов синтезируется временная двунитчатая РНК (репликативная форма): у вирусов с негативным геномом достраивается +нить, у вирусов с позитивным геномом достраивается –нить. Затем происходит разъединение репликативной РНК на две нити, на каждой из которых синтезируются новые двунитчатые репликативные молекулы РНК, и процесс повторяется до образования достаточного числа копий молекул РНК. Данный процесс происходит параллельно с синтезом белков вируса до момента выхода из пораженной клетки новой генерации вирусов.

    У РНК-геномных вирусов, содержащих двунитчатую РНК молекула нуклеиновой кислоты представлена отдельными фрагментами, каждый из которых кодирует отдельную молекулу и-РНК. В конце цикла трансляции все молекулы и-РНК временно объединяются и при участии репликазы синтезируется двунитчатая РНК.

    СБОРКА ВИРИОНА . Поздние гены всех вирусов кодируют структурные белки капсида. Сначала формируются прокапсиды, то есть незрелые капсиды без нуклеиновой кислоты. Затем внутрь прокапсидов встраивается нуклеиновая кислота вируса, и таким образом формируется зрелый вирион. У мелких РНК- геномных вирусов синтез РНК, белка и их объединение идут одновременно. У поксвирусов процесс сборки вириона более сложный. У них в состав вируса включаются клеточные компоненты – отдельные участки цитоплазматической мембраны.

    У вирусов имеется раздельный (дизъюнктивный) синтез белка и нуклеиновой кислоты.

    ВЫХОД ВИРУСА ИЗ КЛЕТКИ . Простоорганизованные вирусы выходят из клетки путем простого лизиса клетки-хозяина. У сложноорганизованных вирусов образование суперкапсида происходит в момент выхода из клетки. В этом случае нуклеокапсид встраивается в цитоплазматическую мембрану. Затем путем почкования формируется суперкапсид вируса, который покрывает капсид в момент отрыва от поверхности клетки.

    Инфицирование клетки вирусом может привести к развитию патологических изменений клетки. Репродуцируясь в клетке, вирус обусловливают появление ЦПД и ЦПЭ. Это специфическая морфологическая деструкция (ЦПД) или функциональная патология без разрушения (ЦПЭ).

    Вирусы, которые вызывают появление ЦПД, называются цитопатическими.

    Литическая (цитоцидная) инфекция – это такой тип инфекции, при которой наблюдают морфологические изменения в зараженной клетке с последующей ее деструкцией и гибелью. Для вируса при цитоцидной инфекции характерна высокая продукция.

    Известно несколько механизмов повреждения клеток вирусами:

    1. Многие вирусы ингибируют синтез клеточных ДНК, РНК и белка. Отдельные цитоцидные вирусы (пикорнавирусы, герпесвирусы, аденовирусы) исключительно активны в этом отношении. Однако. Механизм ингибиции клеточного метаболизма до сих пор не выяснен.

    2. В процессе внутриклеточной репродукции может происходить разрушение лизосом на этапе выхода вируса из них в цитоплазму клетки. Это приводит к высвобождению гидролитических ферментов с последующей деструкцией клеток.

    3. Инфицирование клетки вирусами может привести к значительному нарушению структуры цитоплазматической мембраны вследствие встраивания в нее вирусоспецифических белков. Это приводит к атаке инфицированной клетки со стороны иммунной системы организма. При многих инфекция, вызванных герпесвирусами происходит слияние 50-100 клеток в одну гигантскую, атакуемую иммунной системой организма.

    4. Высокие концентрации вирусных белков, что наблюдается при гриппе и других инфекциях, имеют ярко выраженный токсический эффект на клетку.

    5. При многих вирусных инфекциях образуются внутриклеточные включения, что является следствием сосредоточения вирусных частиц или их белков внутри ядра или цитоплазмы. Часто внутриклеточные включения непосредственно вызывают гибель клетки.

    6. Герпесвирусы, а также некоторые другие вызывают нарушения в геноме клетки, в результате чего наступает ее гибель.

    Чаще всего в механизме развития ЦПД участвуют несколько из вышеперечисленных факторов.

    Реакция вирусов на инфекцию может быть четырех типов:

    1. Повреждение клетки и ее гибель (образование ЦПД). Клетки набухают, приобретают неправильную форму, появляется зернистость. Впоследствии, она укрупняется, образуются внутриклеточные включения. Может происходить повреждение оболочки или слияние клеток с образованием симпластов.

    2. Синтез белков-интерферонов, препятствующих инфицированию здоровых клеток вирусом.

    3. Размножение вируса без видимых патологических изменений в клетке, что наблюдают при латентных инфекциях. Для ее возникновения необходим вирулентный вирус и нечувствительная клетка.

    4. При попадании вируса в клетку наблюдается пролиферация клетки. Для ее возникновения необходим онкогенный вирус, при этом геном вируса встраивается (интегрирует) в клеточный геном.