• Дуплексная радиосвязь. Дуплексный режим работы

    Несмотря на то, что коммутаторы прозрачны для сетевых протоколов и пользовательских приложений, они способны функционировать в разных режимах, что может как положительно, так и отрицательно отразиться на пересылке кадров Ethernet по сети. Одним из базовых параметров коммутатора является дуплексный режим для каждого отдельного порта, подключённого к каждому главному устройству. Порт на коммутаторе должен быть настроен таким образом, чтобы совпадать с параметрами дуплексного режима определённого типа среды передачи данных. Для обмена данными в сетях Ethernet используются два типа настроек дуплексного режима: полудуплексный и полнодуплексный.

    Полудуплексная передача данных

    Полудуплексная связь использует однонаправленный поток данных, когда отправка и получение данных не выполняются в одно и то же время. Это подобно использованию рации, когда единовременно может говорить только один человек. Если кто-либо пытается говорить во время разговора другого человека, происходит коллизия. В результате при полудуплексной связи используется множественный доступ с контролем несущей и определением коллизий, что позволяет снизить вероятность коллизий и обнаружить их в случае возникновения. При полудуплексной связи возможно снижение производительности, вызванное постоянным пребыванием в режиме ожидания, поскольку данные могут передаваться одновременно только в одном направлении. Полудуплексные соединения, как правило, встречаются на более старом оборудовании, например на концентраторах. Узлы, которые подключены к концентраторам, совместно использующим подключение к порту коммутатора, должны работать в полудуплексном режиме, так как конечные компьютеры должны иметь возможность обнаруживать коллизии. Узлы могут функционировать в полудуплексном режиме, если сетевую интерфейсную плату нельзя настроить для работы в полнодуплексном режиме. В этом случае для порта на коммутаторе по умолчанию также устанавливается полудуплексный режим. Из-за этих ограничений полнодуплексная связь заменила полудуплексную на более современном оборудовании.

    Полнодуплексная передача данных

    В полнодуплексной связи поток данных передаётся в обе стороны, что позволяет одновременно отправлять и получать информацию. Поддержка двухсторонней передачи данных повышает производительность за счёт сокращения времени ожидания между передачами. Большинство продаваемых сегодня сетевых адаптеров Ethernet, Fast Ethernet и Gigabit Ethernet работают в полнодуплексном режиме. В полнодуплексном режиме детектор коллизий отключён. При этом исключена возможность столкновения кадров, пересылаемых двумя связанными конечными узлами, поскольку эти узлы используют два отдельных канала связи в сетевом кабеле. Каждое полнодуплексное соединение использует только один порт. Полнодуплексным соединениям требуется коммутатор, который поддерживает полнодуплексный режим, или прямое подключение, между двумя узлами, каждый из которых поддерживает полнодуплексную передачу данных. Узлы, которые непосредственно подключены к выделенному порту коммутатора с помощью сетевых адаптеров, поддерживающих полнодуплексную связь, должны подключаться к портам коммутатора, настроенных для работы в полнодуплексном режиме.

    На рисунке показаны две настройки дуплексного режима, доступные на современном сетевом оборудовании.

    Коммутатор Cisco Catalyst поддерживает три настройки дуплексного режима:

    • Параметр full устанавливает полнодуплексный режим.
    • Параметр half устанавливает полудуплексный режим.
    • Параметр auto обеспечивает автоматическое согласование дуплексного режима. При включении автоматического согласования два порта связываются друг с другом, чтобы определить оптимальный режим работы.

    Для портов Fast Ethernet и 10/100/1000 по умолчанию выбирается параметр auto. Для портов 100BASE-FX по умолчанию выбирается параметр full. Порты 10/100/1000 функционируют либо в полудуплексном, либо в полнодуплексном режиме, когда работают со скоростью 10 или 100 Мбит/с, и только в полнодуплексном, когда работают со скоростью 1000 Мбит/с.

    Одновременно. В режиме полудуплекс - или передавать, или принимать информацию.

    Полудуплексный режим

    Режим, при котором передача ведётся в обоих направлениях, но с разделением по времени называют полудуплексным. В каждый момент времени передача ведётся только в одном направлении.

    Разделение во времени вызвано тем, что передающий узел в конкретный момент времени полностью занимает канал передачи. Явление, когда несколько передающих узлов пытаются в один и тот же момент времени осуществлять передачу, называется коллизией и при методе управления доступом CSMA/CD считается нормальным, хотя и нежелательным явлением.

    Этот режим применяется тогда, когда в сети используется коаксиальный кабель или в качестве активного оборудования используются концентраторы .

    В зависимости от аппаратного обеспечения одновременный приём/передача в полудуплексном режиме может быть или физически невозможен (например, в связи с использованием одного и того же контура для приёма и передачи в рациях) или приводить к коллизиям .

    Дуплексный режим

    Режим, при котором, в отличие от полудуплексного, передача данных может производиться одновременно с приёмом данных.

    Суммарная скорость обмена информацией в данном режиме может достигать вдвое большего значения. Например, если используется технология Fast Ethernet со скоростью 100 Мбит / , то скорость может быть близка к 200 Мбит/с (100 Мбит/с - передача и 100 Мбит/с - приём).

    В качестве наглядного примера можно привести разговор двух человек по рации (полудуплексный режим) - когда в один момент времени человек либо говорит, либо слушает, и по телефону (полный дуплекс) - когда человек может одновременно и говорить, и слушать.

    Дуплексная связь обычно осуществляется с использованием двух каналов связи: первый канал - исходящая связь для первого устройства и входящая для второго, второй канал - входящая для первого устройства и исходящая для второго.

    В ряде случаев возможна дуплексная связь с использованием одного канала связи. В этом случае устройство при приёме данных вычитает из сигнала свой отправленный сигнал, а получаемая разница является сигналом отправителя (модемная связь по телефонным проводам, GigabitEthernet).


    Wikimedia Foundation . 2010 .

    Смотреть что такое "Полный дуплекс" в других словарях:

      Двойная спираль с Уотсона-крика дуплекс - Двойная спираль, с. Уотсона крика, дуплекс * падвойная спіраль, с. Уотсана крыка, дуплекс * double helix or d. h. DNA or Watson Crick h. or duplex модель Уотсона Крика, описывающая структуру ДНК как спираль, которая образована из двух… … Генетика. Энциклопедический словарь

      режим полного дуплекса - — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] полный дуплекс Одновременная двусторонняя передача. (полный) дуплекс… …

      Кабель UTP с разъемом 8P8C (ошибочно называемый RJ 45), используемый в Ethernet сетях стандартов 10BASE T, 100BASE T(x) и 1 … Википедия

      Название: Teletype network Уровень (по модели OSI): Прикладной Семейство: TCP/IP Порт/ID: 23/TCP Назначение протокола: виртуальный текстовый терминал Спецификация: RFC 854 / STD 8 … Википедия

      Дуплекс и полудуплекс режимы работы приёмо передающих устройств (модемов, сетевых карт, раций, телефонных аппаратов). В режиме дуплекс устройства могут передавать и принимать информацию одновременно. В режиме полудуплекс или передавать, или… … Википедия

      Дуплекс и полудуплекс режимы работы приёмо передающих устройств (модемов, сетевых карт, раций, телефонных аппаратов). В режиме дуплекс устройства могут передавать и принимать информацию одновременно. В режиме полудуплекс или передавать, или… … Википедия - сетевая карта сетевой адаптер сетевой интерфейс Компонент компьютера для подключения к вычислительной сети. сетевой адаптер Периферийное устройство (плата), обеспечивающее соединение компьютера и ЛВС.… … Справочник технического переводчика

    Технология коммутации сама по себе не имеет непосредственного отношения к методу доступа к среде, который используется портами коммутатора. При подключении к порту коммутатора сегмента, представляющего собой разделяемую среду, данный порт, как и все остальные узлы такого сегмента, должен поддерживать полудуплексный режим.

    Однако когда к каждому порту коммутатора подключен не сегмент, а только один компьютер, причем по двум физически раздельным каналам, как это происходит почти во всех стандартах Ethernet, кроме коаксиальных версий Ethernet, ситуация становится не такой однозначной. Порт может работать как в обычном полудуплексном режиме, так и в дуплексном.

    В полудуплексном режиме работы порт коммутатора по-прежнему распознает коллизии. Доменом коллизий в этом случае является участок сети, включающий передатчик коммутатора, приемник коммутатора, передатчик сетевого адаптера компьютера, приемник сетевого адаптера компьютера и две витые пары, соединяющие передатчики с приемниками. Коллизия возникает, когда передатчики порта коммутатора и сетевого адаптера одновременно или почти одновременно начинают передачу своих кадров.

    В дуплексном режиме одновременная передача данных передатчиком порта коммутатора и сетевого адаптера коллизией не считается. В принципе, это достаточно естественный режим работы для отдельных дуплексных каналов передачи данных, и он всегда использовался в протоколах глобальных сетей. При дуплексной связи порты Ethernet стандарта 10 Мбит/с могут передавать данные со скоростью 20 Мбит/с - по 10 Мбит/с в каждом направлении.

    Уже первые коммутаторы Kalpana поддерживали оба режима работы своих портов, позволяя использовать коммутаторы для объединения сегментов разделяемой среды, как делали их предшественники-мосты, и в то же время позволяя удваивать скорость обмена данными на предназначенных для связи между коммутаторами портах за счет работы этих портов в дуплексном режиме.

    Долгое время коммутаторы Ethernet сосуществовали в локальных сетях с концентра торами Ethernet: на концентраторах строились нижние уровни сети здания, такие как сети рабочих групп и отделов, а коммутаторы служили для объединения этих сегментов в общую сеть.

    Постепенно коммутаторы стали применяться и на нижних этажах, вытесняя концентраторы, так как цены коммутаторов постоянно снижались, а их производительность росла (за счет поддержки не только технологии Ethernet со скоростью 10 Мбит/с, но и всех последующих более скоростных версий этой технологии, то есть Fast Ethernet со скоростью 100 Мбит/с, Gigabit Ethernet со скоростью 1 Гбит/с и 10G Ethernet со скоростью 10 Гбит/с). Этот процесс завершился вытеснением концентраторов Ethernet и переходом к полностью коммутируемым сетям, пример такой сети показан на рис. 1

    Рис. 1 Полностью коммутируемая сеть Ethernet.

    В полностью коммутируемой сети Ethernet все порты работают в дуплексном режиме, а продвижение кадров осуществляется на основе МАС-адресов. При разработке технологий Fast Ethernet и Gigabit Ethernet дуплексный режим стал одним из двух полноправных стандартных режимов работы узлов сети. Однако уже практика применения первых коммутаторов с портами Gigabit Ethernet показала, что они практически всегда применяются в дуплексном режиме для взаимодействия с другими коммутаторами или высокоскоростными сетевыми адаптерами. Поэтому при разработке стандарта 10G Ethernet его разработчики не стали создавать версию для работы в полудуплексном режиме, окончательно закрепив уход разделяемой среды из технологии Ethernet.

    Невозможны одновременная передача, приём беспроводной связью единой частоты. Результатом станет ужасная интерференция. Андре Голдсмит «Беспроводные коммуникации»

    Дуплексная радиосвязь предусматривает одновременную двустороннюю передачу информации. Исторически первыми концепцию реализовали трансатлантический телеграф (1870-е), телетайпы (1890-е). Идея вызвана необходимостью экономии спектра физического канала. Океанический кабель слишком дорого стоил. Случай телетайпов немного отличен: идея уже была известна, некто придумал способ получения дополнительной прибыли, пользуясь скромными запросами печатающих устройств (ниже голосовой линии).

    Примеры симплексных систем

    Лучше прочувствовать принцип действия симплексной передачи информации помогут примеры систем однонаправленного потока информации:

    1. Вещание.
    2. Микрофоны звукозаписи.
    3. Наушники.
    4. Радионяни.
    5. Беспроводная система управления рольставнями.
    6. Камеры слежения.

    Симплекс характеризуется отсутствием необходимости, возможности двухсторонней передачи информации.

    Принцип действия

    Дуплексная коммуникационная система обычно соединяет две точки (противопоставляя себя вещанию). Современными компьютерными портами (Ethernet) часто осуществляется аналогичный ход, выделяют отдельную витую пару каналам приёма, передачи. После телеграфа, телетайпа концепция настигла телефонные линии. Общеизвестно: абоненты могут говорить одновременно. Расслышать собеседника – вопрос десятый.

    Цифровая техника предоставляет видимость эффекта дуплексной радиосвязи. Передатчик давно сжёг бы приёмник, работай каналы одновременно. Однако временное деление функционирует быстро, пакеты коммутируются столь искусно, что собеседники бессильны заметить «подвох». Дуплекс бывает неполным. Полудуплексный метод применяется рациями. Канал разбивается, благодаря внедрению кодовых вызывных комбинаций слов, произносимых абонентами.

    Временное деление каналов

    Разделение каналов с выделением временных слотов абонентам демонстрирует весомые преимущества на линиях с несимметричными скоростями (загрузка, выгрузка данных). Типичный пример – интернет. Весомое неравенство каналов входящей, исходящей информации сделало возможным спутниковый доступ (запрос по местной мобильной сети, ответ – из космоса). Примеры:

    • Стандарт третьего поколения сотовой связи 3G.
    • Беспроводная телефония DECT.
    • WiMAX (3G+).
    • Некоторые разновидности LTE.

    Широкое распространение методики дало внедрение импульсных устройств (середина 60-х годов XX века). Причиной существующего положения эксперты называют появление твердотельной электроники. Ламповые дискретные устройства занимали слишком большое пространство. Приёмопередающее оборудование требовало наличия просторного помещения. Первоначально создали два режима сжатия канала:

    1. Синхронная (циклическая) передача подразумевает периодическое подключение к линии абонентов. Последовательность строго оговорена. Разрабатывается структура кадра, внедряются синхронизирующие сигналы. Характер кодирования безразличен.
    2. Асинхронная передача практикуется цифровыми системами. Информация посылается заблаговременно сформированными пакетами размером сотни-тысячи бит. Наличие адресов делает возможным асинхронную схему взаимодействия. Сегодня принцип использует даже сотовая связь. Современные протоколы предусматривают пакеты с чётным количеством байтов. Поэтому отсутствие синхронизации чисто формальное.

    Пакет дополнен заголовком. Состав информации определён стандартом протокола. Канал загружается периодически, с частотой передачи пакетов. Традиционные советские системы использовали 8 кГц (телефонный сигнал дискретизируется со скоростью 64 кбит/с). Методы модуляции несущей:

    • Широтно-импульсная.
    • Амплитудно-импульсная.
    • Время-импульсная.

    Двоичный сигнал кодируют прямоугольными импульсами. Спектр выходит бесконечно широким, реальный сигнал обрезают фильтрами. В результате фронты сглаживаются. Растягивание вызывает межимпульсную интерференцию. Помехи по соседнему каналу вызваны пересечением спектров. Параметры систем временного разделения каналов стандартизированы, иерархия получила название плезиохронной:

    1. Первая ступень несёт 32 канала (32 х 64 = 2048 кбит/с). 2 канала отдают служебным сообщениям.
    2. Следующие ступени (120, 480, 1920) формируются путём уплотнения 4 цифровых потоков побитным мультиплексированием. Причём некоторые разделы стандарта были сформированы заблаговременно, не найдя немедленной аппаратной реализации.

    Оптоволоконной альтернативой приведённому методу называют синхронную цифровую иерархию. Алгоритм нацелен обеспечивать крупные ветви сети, где скорости значительные. Требуется повальная синхронизация узлов. Длительность блока (синхронного транспортного модуля) составляет прежние 125 мс (8 кГц). Цифровая длина – 2340 байт. Заголовку отводится 90. Сформирована 5-ступенчатая иерархия согласно размеру пакетов. Мелкие могут являться составными частями крупных.

    Частотное деление

    Впервые применил частотное деление войсковой связист Игнатьев Г.Г. (1880). Военный подразумевал повторить опыт трансатлантического кабеля. Хотел расширить рамки проложенного кабеля (поле боя оставляет мало времени сантиментам). Передающая аппаратура формирует набор стандартных аналоговых сигналов (обычно 12) стандартной ширины 300-3500 Гц. Блок включает нужное число генераторов выбранного диапазона связи. Канальный промежуток составляет 900 Гц (ДВ).

    Групповой аналоговый сигнал занимает 48 кГц. Сегодня приёмопередающее оборудование задействует одновременно две частоты (минимум). Принцип широко используется любительской радиосвязью. Дальнобойщики хорошо знают каналы бедствия, вызова. Пример универсален, касается двустороннего общения радиолюбителей планеты. Первые аналоговые сети использовали внеполосный цифровой вызов станции – слабый пример дуплекса.

    Частотное деление – идеальный вариант организации канала симметричного трафика. Базовые станции перестают слышать друг друга, устраняется интерференция. Примеры:

    1. ADSL.
    2. CDMA2000.
    3. IEEE 802.16 (разновидность WiMAX).

    Кодовое деление

    Частота выборки телефонного сигнала – 64 кГц, используется фазовая манипуляция:

    • 1 – 0 градусов.
    • 0 – 180 градусов.

    Чтобы закодировать цифровой сигнал, бит дополнительно разбивают. Впервые методика продемонстрирована системой Зелёный шершень времён Второй мировой войны. Наложение псевдошумового сигнала сильно озадачило фашистов. Союзники, разделённые Атлантическим океаном, провели свыше 3000 совместных конференций.

    Длину кода называют базой сигнала. Графически нули и единицы наложенной последовательности обозначают +1 и -1, явно отличая от основного информационного сообщения. Наложение расширяет спектр в число раз, равное базе. Искусственное увеличение позволяет избежать интерференции. Особенность прямо касается вышек сотовой связи. Каждый канал получает фиксированную кодирующую последовательность, осуществляя концепцию ортогональности. Число совпадающих битов равно числу не совпадающих.

    Приёмник корреляционного типа. Часто заменяют согласованным фильтром. Опорным выступает код канала с фазовой манипуляцией. Пытаясь снизить ширины спектры, применяют специальные коды. Хорошо себя зарекомендовал псевдошумовой сигнал. Межканальные помехи вызваны искажениями группового сигнала:

    • Коррективы, вносимые полосами пропускания радиоэлектронных устройств.
    • Мультипликативные помехи эфира.
    • Недостаточная ортогональность кодов.

    Стандарт IS95 стал основой сотовых сетей CDMA, спутниковой связи Globalstar.

    Устранение эхо

    Двусторонние системы громкой связи создают эффект положительной обратной связи, выражающийся резким свистом. Звук динамика достигает микрофона, усиливается, передаётся оппоненту. Визави повторяет порядок преобразований, возвращая послание. Громкость нарастает.

    Стандарты модемов, компьютерных шин предусматривают подавление эха. Лишённая техники блокировки отражённого сигнала система бессильна развить полную скорость. Работа цифровых сетей требует жёсткой синхронизации.

    В зависимости от направления возможной передачи данных способы передачи

    данных по линии связи делятся на следующие типы:

    □ симплексный - передача осуществляется по линии связи только в одном на-

    правлении;

    □ полудуплексный - передача ведется в обоих направлениях, но попеременно

    во времени (примером такой передачи служит технология Ethernet);

    □ дуплексный - передача ведется одновременно в двух направлениях.

    Режим, при котором передача ведётся в обоих направлениях, но с разделением по времени называют полудуплексным. В каждый момент времени передача ведётся только в одном направлении.

    Разделение во времени вызвано тем, что передающий узел в конкретный момент времени полностью занимает канал передачи. Явление, когда несколько передающих узлов пытаются в один и тот же момент времени осуществлять передачу, называется коллизией и при методе управления доступом CSMA/CD считается нормальным, хотя и нежелательным явлением.

    Этот режим применяется тогда, когда в сети используется коаксиальный кабель или в качестве активного оборудования используются концентраторы.

    В зависимости от аппаратного обеспечения одновременный приём/передача в полудуплексном режиме может быть или физически невозможен (например, в связи с использованием одного и того же контура для приёма и передачи в рациях) или приводить к коллизиям.

    Режим, при котором, в отличие от полудуплексного, передача данных может производиться одновременно с приёмом данных.

    Суммарная скорость обмена информацией в данном режиме может достигать вдвое большего значения. Например, если используется технология Fast Ethernet со скоростью 100 Мбит/с, то скорость может быть близка к 200 Мбит/с (100 Мбит/с - передача и 100 Мбит/с - приём).

    Дуплексная связь обычно осуществляется с использованием двух каналов связи: первый канал - исходящая связь для первого устройства и входящая для второго, второй канал - входящая для первого устройства и исходящая для второго.

    В ряде случаев возможна дуплексная связь с использованием одного канала связи. В этом случае устройство при приёме данных вычитает из сигнала свой отправленный сигнал, а получаемая разница является сигналом отправителя (модемная связь по телефонным проводам, GigabitEthernet).

      Понятие ИКТ

    интегральная технология передачи данных и обработки данных.

    #ИКТ, именуемая также ITT, появилась в результате объединения технологий обработки и передачи данных в единое целое. Сегодня развитие и использование ИКТ определяет движение к созданию информационного общества. Так, в декабре 1999 г. Европейская Комиссия объявила о новом проекте, именуемом E-Europa - “Электронная Европа”. Его цель - преобразование европейского индустриального общества в информационное. Этот проект включает:

    совершенствование сети Internet, расширение набора ее информационных ресурсов;

    использование ресурсов Internet для обучения;

    обеспечение быстрого и дешевого доступа к Internet;

    развитие платежной системы, в том числе - компьютерных карточек;

    вовлечение в электронное сообщество нетрудоспособных граждан;

    развитие здравоохранения и обеспечение безопасности транспорта на основе информационно-коммуникационных технологий;

    обеспечение прозрачности деятельности правительств путем создания множества сайтов Web.

    К информационно-коммуникационным технологиям, в первую очередь, относятся:

      доступ и работа в информационных сетях;

      цифровое телевидение;

      электронная почта и факсимильная связь;

      работа с базами данных и хранилищами сообщений.