• Классификация устройств защиты от импульсных перенапряжений. Устройство защиты перенапряжений (узип) - схема подключения

    Современный человек, стараясь идти в ногу со временем, насыщает свой дом электроприборами самого различного назначения. Но не каждый домовладелец задумывается о том, что в случае возникновения в сети даже очень кратковременного импульсного напряжения в разы превышающего номинальное, весь его дорогостоящий парк электротехники и электроники может выйти из строя. Что примечательно, воздействие перенапряжения на электрические потребители пагубно тем, что пораженная техника, как правило, становится не пригодной для ремонта. Данный форс-мажор пусть не часто, но гарантировано может быть следствием перенапряжения в сетях, вызванного воздействием грозы, аварийным перехлестом фаз или коммутационных процессов. Защитить электрооборудование призваны так называемые устройства защиты от импульсных перенапряжений. Принцип работы УЗИП, классы и разницу между ними мы рассмотрели ниже.

    Классификация УЗИП

    Аппараты защиты от импульсных напряжений являются широким и обобщенным понятием. В эту категорию устройств входят приборы, которые можно подразделить на классы:

    • I класс. Предназначены для защиты от непосредственного воздействия грозового разряда. Данными устройствами в обязательном порядке должны укомплектовываться вводно-распределительные устройства (ВРУ) административных и промышленных зданий и жилых многоквартирных домов.
    • II класс. Обеспечивают защиту электрических распределительных сетей от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции второй ступени защиты от воздействия удара молнии. Монтируются и подключаются к сети в распределительных щитах.
    • III класс. Применяются, чтобы обезопасить аппаратуру от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нулевым проводом. Устройства данного класса работают также в режиме фильтров высокочастотных помех. Наиболее актуальны для условий частного дома или квартиры, подключаются и устанавливаются непосредственно у потребителей. Особой популярностью пользуются устройства, которые изготавливаются, как модули, оснащенные быстросъемным креплением для установки на , либо имеют конфигурацию электрических штепсельных розеток или сетевых вилок.

    Типы устройств

    Все устройства, обеспечивающие защиту от импульсных перенапряжений, подразделяются на два типа, которые отличаются по конструкции и принципу действия. Рассмотрим, как работает УЗИП разных видов.

    Вентильные и искровые разрядники . Принцип действия разрядников основан на использовании эффекта искровых промежутков. В конструкции разрядников предусмотрен воздушный зазор в перемычке, соединяющей фазы линии электропередач с заземляющим контуром. При номинальной величине напряжения цепь в перемычке разорвана. В случае воздействия грозового разряда в результате в ЛЭП происходит пробой воздушного зазора, цепь между фазой и землей замыкается, импульс высокого напряжения уходит напрямую в землю. Конструкция вентильного разрядника в цепи с искровым промежутком предусматривает резистор, на котором происходит гашение высоковольтного импульса. Разрядники в большинстве случаев находят применение в сетях высокого напряжения.

    Ограничители перенапряжения (ОПН) . Данные устройства пришли на смену устаревшим и громоздким разрядникам. Для того чтобы понять, как работает ограничитель, надо вспомнить свойства нелинейных резисторов, построен на использовании их вольтамперных характеристик. В качестве нелинейных резисторов в УЗИП используется варистор. Для людей не искушенных в тонкостях электротехники, немного информации, из чего состоит и как он работает. В качестве основного материала для изготовления варисторов служит оксид цинка. В смеси с окислами других металлов создается сборка, состоящая из p-n переходов, обладающая вольтамперными характеристиками. Когда величина напряжения в сети соответствует номинальным параметрам, ток в цепи варистора близок к нулю. В момент возникновения перенапряжения на p-n переходах происходит резкое возрастание тока, что приводит к снижению напряжения до номинальной величины. После нормализации параметров сети варистор возвращается в непроводящий режим и влияние на работу устройства не оказывает.

    Компактные размеры ОПН и обширный диапазон разновидностей данных приборов позволили значительно расширить область применения этих устройств, появилась возможность использования УЗИП, как средства защиты от перенапряжений для частного дома или квартиры. Однако ограничители импульсных напряжений, собранные на варисторах, несмотря на все свои преимущества по сравнению с разрядниками, имеют один существенный недостаток – ограничение ресурса работы. Вследствие встроенной в них тепловой защиты, прибор после срабатывания остается некоторое время неработоспособным, по этой причине на корпусе УЗИП предусмотрено быстросъемное устройство, позволяющее произвести быструю замену модуля.

    Более подробно о том, что такое УЗИП и какое у него назначение, вы можете узнать из видео:

    Как обустроить защиту?

    Прежде чем приступить к установке и подключению средств защиты от импульсных перенапряжений, необходимо , иначе все работы по обустройству УЗИП потеряют весь смысл. Классическая схема предусматривает 3 уровня защиты. На вводе устанавливаются разрядники (УЗИП класс I) , обеспечивающие грозозащиту. Следующее защитное устройство класс II, как правило, ОПН подключается в распределительном щите дома. Степень его защиты должна обеспечивать снижение величины перенапряжения до параметров безопасных для бытовых приборов и сети освещения. В непосредственной близости электронных изделий, чувствительных к колебаниям по току и напряжению желательно класса III.

    Многие бытовые приборы в своих конструкциях имеют защитные блоки, так сказать, уже встроенные, которые защищают от импульсных перенапряжений. Это опасный вид напряжения, которое может быть вызвано грозой, при проведении ремонта сетей, при коммутации больших нагрузок и так далее. В общем, причин немало. Так вот встроенные блоки имеют очень небольшой ресурс. И если импульсная разновидность напряжения бывает часто, то приходит один момент, когда блок перестает работать и подвергает бытовую технику опасности. То есть, от перенапряжения техника просто начнет выходить из строя. Поэтому для предотвращения этих неприятностей надо установить в питающую сеть устройство защиты от импульсных перенапряжений (УЗИП). Итак, давайте разбираться: УЗИП – что это такое?

    Как работает УЗИП

    Принцип работы УЗИП очень простое, потому что в нем несложная схема отвода перенапряжения. Так вот в схеме прибора установлен шунт, по которому электроэнергия движется к нагрузке. Конечно, которая через прибор подключена к питанию. Между шунтом и заземляющей линией устанавливается перемычка (мост), состоящая из варистора или разрядника.

    Так вот, если напряжение в сети нормальное, то сопротивление варистора определяется мегаомами. Как только на линии появляется перенапряжение, то варистор тут же переходит в категорию проводников и начинает через себя пропускать ток, который устремляется в заземление. Вот так все просто.

    Разновидности УЗИП

    Существует три класса, обозначаемые римскими цифрами.

    • Класс I используется в сетях, где импульс (волна) имеет характеристику 10/350 мкс. Как понять это? По сути, это время, в течение которого импульс достигнет своего максимума, и оно равно 10 микросекунд. А 350 мкс – это время падения напряжения до номинального. При этом УЗИП данного класса может выдерживать токи краткосрочного типа в пределах 25-100 кА. Это соответствует, например, удару молнии в линию электропередачи, если место удара удалено от потребителя на 1,5 км.
    • Класс II. Обозначим сразу показатели: 8/20 мкс, 10-40 кА. В этом приборе используются только варисторы. А так как эти элементы имеют незначительный ресурс, то в схему подключения между ними и шунтом впаивается предохранитель, он механический. Как только сопротивление варистора станет, так сказать, неадекватным в плане необходимой безопасности, предохранитель размыкает цепь. Он просто отпаивается. Если посмотреть на это с точки зрения физического принципа работы, то это в точности тепловая защита. Кстати, производители позаботились о том, чтобы предупреждать о снижении сопротивления варистора. Он связан с индикатором, который выведен на панель УЗИП.
    • Класс III. Приборы этого класса в точности повторяют предыдущий. Есть одно отличие – это сила тока, которую варистор должен выдерживать, ее значение не превышает 10 кА.

    Кстати, необходимо отметить, что защитные блоки, встраиваемого типа, имеют точно такую же схему, и они работают точно также по этому принципу. Но как было сказано выше, у них слишком низкий ресурс эксплуатации. Поэтому добавляя в сеть УЗИП третьего класса, вы решаете проблемы с преждевременным отказом бытовой техники, связанными с перенапряжением в питающей сети.

    Правда, надо быть до конца честными, разбираясь с прибором этого типа. Высокую надежность могут гарантировать сразу все три класса, установленные в распределительный щит. Почему? Все дело в разных импульсах. К примеру, УЗИП первого класса не сработает, если импульс напряжения будет коротким. Да и сама величина перенапряжения будет незначительной. Потому что это устройство относится к группе малочувствительных. А вот прибор с малой пропускной способностью по мощности просто не справиться с большой силой тока.

    Добавим, что схема подключения данного устройства достаточно проста. По сути, он подключается как обычный автоматический выключатель.


    Во время грозы в сети часто возникают импульсные помехи. Также их можно наблюдать при поломке трансформатора. Для защиты электрооборудования в доме используются специальные устройства УЗИП. Устанавливаются они в щитки разных комплектаций.

    Различие модификаций заключается в величине параметров выходного напряжения, пороговой частоты и проводимости. Стандартная модель состоит из блока и контактов. Резисторы устанавливаются различных типов. Модулятор в устройствах соединяется с трансивером. В данном элементе имеются проводники, а также триод. Для того чтобы больше узнать об УЗИП, следует рассмотреть принцип работы модели.

    Принцип работы

    На рынке представлены различные устройства защиты от импульсных перенапряжений. Принцип работы их основан на изменении проводимости. Для этого в устройстве имеются контакты. Стабилизация пороговой частоты осуществляется за счет модулятора. Триод играет роль проводника. При подаче напряжения на выходные контакты параметр проводимости тока меняется. Если рассматривать устройства с расширителем, то у них контакты устанавливаются на пластине. Изменение положения элементов осуществляется за счет работы резистора.

    Схема подключения устройств первой степени

    Устройства защиты от импульсных перенапряжений первой степени подходят для щитков серии РВ. В данном случае для подключения моделей используется трансивер. Выходное напряжение в среднем обязано составлять 14 В. Параметр проводимости УЗИП зависит от Как правило, они используются с усилителем. Для подключения контактов применяются фиксаторы. Параметр пороговой проводимости в среднем равен 4,5 мк.

    Перед подключением УЗИП проверяется общее сопротивление в цепи. Указанный параметр для устройств первой серии равен 50 Ом. Также модификации указанного типа подходят для щитков типа СР. Они установлены во многих жилых домах. Подключение к щитку происходит через трансивер. Параметр общего сопротивления в цепи не должен превышать 55 Ом. Для щитков серии РР устройство не подходит из-за высокой проводимости тока.

    Применение модификаций второй степени

    Устройства защиты от импульсных перенапряжений второй степени - это устройства, которые подключаются к щиткам серии РР. В данном случае соединение осуществляется за счет проводников. Если рассматривать модификации на расширителях, то модуляторы используются с обкладкой. Перед подключением оборудования проверяется выходное напряжение на стабилизаторе. Указанный параметр колеблется в районе 13 В. Расширитель используется двухконтактного типа.

    Если рассматривать щитки серии РР20, то у них установлен изолятор. Для подключения УЗИП используется сеточный триод. Наиболее часто он применяется на Также важно отметить, что в щитках серии РР21 имеются интегральные выпрямители. Указанные элементы необходимы для преобразования тока.

    Устройства защиты третьей степени

    Устройства защиты от импульсных перенапряжений третьей степени подходят для щитков, у которых используется динистор проходного типа. Получение оборудования осуществляется через демпфер. Контакты для соединения подбираются с медной обкладкой. Параметр общего сопротивления должен составлять около 40 Ом. Если рассматривать щитки серии РР19, то тиристор используется с усилителем. В некоторых случаях модификации выпускаются с конденсаторными резисторами.

    Подключение элементов указанного типа происходит с адаптером и без него. Если рассматривать первый вариант, то варикапы берутся переменного типа. Показатель общего сопротивления в среднем равен 30 Ом. Если рассматривать второй вариант, то варикапы разрешается использовать переменного типа. Параметр пороговой перегрузки устройств составляет около 3 А. Также важно отметить, что у моделей используются фильтры магнитного типа.

    Однополюсные модификации РН-101М

    Однополюсные устройства защиты от импульсных перенапряжений - что это такое? Указанные приборы представляют собой контактные блоки, которые подходят для сетей с переменным током. Они часто подключаются к трансформаторам, у которых используется высоковольтное реле. В жилых домах устройства используются редко. Отличие моделей также заключается в выпрямителе. Он используется на демпферной основе. Параметр общего сопротивления в среднем равен 22 Ом.

    Также важно отметить, что выходное напряжение составляет около 200 В. Внутри устройства используются контакты, а также модулятор. Пластины чаще всего устанавливаются в горизонтальном положении. Трансивер для подключения подбирается линейного типа. Многие модификации оснащены тетродами. Для их нормальной работы применяются преобразователи. Наиболее часто они производятся с выпрямителем.

    Схема подключения двухполюсной модификации РН-105М

    Двухполюсные устройства защиты от импульсных перенапряжений разрешается подключать через пентоды. Параметр общего сопротивления должен составлять 40 Ом. Также важно отметить, что контакты устройства соединяются с динистором напрямую. У многих элементов используется компаратор. Указанный элемент дает возможность устанавливать поворотный регулятор.

    Для щитков серии СР модель подходит. В данном случае проводимость зависит от модулятора УЗИП. Если он используется интегрального типа, то вышеуказанный показатель в среднем составляет 2,2 мк. Также у моделей часто устанавливается дуплексный модулятор. Параметр проводимости в цепи в среднем равен 3 мк.

    Применение моделей серии АВВ

    Устройства защиты от импульсных перенапряжений АВВ часто устанавливаются в жилых домах. Если рассматривать щитки типа РР, то подключение конденсаторов происходит через расширитель. Непосредственно модулятор соединяется с демпфером. Во многих случаях выпрямитель не требуется. Если рассматривать щиток с обкладкой, то для нормальной работы устройства используется триод. Указанный элемент способен работать только с магнитным фильтром. Параметр проводимости тока в цепи составляет около 4 мк. Показатель общего сопротивления равен 40 Ом.

    Устройства серии ZUBR D40

    D40 устройства защиты от импульсных перенапряжений - что это? Указанные приборы являются блоками, в которых расположены контакты. Подходят они для щитков, у которых имеется трансивер операционного типа. Модулятор к прибору подсоединяется через компаратор. Параметр проводимости в среднем равен 5 мк. Также важно отметить, что модулятор разрешается подключать без обкладки. В некоторых случаях используется демпфер. Указанный элемент играет роль стабилизатора.

    Трансивер в щитке соединяется с контактами. Если рассматривать щитки серии РР20, то важно отметить, что у них имеется адаптер. Указанный элемент часто установлен с регулятором. Для подключения УЗИП необходим импульсный конденсатор. Указанный элемент должен иметь проводимость на уровне 6 мк. Показатель общего сопротивления в среднем равен 12 Ом.

    Схема прибора серии ZUBR D42

    Применение устройств защиты от импульсных перенапряжений указанной серии очень ограниченное. Для высоковольтных трансформаторов они подходят. Контакты у модели используются с пластинами. Для подключения устройства к высоковольтному оборудованию используются демпферы. Если рассматривать электродные модификации, то подсоединение осуществляется благодаря триоду. Также есть модификации с операционными демпферами. У них есть регулятор фазового типа. Для щитков серии РР указанная модель не подходит.

    Применение моделей серии ZUBR D45

    От импульсных перенапряжений указанной серии отличается высокой проводимостью. Контакты у него установлены на пластинах. Варикап в данном случае используется с подкладкой. Фильтры у модели применяются проводного типа. Для щитков серии РС устройства подходят. Подключение модулятора осуществляется через транзистор. Параметр общего сопротивления должен составлять около 20 Ом. Также важно обращать внимание на выходное напряжение.

    Если использовать демпфер, то указанный параметр в среднем равен 12 В. Также в щитках серии РС часто используются динисторы. В такой ситуации выходное напряжение не превышает 15 В. Также УЗИП указанной серии можно подключать к щиткам типа РР19. В данном случае демпфер применяется многоканального типа. Динистор используется без фильтров. Модулятор подключается к сети через транзистор. Параметр выходной проводимости должен составлять около 4 мк. Показатель общего сопротивления лежит в районе 40 Ом.

    Устройства серии TESSLA D32

    Устройства данной серии производятся с проходными модуляторами. Контакты у них применяются подвижного типа. Для щитков серии РР20 указанное устройство используется часто. Модулятор подсоединяется через расширитель. Чаще всего он используется с преобразователем. Для решения проблем с повышением частоты устанавливается тетрод.

    Если рассматривать щитки серии РР10, то в них имеется кенотрон. Указанный элемент устанавливается на два или три выхода. В первом варианте модулятор устройства подключается через демпфер. Параметр выходной проводимости у него равен 3,3 мк. Общее сопротивление в цепи составляет 30 Ом. Если рассматривать второй вариант, то для УЗИП потребуется динистор.

    Схема прибора серии TESSLA D35

    Это компактное и высоковольтное устройство защиты от импульсных перенапряжений. Схема подключения модификации предполагает использование демпфера. Если рассматривать щитки типа РР19, то он применяется электродного типа. Динистор используется с обкладкой. Фильтры могут устанавливаться проходного либо сетевого типа. Модулятор УЗИП подсоединяется через расширитель.

    Также устройство подходит для щитков серии РР20. Компараторы в них применяются переменного типа. Модулятор в таком случае подсоединяется со стабилитроном. Параметр выходной проводимости в среднем равен 3,5 мк. Показатель общего сопротивления составляет около 45 Ом.

    Применение моделей серии TESSLA D40

    Устройство защиты от импульсных перенапряжений (УЗИП) указанной серии подходит для трансформаторов, у которых установлен резистор. Модулятор к оборудованию подключается через демпфер. Чаще всего фильтры используются проходного типа. Показатель выходной проводимости в среднем равен 3 мк. Параметр общего сопротивления не превышает 55 Ом. Транзисторы в устройствах указанной серии используются без пластин. Всего у модели имеется три пары контактов. Выходной разъем находится в нижней части конструкции. Для щитков серии РР модель не подходит.

    Устройства серии VC-115

    Устройство защиты от импульсных перенапряжений (УЗИП) указанной серии подключается без обкладки. Для щитков типа РР20 модель подходит. Модулятор разрешается подключать через демпфер либо динистор. В первом варианте необходим выпрямитель. Фильтр применяется проходного типа. Для увеличения пороговой частоты необходим выпрямитель. Если рассматривать схему с расширителем, то нормализовать выходную частоту можно только за счет конденсаторов. Параметр выходной проводимости в среднем составляет 4 мк. Общее сопротивление в цепи равно 40 Ом.

    Схема прибора серии VC-122

    Устройство защиты от импульсных перенапряжений и помех указанной серии подходит для понижающих трансформаторов. Также модель активно используется в щитках серии РС. В первую очередь важно отметить, что у модели применяется высоковольтный модулятор. Параметр выходной проводимости у него равен 2 мк. Для щитков РС19 модель подходит. Модулятор в данном случае подсоединяется через обкладку.

    Фильтры разрешается использовать лишь проходного типа. Если рассматривать щитки серии РС20, то у них имеется демпфер. Расширитель для подключения используется магнитного типа. Также важно отметить, что понижающие трансформаторы на 200 В применяться не могут.

    Итак, в предыдущих публикациях были рассмотрены физические процессы, лежащие в основе имеющих существенную дальность действия вторичных эффектов при разряде молнии – и . Ознакомившись с материалом, вы непременно придете к выводу о необходимости установки внутренней молниезащиты.

    Такая защита, помимо уже рассмотренной ранее , включает также установку устройств защиты от импульсных перенапряжений (УЗИП). Ниже будет дан обзор различных типов этих устройств, принципов работы и правил их установки в системах электрокоммуникаций здания.

    Возникающие в электросети импульсные перенапряжения бывают двух типов – противофазные и синфазные. Первые, называемые также поперечными или провод-провод, возникают на клеммах электрооборудования L/N. Для защиты от подобных перенапряжений соответствующий УЗИП устанавливается между фазными L и заземленным PEN проводниками или между фазными L и нулевым N и нулевым N и PE проводниками. Синфазные (продольные или провод – земля) перенапряжения возникают на клеммах N/PE и L/PE. Для защиты от них соответствующий УЗИП устанавливается между L и PE и N и PE проводниками. Более опасными для электрооборудования являются противофазные напряжения, но при проектировании внутренней молниезащиты, как правило, на границах зон используют схемы подключения для защиты от обоих типов перенапряжений.

    ОСНОВНЫЕ ХАРАКТЕРИСТИКИ и СВОЙСТВА УЗИП

    Подключение УЗИП к линиям электропитания может осуществляться тремя разными способами. Самым оптимальным является применение V-образной конфигурации. В этом случае рабочий ток течет по входящему участку цепи, затем внутри устройства по шунту и далее по исходящему участку. Последовательное подключение в разрыв проводников питания. При использовании такой конфигурации необходимо, чтобы номинальный ток нагрузки устройства I L превышал максимальное значение рабочего тока электроцепи.

    И третий вариантТ-образная конфигурация или параллельное подключение позволяет использовать УЗИП в системе электропитания любой мощности, поскольку в этом случае через устройство рабочий ток не проходит. Но при этом длина присоединяющего УЗИП к электросети провода не должна превышать 50 см. Поскольку при крутизне переднего фронта импульса за счет индуктивного сопротивления провода на каждом его метре будет иметь место падение напряжения около 1 кВ, которое прибавится к величине напряжения после УЗИП.

    Согласно международного стандарта IEC 61643 УЗИП для силовых линий электропитания разделяются на три типа (1 – 3) согласно трем классам испытаний (І – ІІІ). Принятый на основе этого стандарта российский ГОСТ Р 51992-2002 использует только классы испытаний. В соответствии с немецким стандартом E DIN VDE 0675-6 устройства защиты от перенапряжений разделяются на четыре класса требований, обозначаемых буквами (A, B, C и D).

    Класс испытаний І означает проверку импульсом 10/350 мкс, моделирующим воздействие прямого удара молнии. Испытания проводятся в рабочем режиме импульсом тока I imp , величина которого указывается затем на корпусе изделия.

    Класс испытаний ІІ включает проверку на возможность УЗИП один раз пропустить и не выйти из строя (то есть без разрушений) импульс тока 8/20 мкс величиной I max .

    При этом УЗИП обоих классов обязаны выдерживать серию из пяти нарастающих импульсов амплитудой 0,1; 0,25; 0,5; 0,75 и 1,0 от величины I imp для класса І и от I max – для класса ІІ. Также устройства обоих классов проходят испытания импульсом 8/20 мкс для определения значения номинального импульсного разрядного тока I n , то есть такого воздействия, которое УЗИП может переносить без последствий для работоспособности многократно (не менее 15 импульсов).

    При I n часто определяют одну из важнейших характеристик УЗИП – уровень защитного напряжения или уровень защиты U p . Этот параметр показывает, на какую величину устройство способно ограничивать появляющийся на его клеммах импульс напряжения, то есть до какого значения за ним снизиться действующее на электрооборудование импульсное перенапряжение. U p может измеряться и при иных величинах импульса тока, например I max , поэтому на УЗИП обязательно должно указываться при каких параметрах определялся уровень защиты.

    Класс испытаний ІІІ означает проверку действия на УЗИП комбинированной волны: при разомкнутой цепи подается испытательный импульс напряжения 1,2/50 мкс, а при коротком замыкании цепи - импульс тока 8/20 мкс. При этом на корпусе устройства указывается значение U oc - напряжения разомкнутой цепи.

    Помимо указанных, важными параметрами для всех УЗИП являются также:

    • U n - номинальное рабочее напряжение (то есть на электросеть с каким действующим напряжением рассчитано применение устройства);
    • U c - наибольшее длительно допустимое рабочее напряжение (то есть максимальное напряжение в электросети переменного тока при котором устройство будет нормально работать длительное время);
    • t A - время срабатывания.

    Основой любого УЗИП является нелинейный элемент, который резко увеличивает свою проводимость при превышении входящим напряжением определенного значения и восстанавливает ее исходную величину после уменьшения напряжения на входе. В качестве такого нелинейного элемента в УЗИП для бытовых низковольтных (до 1000 В) линий электроснабжения используются варисторы, разрядники и диоды двойной проводимости.

    Воздушный разрядник состоит из электродов, разделенных воздушным зазором определенной величины – искровым промежутком. При прохождении импульса перенапряжения за счет электрического пробоя в зазоре зажигается электрическая дуга, обеспечивающая падение напряжения. Искровой промежуток в устанавливаемом в доме разряднике обязательно должен быть герметичным, то есть с защищающим от вылета раскаленных газов и плазмы закрытым корпусом. Такие УЗИП в состоянии отводить импульсы тока величиной свыше I imp = 100 кА и относятся к классу І.

    В газонаполненном или газовом разряднике искровой промежуток заполнен инертным газом (аргон, неон и т.п.). Электроды и находящийся под низким давлением газ окружены герметичным металлокерамическим корпусом. Часто с целью улучшения уровня защиты на электроды наносится покрытие из радиоактивного материала для дополнительной ионизации искрового промежутка. Как правило, газовые разрядники предназначены для отвода импульсов тока 8/20 мкс величиной < 40 кА и относятся к классам ІІ или ІІІ.

    После окончания действия импульса через разрядник будет проходить поддерживаемый самой электросетью сопровождающий ток, величина которого приближается к значению, рассчитываемому для тока короткого замыкания в месте установки устройства. То есть электрическая дуга замыкает не только импульс перенапряжения, но и цепь электропитания. Если разрядник не сможет погасит этот ток, то длительном воздействии это может привести к возгоранию. Поэтому для установки между проводниками L и N или L и PE (PEN) следует выбирать разрядники, у которых указанное на корпусе значение сопровождающего тока I f выше расчетного тока короткого замыкания в этом месте электроцепи. Время срабатывания УЗИП на основе разрядников t A ≤ 100 нс.

    Варистор по сути является полупроводниковым резистором, для которого при характерна нелинейная зависимость электропроводности от приложенного внешнего напряжения. Во время действия импульса перенапряжения сопротивление варистора резко уменьшается и основной всплеск тока протекает через него, а не через электрооборудование. Выделяемая при прохождении через варистор тока энергия рассеивается в виде тепла. После окончания импульса перенапряжения варистор практически мгновенно восстанавливает свое первоначальное большое сопротивление. Во избежание перегрева, вызывающего разрушение с угрозой возгорания, ведущие производители снабжают устройства внутренним терморасцепителем.

    Производят варисторы путем спекания при температуре около 1700 о C «таблетки» из порошкообразного полупроводника - оксида цинка (ZnO) или карбида кремния (SiC) и связующего зерна вещества (смолы, жидкое стекло, лаки и т.д.). После этого поверхность такой композитной «таблетки» металлизируется и к ней припаиваются выводы. Нелинейность изменения сопротивления варисторов при прикладываемом напряжении связана со сложными электрофизическими явлениями на поверхности зерен кристаллитов полупроводника и в межзеренной прослойке.

    В отличие от разрядника, варистор не имеет сопровождающего тока, но для него характерно наличие тока утечки. То есть при нормальной работе находящегося в режиме ожидания варисторного УЗИП через него протекает ток, величина которого при номинальном рабочем напряжении электросети не превышает 1 мА. Значение напряжения, при котором через конкретный варистор протекает ток в 1 мА, называется классификационным. Поэтому для оптимизации параметров УЗИП производители выпускают модели, в которых последовательно соединяют разрядник и варистор. При этом первым исключается ток утечки, а вторым – сопровождающий ток.

    Время срабатывания УЗИП на основе варисторов t A ≤ 25 нс. Используют их в устройствах всех трех классов І, ІІ и ІІІ. Заметим однако, что изготавливать надежные варисторные УЗИП для импульсов 10/350 мкс величиной более 20 кА экономически нецелесообразно. Поэтому не стоит доверять указанному на корпусе устройства І класса значению I imp , превышающему 20 кА.

    Высоковольтные лавинные диоды , используемые в качестве нелинейного элемента УЗИП, обладают вольт-амперной характеристикой с резко выраженной нелинейностью. Такое свойство позволяет им ограничивать импульсы перенапряжения с превышающей напряжение лавинного пробоя p-n-перехода амплитудой. Подобные диоды называют также супрессорами или симметричными TVS-диодами. Используются они в УЗИП класса ІІІ со временем срабатывания t A ≤ 5 нс.

    Нередко все виды УЗИП не совсем корректно называют грозоразрядниками или ограничителями перенапряжения. Последний термин используют в высоковольтной технике только для варисторных устройств.

    В системе электроснабжения помимо коротких импульсов могут также возникать временные перенапряжения длительностью более 10 мс и амплитудой свыше 1,1U n . В случае, если амплитуда временного перенапряжения превысит для установленного УЗИП значение U c , это приведет к выходу устройства из строя с большой вероятностью возгорания. Поэтому последовательно с УЗИП следует устанавливать предохранители типа gG/gL, которые имеют меньшее по сравнению с автоматическими выключателями время срабатывания. Номинал предохранителя указывается в характеристиках УЗИП.

    ВЫБОР и УСТАНОВКА УЗИП

    Относящиеся к классу I (Типа 1 или класса B) устройства защиты от импульсных перенапряжений в линиях электроснабжения устанавливают на вводе в здание, где проходит граница зон молниезащиты LPZ 0 – LPZ 1. Устройства подобного типа обеспечивают в зоне LPZ 1 уровень защиты U p ≤ 4 кВ. Выбранные УЗИП после вводного автомата монтируются во вводно-распределительном устройстве, главном распределительном щите (ГРЩ) или, при нехватке места, рядом в отдельном щите. В случае установленной системы внешней молниезащиты и, особенно при воздушном вводе в дом линий электроснабжения монтаж внутренней молниезащиты является крайне необходимым.

    Выбор параметра I imp для устройств первой линии обороны электрооборудования можно определять исходя из правила, что 50% тока молнии при прямом ударе попадает в дом по внешним токопроводящим коммуникациям. Для загородного дома (ІІІ класс молниезащиты) значение тока разряда молнии принимается равным 100 кА (согласно статистике наблюдений только в 5% случаев разряды молнии превышают это значение).

    Для надежного уровня безопасности линий электропитании считают, что весь ток молнии пойдет по силовым кабелям. Таким образом, если в молниеприемник ударил разряд в 100 кА, то 50 кА пройдет по входящим в дом проводам, разделившись по количеству вводов. При прямом ударе в воздушную линию электроснабжения ток приблизительно в равных долях устремится к ТП и в дом. То есть, при двух входящих проводах (система заземления TN-C) на каждом из них можно получить ток 25 кА. Поэтому с учетом возможной неравномерности распределения тока имеем I imp ≤ 30 кА.

    Для установленной в доме бытовой техники обеспечиваемого в LPZ 1 уровня защиты недостаточно, поэтому в доме выделяется вторая зона молниезащиты и на границе LPZ 1 - LPZ 2 устанавливаются устройства защиты от импульсных перенапряжений класса II (Типа 2 или класса C). Их монтируют во внутренних распределительных щитах (этажных или других) или в специальных щитах рядом с ними. Установка подобных УЗИП должна обеспечивать в зоне LPZ 1 уровень защиты U p ≤ 2,5 кВ.

    Если ГРЩ в доме один или к нему необходимо непосредственно подключит оборудование, которое нуждается в уровне защиты, соответствующем зоне LPZ 2, то в ГРЩ устанавливаются УЗИП классов І и ІІ или готовый модуль І + ІІ. Для правильной очередности срабатывания между устройствами разных классов должно быть образованная проводом электропитания линия задержки длинной не менее 10 метров. Поэтому при установке в одном щите для их согласования необходимо использовать соответствующие дроссели. В готовом модуле такое согласование уже выполнено. С другой стороны, при выходе из строя одного входящего в модуль УЗИП заменять придется весь модуль.

    Для еще более чувствительного оборудования (например, компьютеры или серверы, факсовые аппараты и т.д.) выделяется зона молниезащиты LPZ 3. В этом случае на границе LPZ 2 - LPZ 3 устанавливают УЗИП класса III (Типа 3 или класса D), которые обеспечивают уровень защиты U p ≤ 1,5 кВ. Защищаемое оборудования в этом случае не должно размещаться далее 5 метров от защищающего устройства. УЗИП класса III имеют наибольшее разнообразие конструкций: для монтажа в щите на DIN-рейку, для навесного монтажа, для установки в розеточные коробки и кабель-каналы или в виде сетевого адаптера.

    Исполнение и схема монтажа УЗИП зависит от того, какая система заземления используется при организации электроснабжения здания – TT, TN-C или TN-S (получаем при разделении на вводе в дом PEN проводника). Поскольку цель данной публикации показать необходимость применения УЗИП для защиты электрооборудования и вкратце рассказать, что они собой представляют и какие имеют важные параметры, мы не будем обсуждать конкретные правила и инструкции их установки.

    Если Вы не очень сильны в электротехнике то не рекомендуем самостоятельно монтировать в распределительные щиты дома УЗИП, поскольку эти устройства могут надлежаще выполнять свои функции только при правильной установке. Помимо системы электроснабжения необходимо также устанавливать соответствующие защитные устройства и на линиях слаботочных коммуникаций: спутниковое телевидение, телефонный кабель, витая пара и т.д. Поэтому предоставьте расчет и монтаж внутренней молниезащиты специалистам, проверить компетентность которых Вам помогут публикации сайта.

    Нужно рассмотреть целесообразность установки УЗИП, устройства защиты от импульсных перенапряжений. По определению, УЗИП ставится не во все электрические цепи и целесообразность применения УЗИП нужно сделать еще на этапе проектирования.

    • ГОСТ Р 50571.20/2000.

    Согласно нормативам, установка УЗИП обязательна:

    • В любом доме, где смонтирована дома;
    • В доме, электропитание которого, осуществляется от воздушной линии электропередачи (полностью или частично), где бывает более 25 часов гроз в году.

    Такие районы регламентированы и показаны на карте.

    Не помешает установка УЗИП в районах с меньшим количеством гроз, электропитание которых осуществляется по оголенным проводам ВЛ.

    Примечание: Если кабель электропитания дома заводится в дом от воздушной линии электропередачи под землей, установка УЗИП не требуется.

    Что такое УЗИП первого класса

    УЗИП делятся по классам. На вводе в дом, ставится УЗИП первого класса. УЗИП первого класса защищает сеть электропитания дома от прямого или не прямого попадания грозового разряда в линию электропередачи или в молниезащиту дома.

    По правилам, ставится УЗИП в или (если оно предусмотрено проектом).

    Типы УЗИП

    В настоящее время используются три типа УЗИП:

    • Разрядники – устройство для защиты приборов электрической цепи для ограничения перенапряжений;
    • Газонаполненные разрядники – мощные разрядники с наполнением инертным газом;
    • Варисторы – полупроводниковый резистор, сопротивление которого растет с ростом напряжения.

    Полюса УЗИП

    Устройства защиты от импульсных перенапряжений устанавливаются во вводном, вводно-распределительном или главном распределительном щите дома, а также в варианте установки в отдельном щите Щ.З.И.П. (щит защиты от импульсных перенапряжений).

    Та как УЗИП подключается ко всем токоведущим проводам цепи электропитания, то УЗИП первого и второго класса, бывают двух полюсные (220 В) и четырех полюсные (380 В).

    Схема подключение УЗИП

    В этой статье познакомимся с тремя, общими схемами подключения УЗИП в электросети частного дома.

    • Подключение УЗИП в сети 220 Вольт (одна фаза);
    • Подключение УЗИП в сети 380 Вольт (тип TT и TN-S);
    • Подключение УЗИП в сети 380 Вольт (тип ).