• Глобальные сети - три этапа развития, методы коммутации каналов. Способы коммутации

    Способы коммутации и маршрутизации информации в сети. Глобальные сети в своем развитии прошли три этапа:

    I. 60-е годы. Использование существующей телефонной сети.

    Две АбС могли взаимодействовать между собой подключаясь к международной телефонной сети (ТС) посредством модема путем набора необходимого телефонного номера

    Основные характеристики:

    • Управление взаимодействием осуществлялось программно.
    • Использовался асинхронный режим взаимодействия.
    • Максимальная скорость передачи 800 бит/сек.
    • Достоинство: повсеместная распространенность телефонной сети обеспечивает универсальную доступность для передачи данных.
    • Недостатки: жесткая скорость передачи данных. Если машина требует меньшей скорости передачи, то возможности канала не используются. Если большей - то телефонный канал не мог ее удовлетворить.

    II.70-е годы. Появление сети передачи данных.

    Две АбС взаимодействуют между собой посредством сети передачи данных Подсоединение абонентской системы к сети (рис.10) выполняется через коммутируемую телефонную линию посредством модема (в исключительных случаях - через выделенную линию).

    Основные характеристики:

    • Управление взаимодействием осуществляется посредством одной из АсС.
    • Сеть позволяла использовать синхронный режим передачи (в условиях выделенных линий). МАХ скорость передачи 64 Кбит/сек (по выделенным линиям).
    • Узлы предназначены для коммутации и маршрутизации цифровой информации поступающей по выделенным каналам и имеют следующую структуру, представленную
    • Достоинства: Относительно большая скорость передачи данных.
    • Недостатки: Отсутствует возможность передавать по одним и тем же каналам данные и речь.

    III. 80-е - 90-е годы. Создание сетей общего пользования , отвечающих модели взаимодействия открытых систем (OSI).

    Основные характеристики:

    • Любая ЭВМ подключается к сети передачи через интерфейс (шлюз), обеспечивающей согласование результатных данных. По одной и той же сети могут быть переданы данные и речь.
    • Одной из основных характеристик узла сети передачи данных является коммутация и маршрутизация информации. Сущность ее заключается в выборе Узлом Связи последовательности каналов, по которым следует передать пакеты (блоки, на которые делится массив информации перед передачей). представлен пример коммутации информации. Здесь представлен узел КС, связывающий абонентские системы А (передающие) с абонентскими системами В (получающие).
    • Программному обеспечению узла необходимо решить, в каком порядке и по каким каналам направить эти пакеты абонентам В. Об этом процессе говорят, что в узле происходит коммутация информации. Существует два способа коммутации информации: коммутация каналов и коммутация пакетов. В первом случае (коммутация каналов) коммутация физического канала осуществляется предварительно один раз согласно схеме При коммутации каналов предварительно путем посылки определенного сигнала устанавливается связь абонента А с абонентом В, который с помощью сигнала обратной связи сообщает о готовности принять сообщение. После этого абонент А начинает передавать данные. Время передачи данных зависит от длины передаваемого сообщения, пропускной способности канала (время передачи данных) и времени распространения сигнала по каналу. В момент передачи ни одна из частей канала не может быть использована другой АбС.
    • Метод коммутации каналов прост, но имеет ряд существенных недостатков:
    • Время организации линии для передачи информации достаточно велико.

    Нерациональное использование каналов связи. Во время сеанса между двумя абонентами могут быть большие паузы, однако каналы связи между этими абонентами в период пауз заняты другими не могут быть. Низкая достоверность передачи информации. Это связано с тем, что данные, передаваемые по последовательности каналов, нигде не проверяются. Стремление устранить эти недостатки привело к созданию метода коммутации пакетов. Сущность заключается в том, что здесь каждый пакет имеет адрес назначения и самостоятельно передается через подсеть. При использовании этого метода в узле проверяется адрес пакета и по каждому из них принимается решение по какому очередному каналу его передавать. Здесь ни одна пара абонентов во время сеанса взаимодействия не занимает монопольно ни одного канала.

    Метод коммутации пакетов имеет ряд существенных преимуществ:

    • Эффективное использование каналов связи за счет разделения времени работы каналов между различными парами абонентов (мультиплексирование потоков данных). Процесс мультиплексирования данных
    • Высокая достоверность передаваемой информации. Достигается за счет выполнения проверки каждого пакета всеми узлами сети.
    • Почти мгновенное предоставление возможности передачи информации (не нужно ожидать пока освободятся каналы, образующие путь от Аб-отправителя к Аб-получателю.

    Метод коммутации каналов при всех своих недостатках имеет одно преимущество перед коммутацией пакетов. Оно заключается в том, что при монопольном владении каналами все пакеты проходят путь за одно и то же время. При коммутации пакетов из-за пиковых нагрузок в узлах могут возникать некоторые задержки. Учитывая указанное преимущество метода коммутации каналов в настоящее время происходит модернизация метода коммутации пакетов. Его разрабатывают комплексным, обеспечивающим как коммутацию каналов, так и коммутацию пакетов. Такие сети получили название дискретных сетей с интегральным сервисом. Дискретными эти сети называются потому, что по ним передаются дискретные сигналы. Интегральный сервис означает, что каждая такая сеть в будущем заменит практически все сети связи: телефонную, телеграфную, телетайпную и т.д. Сущность модернизированного метода передачи пакетов заключается в том, что любой канал передачи данных коммуникационной подсети может работать в 2-х режимах: монопольном и коллективном. Поэтому первый пакет передаваемой последовательности пакетов должен сообщать всем узлам о том, в каком режиме необходимо передавать остальные пакеты этой последовательности

    Коммутация каналов может быть

    • пространственной
    • временной.

    Пространственный коммутатор размера N*M представляет собой сетку (матрицу), в которой N входов подключены к горизонтальным шинам, а M выходов - к вертикальным В узлах сетки имеются коммутирующие элементы, причем в каждом столбце сетки может быть открыто не более чем по одному элементу. Если N < M, то коммутатор может обеспечить соединение каждого входа с не менее чем одним выходом; в противном случае коммутатор называется блокирующим, т.е. не обеспечивающим соединения любого входа с одним из выходов. Обычно применяются коммутаторы с равным числом входов и выходов N*N. Недостаток рассмотренной схемы - большое число коммутирующих элементов в квадратной матрице, равное N2. Для устранения этого недостатка применяют многоступенные коммутаторы. Например, схема трехступенного коммутатора 6*6 имеет видДостаточным условием отсутствия блокировок входов является равенство k > 2*n-1. Здесь k - число блоков в промежуточном каскаде, n = N/p; p - число блоков во входном каскаде. В приведенной на рис. 1.3 схеме это условие не выполнено, поэтому блокировки возможны. Например, если требуется выполнить соединение a1-d1, но ранее скоммутированы соединения a2-b2-c4-d3, a3-b3-c1-d2, то для a1 доступны шины b1,с3 и с5, однако они не ведут к d1. В многоступенных коммутаторах существенно уменьшено число переключательных элементов за счет некоторого увеличения задержки. Так, при замене одноступенного коммутатора 1000*1000 трехступенным с n = 22 и k = 43 число переключателей уменьшается с 10 6 до 2*46*22*43+43*46*46, т.е. примерно до 0,186*10 6 .

    Временной коммутатор построен на основе буферной памяти, запись производится в ее ячейки последовательным опросом входов, а коммутация осуществляется благодаря считыванию данных на выходы из нужных ячеек памяти. При этом происходит задержка на время одного цикла "запись-чтение". В настоящее время преимущественно используются временная или смешанная коммутация. Во многих случаях наиболее эффективной оказывается коммутация пакетов. Во-первых, ускоряется передача данных в сетях сложной конфигурации за счет того, что возможна параллельная передача пакетов одного сообщения на разных участках сети; во-вторых, при появлении ошибки требуется повторная передача короткого пакета, а не всего длинного сообщения. Кроме того, ограничение сверху на размер пакета позволяет обойтись меньшим объемом буферной памяти в промежуточных узлах на маршрутах передачи данных в сети.

    В сетях коммутации пакетов различают два режима работы:

    • режим виртуальных каналов (другое название - связь с установлением соединения)
    • дейтаграммный режим (связь без установления соединения).

    В режиме виртуальных каналов пакеты одного сообщения передаются в естественном порядке по устанавливаемому маршруту. При этом в отличие от коммутации каналов линии связи могут разделяться многими сообщениями, когда попеременно по каналу передаются пакеты разных сообщений (это так называемый режим временного мультиплексирования, иначе TDM - Time Division Method), или задерживаться в промежуточных буферах. Предусматривается контроль правильности передачи данных путем посылки от получателя к отправителю подтверждающего сообщения - положительной квитанции. Этот контроль возможен как во всех промежуточных узлах маршрута, так и только в конечном узле. Он может осуществляться старт-стопным способом, при котором отправитель до тех пор не передает следующий пакет, пока не получит подтверждения о правильной передаче предыдущего пакета, или способом передачи "в окне". Окно может включать N пакетов, и возможны задержки в получении подтверждений на протяжении окна. Так, если произошла ошибка при передаче, т.е. отправитель получает отрицательную квитанцию относительно пакета с номером K, то нужна повторная передача и она начинается с пакета K Например, в сетях можно использовать переменный размер окна. Так, в соответствии с рекомендацией документа RFC-793 время ожидания подтверждений вычисляется по формуле T ож = 2*Tср, где Tср:= 0,9*Tср + 0,1*Ti, Tср - усредненное значение времени прохода пакета до получателя и обратно, Ti - результат очередного измерения этого времени.

    В дейтаграммном режиме сообщение делится на дейтаграммы. Дейтаграмма - часть информации, передаваемая независимо от других частей одного и того же сообщения в вычислительных сетях с коммутацией пакетов. Дейтаграммы одного и того же сообщения могут передаваться в сети по разным маршрутам и поступать к адресату в произвольной последовательности, что может послужить причиной блокировок сети. На внутренних участках маршрута контроль правильности передачи не предусмотрен и надежность связи обеспечивается лишь контролем на оконечном узле. Блокировкой сети в дейтаграммном режиме называется такая ситуация, когда в буферную память узла вычислительной сети поступило столько пакетов разных сообщений, что эта память оказывается полностью занятой. Следовательно, она не может принимать другие пакеты и не может освободиться от уже принятых, так как это возможно только после поступления всех дейтаграмм сообщения. Первоначальными видами сообщений могут быть голос, изображения, текст, данные. Для передачи звука традиционно используется телефон, изображений - телевидение, текста - телеграф (телетайп), данных - вычислительные сети. Передача документов (текста) может быть кодовой или факсимильной. Для передачи в единой среде звука, изображений и данных применяют сети, называемые сетями интегрального обслуживания.

    Кодовая передача сообщений между накопителями, находящимися в узлах информационной сети, называется телетексом (в отличие от телекса - телетайпной связи), а факсимильная связь называется телефаксом. Виды телетекса: электронная почта (E-mail) - обмен сообщениями между двумя пользователями сети, обмен файлами, "доска объявлений" и телеконференции - широковещательная передача сообщений. Установление соединения между отправителем и получателем с возможностью обмена сообщениями без заметных временных задержек характеризует режим работы on-line ("на линии"). При существенных задержках с запоминанием информации в промежуточных узлах имеем режим off-line ("вне линии"). Связь может быть односторонней (симплексной), с попеременной передачей информации в обоих направлениях (полудуплексной) или одновременной в обоих направлениях (дуплексной). Это набор семантических и синтаксических правил, определяющий поведение функциональных блоков сети при передаче данных. Другими словами, протокол - это совокупность соглашений относительно способа представления данных, обеспечивающего их передачу в нужных направлениях и правильную интерпретацию данных всеми участниками процесса информационного обмена. Поскольку информационный обмен - процесс многофункциональный, то протоколы делятся на уровни. К каждому уровню относится группа родственных функций. Для правильного взаимодействия узлов различных вычислительных сетей их архитектура должна быть открытой. Этим целям служат унификация и стандартизация в области телекоммуникаций и вычислительных сетей.

    Рассмотрим в данной статье основные методы коммутации в сетях.

    В традиционных телефонных сетях, связь абонентов между собой выполняется с помощью коммутации каналов связи. В начале коммутация телефонных каналов связи выполнялась вручную, далее коммутацию выполняли автоматические телефонные станции (АТС).

    Аналогичный принцип используется и в вычислительных сетях. В качестве абонентов выступают территориально удаленные вычислительные машины в компьютерной сети. Физически не представляется возможным предоставить каждому компьютеру свою собственную некоммутируемую линию связи, которой они пользовались бы в течении всего времени. Поэтому практически во всех компьютерных сетях всегда используется какой-либо способ коммутации абонентов (рабочих станций), выполняющий возможность доступа к существующим каналам связи для нескольких абонентов, для обеспечения одновременно нескольких сеансов связи.

    Коммутация - это процесс соединения различных абонентов коммуникационной сети через транзитные узлы. Коммуникационные сети должны обеспечивать связь своих абонентов между собой. Абонентами могут выступать ЭВМ, сегменты локальных сетей, факс-аппараты или телефонные собеседники.

    Рабочие станции подключаются к коммутаторам с помощью индивидуальных линий связи, каждая из которых используется в любой момент времени только одним, закрепленным за этой линией, абонентом. Коммутаторы соединяются между собой с использованием разделяемых линии связи (используются совместно несколькими абонентами).

    Рассмотрим три основные наиболее распространенные способы коммутации абонентов в сетях:

    • коммутация каналов (circuit switching);
    • коммутация пакетов (packet switching);
    • коммутация сообщений (message switching).

    Коммутация каналов

    Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой - коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети. В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал.

    Время передачи сообщения при этом определяется пропускной способностью канала, длинной связи и размером сообщения.

    Коммутаторы, а также соединяющие их каналы должны обеспечивать одновременную передачу данных нескольких абонентских каналов. Для этого они должны быть высокоскоростными и поддерживать какую-либо технику мультиплексирования абонентских каналов.

    Достоинства коммутации каналов:

    • постоянная и известная скорость передачи данных;
    • правильная последовательность прихода данных;
    • низкий и постоянный уровень задержки передачи данных через сеть.

    Недостатки коммутации каналов:

    • возможен отказ сети в обслуживании запроса на установление соединения;
    • нерациональное использование пропускной способности физических каналов, в частности невозможность применения пользовательской аппаратуры, работающей с разной скоростью. Отдельные части составного канала работают с одинаковой скоростью, так как сети с коммутацией каналов не буферизуют данные пользователей;
    • обязательная задержка перед передачей данных из-за фазы установления соединения.

    Коммутация сообщений – разбиение информации на сообщения, каждый из которых состоит из заголовка и информации.

    Это способ взаимодействия, при котором создается логический канал, путем последовательной передачи сообщений через узлы связи по адресу указанному в заголовке сообщения.

    При этом каждый узел принимает сообщение, записывает в память, обрабатывает заголовок, выбирает маршрут и выдает сообщение из памяти в следующий узел.

    Время доставки сообщения определяется временем обработки в каждом узле, числом узлов и пропускной способности сети. Когда заканчивается передача информации из узла А в узел связи В, то узел А становится свободным и может участвовать в организации другой связи между абонентами, поэтому канал связи используется более эффективно, но система управления маршрутизации будет сложной.
    Сегодня коммутация сообщений в чистом виде практически не существует.

    Коммутация пакетов - это особый способ коммутации узлов сети, который специально создавался для наилучшей передачи компьютерного трафика (пульсирующего трафика). Опыты по разработке самых первых компьютерных сетей, в основе которых лежала техника коммутации каналов, показали, что этот вид коммутации не предоставляет возможности получить высокую пропускную способность вычислительной сети. Причина крылась в пульсирующем характере трафика, который генерируют типичные сетевые приложения.

    При коммутации пакетов все передаваемые пользователем сети сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Необходимо уточнить, что сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл, и т. п. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт (EtherNet). Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения.

    Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета.

    Достоинства коммутации пакетов:

    • более устойчива к сбоям;
    • высокая общая пропускная способность сети при передаче пульсирующего трафика;
    • возможность динамически перераспределять пропускную способность физических каналов связи.

    Недостатки коммутации пакетов:

    • неопределенность скорости передачи данных между абонентами сети;
    • переменная величина задержки пакетов данных;
    • возможны потери данных из-за переполнения буферов;
    • возможны нарушения последовательности прихода пакетов.

    В компьютерных сетях применяется коммутация пакетов.

    Cпособы передачи пакетов в сетях:

    • Дейтаграммный способ – передача осуществляется как совокупность независимых пакетов. Каждый пакет двигается по сети по своему маршруту и пользователю пакеты поступают в произвольном порядке.
      • Достоинства: простота процесса передачи.
      • Недостатки: низкая надежность засчет возможности потери пакетов и необходимость программного обеспечения для сборки пакетов и восстановления сообщений.
    • Логический канал - это передача последовательности связанных в цепочки пакетов, сопровождающихся установкой предварительного соединения и подтверждением приема каждого пакета. Если i-ый пакет не принят, то все последующие пакеты не будут приняты.
    • Виртуальный канал – это логический канал с передачей по фиксированному маршруту последовательности связанных в цепочки пакетов.
      • Достоинства: сохраняется естественная последовательность данных; устойчивые пути следования трафика; возможно резервирование ресурсов.
      • Недостатки: сложность аппаратной части.

    В данной статье мы рассмотрели основные методы коммутации в вычислительных сетях, с описание каждого метода коммутации с указанием достоинст и недостатков.

    Соединение с коммутацией каналов -- вид телекоммуникационной сети, в которой между двумя узлами сети должно быть установлено соединение (канал), прежде чем они начнут обмен информацией. Это соединение на протяжении всего сеанса обмена информацией может использоваться только указанными двумя узлами. После завершения обмена соединение должно быть соответствующим образом разорвано.

    Типичным примером являются ранние телефонные сети. Абонент должен попросить оператора соединить его с другим абонентом, подключённым к тому же коммутатору или иному коммутатору через линию связи (и другому оператору). В любом случае, конечным результатом было физическое электрическое соединение между телефонными аппаратами абонентов в течение всего разговора. Проводник, задействованный для подключения, не мог быть использован для передачи других разговоров в это время, даже если абоненты на самом деле не разговаривали и на линии была тишина.

    Позже стало возможным уплотнение одной физической линии для образования в ней нескольких каналов. Несмотря на это, один канал уплотнённой линии также мог использоваться лишь одной парой абонентов.

    Преимущества:

    · высокая стабильность параметров канала во времени;

    · отсутствие необходимости в передаче служебной информации после установления соединения;

    · коммутация каналов может использоваться как в аналоговых, так и в цифровых сетях связи, в отличие от коммутации пакетами, которая возможна только в цифровых сетях.

    Коммутация каналов считается недостаточно эффективным способом коммутации, потому что канальная ёмкость частично расходуется на поддержание соединений, которые установлены, но (в настоящее время) не используются.

    Коммутация пакетов (англ. packet switching) -- разбиение сообщения на «пакеты», которые передаются отдельно. Разница между сообщением и пакетом: размер пакета ограничен технически, сообщения -- логически. При этом, если маршрут движения пакетов между узлами определён заранее, говорят о виртуальном канале (с установлением соединения). Пример: коммутация IP-пакетов. Если же для каждого пакета задача нахождения пути решается заново, говорят о датаграммном (без установления соединения) способе пакетной коммутации.

    При коммутации пакетов все передаваемые пользователем данные разбиваются передающим узлом на небольшие (до нескольких килобайт) пакеты (packet). Каждый пакет оснащается заголовком, в котором указывается, как минимум, адрес узла-получателя и номер пакета. Передача пакетов по сети происходит независимо друг от друга. Коммутаторы такой сети имеют внутреннюю буферную память для временного хранения пакетов, что позволяет сглаживать пульсации трафика на линиях связи между коммутаторами. Пакеты иногда называют дейтаграммами (datagram), а режим индивидуальной коммутации пакетов -- дейтаграммным режимом.

    Коммутация пакетов по сравнению с коммутацией сообщений позволяет реализовать более эффективную передачу данных за счёт следующих присущих ей достоинств:

    Меньшее время доставки сообщения в сети;

    Более эффективное использование буферной памяти в узлах;

    Более эффективная организация надёжной передачи данных; оо среда передачи не монополизируется одним сообщением на длительное время;

    Задержка пакетов в узлах меньше, чем задержка сообщений. Рассмотрим каждое из перечисленных достоинств более подробно. Уменьшение времени доставки сообщений при коммутации пакетов достигается за счёт параллельной передачи пакетов по каналам связи.

    Выигрыш во времени доставки обусловлен тем, что разные пакеты сообщения одновременно (параллельно) друг за другом перемещаются в последовательных каналах (рис. 6): когда пакет П1 находится в канале KC4, пакет П2 передаётся по каналу KC3, пакет П3 - по каналу KC2 и пакет П4 - по каналу KC1, что обеспечивает в процессе передачи пакетов уровень параллелизма, равный четырём. Ясно, что чем больше каналов связи на пути пакетов, тем выше уровень параллелизма и, следовательно, тем больше выигрыш.

    Рисунок 6 - Коммутация пакетов

    Более эффективная организация надежной передачи данных, по сравнению с коммутацией сообщений, обусловлена тем, что контроль передаваемых данных осуществляется для каждого пакета и в случае обнаружения ошибки повторно передается только один пакет, а не всё сообщение.

    Среда передачи не монополизируется одним сообщением на длительное время, поскольку длинное сообщение разбивается на пакеты ограниченной длины, которые передаются как независимые единицы данных. При этом механизм управления трафиком организуется таким образом, что после пакета одного сообщения по тому же каналу связи могут быть переданы пакеты других сообщений, а затем снова пакет первого сообщения. Это позволяет уменьшить среднее время ожидания пакетами освобождения канала связи и за счёт этого увеличить оперативность передачи данных. При этом, чем меньше предельно допустимая длина пакетов, тем выше указанный эффект.

    Достоинства коммутации пакетов:

    · эффективность использования пропускной способности;

    · меньшие затраты.

    Недостатки коммутации пакетов:

    · занимают линии связи;

    · уменьшение ее пропускной способности;

    Сеть с коммутацией пакетов замедляет процесс взаимодействия каждой конкретной пары узлов, поскольку их пакеты могут ожидать в коммутаторах, пока передадутся другие пакеты. Однако общая эффективность (объем передаваемых данных в единицу времени) при коммутации пакетов будет выше, чем при коммутации каналов. Это связано с тем, что трафик каждого отдельного абонента носит пульсирующий характер, а пульсации разных абонентов, в соответствии с законом больших чисел распределяются во времени, увеличивая равномерность нагрузки.

    Тема 3.3: Прикладные программы для создания Веб-сайтов

    Тема 3.4: Применение Интернет в экономике и защита информации

    Глобальные сети

    3.2. Сетевые технологии. Глобальные сети и технологии глобальных сетей

    3.2.1. Глобальные сети с коммутацией каналов и пакетов

    Глобальные сети Wide Area Networks (WAN), которые относятся к территориальными компьютерными сетями, предназначены, как и локальные сети для предоставления услуг, но значительно большему количеству пользователей, находящихся на большой территории.

    Методы коммутации

    В глобальных сетях существует три принципиально различные схемы коммутации:

    • коммутация каналов;
    • коммутация сообщений
    • коммутация пакетов;

    Коммутация каналов в глобальных сетях – процесс, который по запросу осуществляет соединение двух или более станций данных и обеспечивает монопольное использование канала передачи данных до тех пор, пока не произойдет разъединение. Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой – коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети.

    Коммутация сообщений в глобальных сетях – процесс пересылки данных, включающий прием, хранение, выбор исходного направления и дальнейшую передачу сообщений без нарушения их целостности. Используются в тех случаях, когда не ожидается немедленной реакции на сообщение. Сообщения передаются между транзитными компьютерами сети с временной буферизацией их на дисках каждого компьютера. Сообщениями называются данные, объединенные смысловым содержанием, имеющие определенную структуру и пригодные для обработки, пересылки или использования.

    Источниками сообщений могут быть голос, изображения, текст, данные. Для передачи звука традиционно используется телефон, изображений – телевидение, текста – телеграф (телетайп), данных – вычислительные сети. Установление соединения между отправителем и получателем с возможностью обмена сообщениями без заметных временных задержек характеризует режим работы online. При существенных задержках с запоминанием информации в промежуточных узлах имеем режим offline.

    Коммутация пакетов в глобальных сетях – это коммутация сообщений, представляемых в виде адресуемых пакетов, когда канал передачи данных занят только во время передачи пакета и по ее завершению освобождается для передачи других пакетов. Коммутаторы сети, в роли которых выступают шлюзы и маршрутизаторы, принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге станции назначения.

    В глобальных сетях для передачи информации применяются следующие виды коммутации:

    • коммутация каналов (используется при передаче аудиоинформации по обычным телефонным линиям связи;
    • коммутация сообщений (применяется в основном для передачи электронной почты, в телеконференциях, электронных новостях);
    • коммутация пакетов (для передачи данных, в настоящее время используется также для передачи аудио - и видеоинформации).

    Достоинством сетей коммутации каналов является простота реализации (образование непрерывного составного физического канала), а недостатком - низкий коэффициент использования каналов, высокая стоимость передачи данных, повышенное время ожидания других пользователей.

    При коммутации сообщений передача данных (сообщения) осуществляется после освобождения канала, пока оно не дойдет до адресата.

    Каждый сервер производит прием, проверку, сборку, маршрутизацию и передачу сообщения. К достоинствам можно отнести - уменьшение стоимости передачи данных. Недостатком данного способа является низкая скорость передачи информации, невозможность ведения диалога между пользователями.

    Пакетная коммутация подразумевает обмен небольшими пакетами (часть сообщения) фиксированной структуры, которые не дают возможности образования очередей в узлах коммутации. Достоинства: быстрое соединение, надежность, эффективность использования сети.

    4.

    Сети с коммутацией каналов и коммутацией пакетов: принципы работы и сравнение

    Сети с коммутацией каналов работают, образуя выделенное соединение (канал) между двумя точками. Например, телефонная сеть использует технологию с коммутацией каналов - телефонный вызов устанавливает канал от вызывающего телефона через локальную АТС, по линиям связи, к удаленной АТС, и, наконец, к вызываемому телефону. Пока существует канал, телефонное оборудование постоянно опрашивает микрофон. В случае цифровой сети данные от микрофона кодируются, и полученные значения в цифровой форме передаются его по этому каналу к получателю. Отправителю гарантируется, что опросы будут доведены и воспроизведены, так как канал обеспечивает скорость 64 Кбит/с, которой достаточно для передачи оцифрованного голоса.

    Связь при использовании коммутации каналов включает три фазы:

    4. Установление канала. Прежде, чем начнется передача данных, должен быть скоммутирован канал, соединяющий источник и получателя информации. При этом между узлами сети происходит обмен сигнализационной информацией. В результате этой фазы узлы вдоль установленного маршрута запоминают информацию о новом соединении.

    5. Передача данных. При этом каждый из промежуточных узлов использует информацию, сохраненную на этапе установления канала, для определения следующего узла, которому необходимо передать информацию, относящуюся к данному соединению. В телефонных сетях передача может происходить в аналоговом или цифровом виде. На разных звеньях связи может использоваться разный принцип передачи.

    6. Разъединение. Как правило, происходит по инициативе одной из сторон. В ходе разъединения сигнализационная информация передается вдоль всего маршрута. Благодаря этому противоположная сторона извещается о прекращении связи, а промежуточные узлы освобождают ресурсы, выделенные для данного соединения.

    Таким образом, в сети с коммутацией каналов ресурсы должны быть выделены перед тем, как начнется передача данных. Каждый из промежуточных узлов сети должен обладать достаточным количеством свободных ресурсов в требуемом направлении (одном из направлений в случае нескольких возможных маршрутов).

    Преимущество коммутации каналов заключается в ее гарантированной пропускной способности: как только канал создан, ни один сетевой процесс не уменьшит пропускной способности этого канала. Это же обстоятельство, однако, приводит и к серьезному недостатку сети с коммутацией каналов: потенциально неэффективному использованию каналов. Ресурсы сети занимаются даже в те моменты времени, в которые передачи данных не происходит. В случае голосового трафика использование канала может быть достаточно высоким, но в случае передачи данных между двумя компьютерами канал может простаивать большую часть времени. Также недостаток коммутации каналов заключается в наличии задержки перед передачей данных, требуемой для установления соединения. Однако после того как соединение установлено, данные могут передаваться с низкой задержкой, что является преимуществом данной архитектуры (таким образом, эти недостаток и преимущество вновь оказываются взаимосвязанными).

    Примерно в 1970 году начались исследования в области создания новой архитектуры для передачи цифровых данных на большие расстояниякоммутации пакетов . Толчком к этому послужила потребность в создании живучих сетей, сохраняющих работоспособность при выходе из строя ряда узлов, и, более того, самостоятельно приспосабливающихся к таким изменениям. Как и в случае со многими новыми технологиями, данная технология первоначально имела военное применение. Несмотря на то, что с тех пор технология коммутации пакетов подверглась существенному развитию, в основе ее лежат принципы, заложенные еще в сетях начала 1970-х годов.

    Сети с коммутацией каналов, созданные изначально для передачи голосового трафика, обладают рядом недостатков при использовании их для обмена данными между компьютерами:

    - Для соединений между компьютерами характерен крайне неравномерный характер трафика: большую часть времени линия бездействует, зато в отдельные моменты времени передается большое количество данных.

    - Канал имеет фиксированную пропускную способность, что ограничивает полезное использование сети.

    Сети с коммутацией пакетов, тип обычно используемый при соединении компьютеров, используют совершенно другой подход, чем сети с коммутацией каналов. В сетях с коммутацией пакетов трафик сети делится на небольшие части, называемые пакетами, которые объединяются в высокоскоростных межмашинных соединениях. Пакет, который обычно содержит только несколько сотен или тысяч байт данных, имеет идентификатор, который позволяет компьютерам в сети узнавать, предназначен ли он им, и если нет, то помогает им определить, как послать его в указанное место назначения. Например, файл, передаваемый между двумя машинами, может быть разбит на большое число пакетов, которые посылаются по сети по одному. Оборудование сети доставляет пакеты к указанному месту назначения, а сетевое программное обеспечение собирает пакеты опять в один файл.

    Преимущества коммутации пакетов заключаются в следующем:

    - Канал связи используется более эффективно. Пакеты, предназначенные для передачи, ставятся в очередь, а затем передаются так быстро, как это возможно.

    - Большое число соединений между компьютерами может работать одновременно, так как межмашинные соединения разделяются между всеми парами взаимодействующих машин. В то время как в сети с коммутацией каналов в случае сильной загрузки новые соединения перестали бы устанавливаться, в сети с коммутацией пакетов пакеты по-прежнему принимаются к передаче. При этом, однако, частота приема пакетов уменьшается, а время их доставки – увеличивается.

    - При коммутации пакетов возможно использование приоритетов: пакеты с большим приоритетом могут иметь, например, меньшую задержку.

    Недостатком сети с коммутацией пакетов является то, что по мере того как возрастает нагрузка в сети, данная пара взаимодействующих компьютеров получает все меньше сетевой пропускной способности. То есть, всякий раз, когда сеть с коммутацией пакетов становится перегруженной, компьютеры, использующие сеть, должны ждать, пока они не смогут послать следующие пакеты. Заметим, что данный недостаток напрямую связан с указанным выше достоинством – вместо фиксированной и гарантированной пропускной способности канала пользователи получают негарантированную пропускную способность, которая может увеличиваться или уменьшаться в зависимости от загрузки сети. Таким образом, негарантированная пропускная способность является платой за высокую эффективность использования сети. Заметим также, что в сетях с коммутацией пакетов возможно применение специальных алгоритмов, управляющих качеством обслуживания пользователей. Это позволяет давать пользователям определенные гарантии в отношении характеристик качества обслуживания, подобно тому, как их дают сети с коммутацией каналов.

    Независимая маршрутизация отдельных пакетов требует больших вычислительных ресурсов от узлов сети по сравнению с сетью с коммутацией каналов, однако позволяет уменьшить накладные расходы на начало обслуживания новой пары пользователей.

    Несмотря на потенциальный недостаток негарантированной сетевой пропускной способности, сети с коммутацией пакетов стали очень популярными. Причинами их широкого использования являются стоимость и производительность. В связи с тем, что к сети может быть подключено большое число машин, требуется меньше соединений и стоимость остается низкой. Так как инженеры смогли создать высокоскоростное сетевое оборудование, с пропускной способностью обычно проблем не возникает.

    Сравнительные характеристики сетей с коммутацией каналов и коммутацией пакетов можно свести в таблицу:

    Комм. каналов

    Комм. пакетов

    Пропускная способность канала

    Гарантирована

    Не гарантирована

    Эффективность использования канала

    Низкая (в общем случае)

    Высокая

    Первоначальные затраты на поток данных

    Высокие

    Низкие

    Текущие затраты на поток данных

    Низкие

    Высокие

    Как видно из вышесказанного, оба подхода – и коммутация каналов, и коммутация пакетов – обладают своими преимуществами и недостатками, причем зачастую одни и те же их характеристики могут выступать как преимущества или недостатки в зависимости от характера передаваемого трафика. Характеристиками трафика, делающими предпочтительным вариантом коммутацию каналов, являются:

    - Постоянная требуемая пропускная способность.

    - Чувствительность к задержке доставки.

    Трафик, обладающий перечисленными характеристиками, называется потоковым (stream ). Таковым является трафик в телефонных сетях. Многие мультимедийные приложения также создают потоковый трафик, например, передача звука или видео по сети.

    В противоположность потоковому трафику, коммутация пакетов наиболее эффективна при следующих характеристиках трафика:

    - Сильные перепады в скорости передачи информации.

    - Задержка доставки обладает второстепенной значимостью, на первом месте стоит пиковая скорость передачи.

    Такой трафик характерен, например, для передачи файлов или для просмотра страниц в Internet .

    Анализ показывает, что задержка доставки информации в сети с коммутацией пакетов ниже, чем в сети с коммутацией каналов, при малых нагрузках в сети и в некотором диапазоне длин пакетов. При большой нагрузке в сети и при передаче длинных блоков данных коммутация каналов является более эффективной.

    Наконец, отметим, что сервис, подобный сервису, предоставляемому сетью с коммутацией каналов, может быть предоставлен и сетью с коммутацией пакетов. При этом используются т.н. виртуальные каналы. Прежде, чем приступить к передаче данных, в сети определяется маршрут, по которому она будет происходить, и все узлы вдоль этого маршрута выделяют для нового соединения требуемое количество ресурсов и сохраняют информацию об этом соединении. После этого начинается передача данных. Данные передаются в виде пакетов, однако эти пакеты коммутируются не независимо, как это происходит в сети с коммутацией каналов, а передаются по заранее проложенному маршруту. После завершения передачи данных использовавшийся для нее канал разрушается. Таким образом, создается канал, соединяющий двух пользователей, работающий поверх пакетной сети. Такой канал называется виртуальным. Среднее значение и дисперсия времени доставки пакетов при использовании виртуального канала будут меньше, чем в случае независимой коммутации каждого отдельного пакета, поскольку ресурсы сети для передачи этих пакетов выделены заранее, а обработка пакетов осуществляется более простым образом. Таким образом, в сетях с коммутацией виртуальных каналов происходит перераспределение функциональности по сравнению с сетями с коммутацией пакетов: имеются определенные накладные расходы на установление соединения, но дальнейшая маршрутизация информации очень проста – данные передаются в соответствии с уже определенным маршрутом.

    Технология коммутации виртуальных каналов позволяет устранить ряд недостатков, свойственных сетям с коммутацией каналов: виртуальные каналы могут обладать переменной пропускной способностью, что позволяет более гибко выбирать способ обслуживания пользователей в сети в зависимости от их потребностей. В результате предоставление гарантированных характеристик канала (в т.ч. пропускной способности) может сочетаться с высокой эффективностью использования сети. Более подробно об этом будет сказано в разделе, посвященном сетям ATM .