• Основы компиляторов. Что это - компилятор, и как он работает

    Современные компьютерные технологии находятся в постоянной стадии совершенствования. С каждым днем выходят все новые и новые технологии, позволяющие воплотить в жизнь то, что еще недавно определялось как фантастика. Сильным изменениям поддаются и языки, как человеческие, так и компьютерные. В данной статье мы подробно расскажем, что это – компилятор, как с ним работать, для чего он создавался и где его сейчас можно встретить. Статья рекомендуется не только начинающим пользователям операционной системы Windows, но и программистам, желающим познать скрытые знания своей системы.

    Язык для операционной системы

    Для начала стоит абстрагироваться, ведь программирование – это не только вбивание определенных ключей-слов в машину, это еще и тщательно продуманные действия, связанные с компонентами системы. Изначально был двоичный код, потом программисты создали полумашинный язык программирования – ассемблер, но для чего?

    Представьте себе, что вам надо считать на калькуляторе программиста каждый бит, потом правильно его связывать и многое другое. В ассемблере все стало чуточку проще, но все еще очень и очень непросто, если сравнивать с современными языками программирования, например, С++, который называют одним из сложнейших, но про него речь пойдет чуть позже.

    В языке ассемблер все осуществляется благодаря регистрам процессора: деление, умножение, перемещение значения из точки А в точку Б и т. д. Основная его проблема, что он все еще является полумашинным, но все равно поддается прочтению человеку, в отличии от хаотично раскиданных битов. Еще одним минусом было ограниченное количество этих самых регистров.

    В 80-х годах решили придумать язык программирования, благодаря которому можно будет легко и просто написать операционную систему. Так появился С и компилятор С GCC от компании GNU. Если вы пользуетесь Linux, то обязательно должны были видеть продукты данной компании. Кстати, ассемблер используется и поныне, ведь некоторые компиляторы создают объектные файлы с двоичным кодом, а другие исполнительные – с кодом на ассемблере. Все зависит от платформы разработчика.

    Современный компилятор имеет следующие программы в себе:

      Дебагер – программа, которая отправляет сообщения об ошибке от линковщика, препроцессора, интерпретатора. Препроцессор – это программа, главной задачей которой является поиск специальных меток, начинающихся со знака #, и выполнение определенного рода команд. Например, добавления сторонней библиотеки для компиляции проекта. Интерпретатор – программа, которая переводит наш более-менее понятный язык программирования в двоичный код или ассемблер. Линковщик – программа, благодаря которой недостающие файлы автоматически подключаются.

    Также существует 2 типа сборки проекта компилятором: динамическая и статическая. В первой добавляются лишь нужные проекту файлы, несмотря на среду разработки, а во втором случае - все в кучу (подключенные, конечно). Итак, из этого уже можно сказать, что компилятор – это целый список программ для сбора и обработки информации в понятный и логичный для компьютера вид. Дальше мы рассмотрим, с чего все начиналось.

    Первые простейшие компиляторы

    Может, вы удивитесь, но впервые объект нашей статьи (тогда его еще называли транслятор) появился в далеком 1954 году в Институте, специализирующемся на прикладной математике. Он включал в себя не настолько большой комплекс программ, как сейчас, но все равно был прорывом в науке на то время. Там не было дебагера, поэтому людям приходилось все делать буквально руками, причем используя при этом стандартную и дискретную математику, чтобы узнать, правильный ли результат получила электронно-вычислительная машина.


    Возможна ли сборка без нового языка?

    Если вы достаточно толковый программист, то вполне сможете выполнить эту задачу. Правда, для этого понадобится немало времени и сил. Кстати, раньше даже была профессия такая – программист-линковщик. Это только в новых языках программирования все автоматизировано, а раньше людям приходилось связывать куски кода Make файлами. Между прочим, некоторые проекты на Linux и сейчас можно собрать с помощью этих самых Make-файлов, нужно лишь указать их зависимости вручную.


    После сбора кода линковщик отдавал работу уже компьютеру на обработку, где в итоге получал готовый бинарный код.

    Как видите, компилятор – это не только программа, а еще и усилия множества людей. А они, как утверждал Генри Форд, пытаются автоматизировать каждый процесс.

    Лучший компилятор Windows

    Итак, многие из читателей знают, что существует множество мертвых языков, но еще больше живых, т. е. тех, которые хотя бы раз в год обновляют свою стандартную библиотеку. Как мы уже говорили, в 1980 году был создан С - это был прорыв. Многие наши отцы до сих пор обожают данный язык, но что с ним теперь?

    Он живет и процветает в новом теле, если так можно сказать. Его наследником по праву является С++, хоть и его создателя воспрещают писать на нем код, похожий на С, многие программисты игнорирует это и делают, но почему допускается такое грубое нарушение правил?


      Во-первых, он взял солидную долю стандартных библиотек от С, и новые компиляторы G++ способны компилировать код С, что уже само по себе указывает на их схожесть. Во-вторых, С++ был создан, чтоб заместить С, и итоги этого мы видим сейчас. К слову, программа компилятор G++ не "ругается" до тех пор, пока не будет использован хотя бы один класс – в этом и есть основное отличие двух языков. Можно назвать G++ лучшим компилятором, не зря ведь благодаря ему пишут мобильные приложения, операционную систему Windows и т. д.

    Ваш путь будет тернист – это стоит знать прежде всего. Для начала работы с языком, например, если это С, вы обязательно должны будете ознакомиться с компилятором C. А если с ним не подружиться и не понять его логику, то ваши проекты один за одним будут лагать и вылетать.


    Попытайтесь как можно больше читать книг не только про основы программирования, но и про историю создания языков, так вы обязательно начнете понимать саму суть процесса. Старайтесь совмещать практику и новые знания, так все куда быстрее запоминается. Кроме того, постарайтесь довести свой английский хотя бы до среднего уровня, иначе вам будет очень сложно в ориентировании по IDE.

    В заключение

    Надеемся, после прочтения данной статьи вы поняли, что это – компилятор, как он работает, зачем создавался и кому по сей день нужен. Стоит напомнить, что самое главное для программиста – это понимание ситуации, понимание основных принципов, поэтому очень надеемся, что статья вам в этом помогла.

    Общие замечания к интерпретаторам

    Разработка интерпретаторов для интерпретации программ на заданном исходном языке является одной из основных задач информатики. Сте­пень трудности проблемы реализации интерпретатора зависит от сложно­сти исходного языка и степени его отличия от базисного языка, на кото­ром должен быть записан сам интерпретатор.

    Чтобы обеспечить корректность интерпретатора, при его проектиро­вании мы должны исходить из семантического определения интерпрети­руемого языка или по меньшей мере верифицировать его на соответствие этому. Обратим внимание на то, что математическое определение семан­тики ЯП аналогично интерпретирующим программам.

    Особое положение занимают интерактивные, инкрементальные (поша­говые) интерпретаторы. Для них не обязательно требуется сначала подго­товить всю программу целиком, включая вводимые данные, и только по­том ее интерпретировать. При интерактивной интерпретации можно программу и входные данные приготовить отдельными частями и полу­ченную часть - насколько это возможно - тут же проинтерпретировать (ЯП ВASIC специально ориентирован на инкрементальную интерпретацию).

    Сейчас все ближе подходят к созданию интерпретаторов для таких языков, которые выглядят не так, как классические ЯП, ориентирован­ные на вычисления. В частности, в результате длительных исследований стала возможной интерпретация определенных языков, ориентированных скорее на спецификации, а не на вычисления (например, язык ПРОЛОГ, который служит для составления программ в машинно-интерпретируемой логике). Впрочем, для таких языков имеются определенные непре­одолимые преграды из-за границ вычислимости и сложности, которые для многих постановок задач делают практически невозможным исполь­зование этих языков.

    Компилятор берет программу на исходномязыке в качестве своих входных данных и вырабатывает программу на объектном языке, понятном машине.

    Если программу, написанную на ЯП высокого уровня, мы хотим выпол­нять многократно, со все новыми исходными данными, то часто бывает эффективнее программу не интерпретировать, а сначала перевести на уже реализованный язык, возможно более близкий к машинному языку, а затем уже выполнять порожденную таким образом программу. Такой способ позволяет лучше приспособить программу к структуре фактиче­ски используемой машины и тем самым добиться далеко идущей ее оп­тимизации. В принципе такой перевод можно осуществить вручную, од­нако это требует больших затрат времени и при этом могут быть допуще­ны ошибки. Поэтому для этой цели используются специальные переводящие программы, называемые переводчиками или компиляторами (англ. соmputer).



    Компилятор и интерпретатор обычно являются довольно сложными программами, которые воспринимают программу на исходном языке в форме текста, устанавливают внутреннюю структуру так заданной про­граммы, проверяя при этом ее синтаксическую корректность (синтак­сический анализ), и переводят программу на другой (объектный) язык или выполняют эту программу путем соответствующих действий.

    ЯП определяется его синтаксисом и семантикой. В процессе компи­ляции или интерпретации программа, понимаемая как синтаксический объект, берется в качестве входных данных и в соответствии с ее семан­тикой превращается в программу на другом языке или в последователь­ность действий (процесс выполнения).

    Языки программирования бывают высокого и низкого уровней.

    Языки, ориентированные на конкретный тип процессора и учитывающие его осо­бенности называются языками низкого уровня. Каждая команды языка низкого уровня не­посредственно реализует одну команду микропроцессора, и они всегда ориентированны на систему команд конкретного микропроцессора. Языком самого низкого уровня является язык ассемблера, который просто представляет каждую команду машинного кода, но не в виде чисел, а с помощью символьных условных обозначений, называемых мнемониками.

    Языки высокого уровня позволяют задавать желаемые действия в программе с по­мощью определенного набора операторов. Они значительно ближе и понятнее человеку, чем компьютеру. Каждая команда такого языка может состоять из десятка и более команд микропроцессо­ра. Писать программы на ЯП ВУ легче.


    1 – машинно-зависимые (Ассемблер). Языки низкого уровня.

    2 – машинно-ориентированные (Си)

    3 – универсальные (Фортран, Паскаль, Basic)

    4 - проблемно-ориентированные (GPSS, Лого, объектно-ориентированные (форт, Смолток))

    5,6,7 – (Пролог, Лисп, СНОБОЛ).

    Си, Си++ - вся машинно-зависимая часть программы достаточно легко локализуется и модифицируется при переносе программы на другую архитектуру.

    Фортран – первый язык высокого уровня (1958г., фирма IBM), используется и до сих пор, поддерживает модульное программирование, особенно предпочитается математиками.

    Паскаль – один из наиболее популярных в учебных целях (Н.Вирт), реализует большинство идей структурного программирования.

    Бейсик – для начинающих программистов, приближен к разговорному английскому языку, поддерживает модульное и структурное программирование.

    Лого , среди проблемно-ориентированных языков – используется в основном для целей обучения. Это диалоговый процедурный язык (простой синтаксис).

    GPSS – ориентирован на моделирование систем с помощью событий. Применяется там, где результаты исследований выражаются в терминах времени ожидания, длины очереди, использование ресурсов.

    Смолток – один из ранних ОО ЯП, основная конструкция – это объект и действия с ним, предназначен для нечисловых задач (при построении систем искусственного интеллекта).

    Форт – используется при решении задач имитационного моделирования в графических системах.

    Языки функциональной группы используются в основном в системах искусственного интеллекта. У них мощная инструментальная поддержка, быстрый компилятор, встроенные средства организации многооконного режима, графика высокого разрешения, развитый набор математических функций.

    Пролог – язык ИИ, даются термины и связи, а с его помощью создаются новые.

    Лисп – имеет мощные графические конструкции, позволяет создавать программы проектирования (деталей, например). Он ориентирован на конструкторскую деятельность. Имеет библиотеку примитивов.

    СНОБОЛ – язык ИИ.

    Поколения языков программирования

    Все языки программирования принято делить на 5 поколений.

    1. Начало 50-х годов. Появились первые компьютеры и первые языки ассемблера, в которых программирование велось по принципу «Одна инструкция - одна строка».

    2. Конец 50-х начало 60-х годов. Разработан символический Ассемблер, в котором появилось понятие переменной. Возросла скорость разработки и надежность программ.

    3. 60-е года. Рождение языков высокого уровня. Простота программирования, не­зависимость от конкретного компьютера, новые мощные языковые конструк­ции.

    4. Начало 70-х и по настоящее время. Проблемно-ориентированные языки, опери­рующие конкретными понятиями узкой предметной области. Мощные операто­ры, для которых на языках младшего поколения потребовались тысячи строк исходного кода.

    5. Середина 90-х. Системы автоматического создания прикладных программ с помощью визуальных средств разработки, без знания программирования. Инст­рукции вводятся в компьютер в наглядном виде с помощью методов, наиболее удобных для человека незнакомого с программированием.

    В нашем институте на различных курсах вы научитесь программировать на различных языках программирования.

    Все программы для компьютера представляют собой набор команд процессора, которые состоят из определенного набора бит. Этих команд несколько сотен и с помощью них выполняются все действия на вашем компьютере. Но писать программы непосредственно с помощью этих команд сложно. Поэтому были придуманы различные языки программирования, которые проще для восприятия человеку.

    Для подготовки программы к выполнению, специальная программа собирает ее из исходного кода на языке программирования в машинный код - команды процессора. Этот процесс называется компиляция. Linux - это свободное программное обеспечение, а поэтому исходные коды программ доступны всем желающим. Если программы нет в репозитории или вы хотите сделать что-то нестандартное, то вы можете выполнить компиляцию программы.

    В этой статье мы рассмотрим, как выполняется компиляция программ Linux, как происходит процесс компиляции, а также рассмотрим насколько гибко вы сможете все настроить.

    Мы будем компилировать программы, написанные на Си или С++, так как это наиболее используемый язык для программ, которые требуют компиляции. Мы уже немного рассматривали эту тему в статье установка из tar.gz в Linux, но та статья ориентирована больше на новичков, которым нужно не столько разобраться, сколько получить готовую программу.

    В этой же статье тема рассмотрена более детально. Как вы понимаете, для превращения исходного кода в команды процессора нужно специальное программное обеспечение. Мы будем использовать компилятор GCC. Для установки его и всех необходимых инструментов в Ubuntu выполните:

    sudo apt install build-essential manpages-dev git automake autoconf

    Затем вы можете проверить правильность установки и версию компилятора:

    Но перед тем как переходить к самой компиляции программ рассмотрим более подробно составляющие этого процесса.

    Как выполняется компиляция?

    Компиляция программы Linux - это довольно сложный процесс. Все еще сложнее, потому что код программы содержится не в одном файле и даже не во всех файлах ее исходников. Каждая программа использует множество системных библиотек, которые содержат стандартные функции. К тому же один и тот же код должен работать в различных системах, содержащих различные версии библиотек.

    На первом этапе, еще до того как начнется непосредственно компиляция, специальный инструмент должен проверить совместима ли ваша система с программой, а также есть ли все необходимые библиотеки. Если чего-либо нет, то будет выдана ошибка и вам придется устранить проблему.

    Дальше идет синтаксический анализ и преобразование исходного кода в объектный код, без этого этапа можно было бы и обойтись, но это необходимо, чтобы компилятор мог выполнить различные оптимизации, сделать размер конечной программы меньше, а команды процессора эффективнее.

    Затем все объектные файлы собираются в одну программу, связываются с системными библиотеками. После завершения этого этапа программу остается только установить в файловую систему и все. Вот такие основные фазы компиляции программы, а теперь перейдем ближе к практике.

    Компиляция программ Linux

    Первое что нам понадобиться - это исходники самой программы. В этом примере мы будем собирать самую последнюю версию vim. Это вполне нейтральная программа, достаточно простая и нужная всем, поэтому она отлично подойдет для примера.

    Получение исходников

    Первое что нам понадобиться, это исходные коды программы, которые можно взять на GitHub. Вы можете найти исходники для большинства программ Linux на GitHub. Кроме того, там же есть инструкции по сборке:

    Давайте загрузим сами исходники нашей программы с помощью утилиты git:

    git clone https://github.com/vim/vim

    Также, можно было скачать архив на сайте, и затем распаковать его в нужную папку, но так будет удобнее. Утилита создаст папку с именем программы, нам нужно сделать ее рабочей:

    Настройка configure

    Дальше нам нужно запустить скрипт, который проверит нашу программу на совместимость с системой и настроит параметры компиляции. Он называется configure и поставляется разработчиками программы вместе с исходниками. Весь процесс компиляции описан в файле Makefile, его будет создавать эта утилита.

    Если configure нет в папке с исходниками, вы можете попытаться выполнить такие скрипты чтобы его создать:

    ./bootstrap
    $ ./autogen.sh

    Также для создания этого скрипта можно воспользоваться утилитой automake:

    aclocal
    $ autoheader
    $ automake --gnu --add-missing --copy --foreign
    $ autoconf -f -Wall

    Утилита automake и другие из ее набора генерируют необходимые файлы на основе файла Mackefile.am. Этот файл обязательно есть в большинстве проектов.

    После того как вы получили configure мы можем переходить к настройке. Одним из огромных плюсов ручной сборки программ есть то, что вы можете сами выбрать с какими опциями собирать программу, где она будет размещена и какие дополнительные возможности стоит включить. Все это настраивается с помощью configure. Полный набор опций можно посмотреть, выполнив:

    ./configure --help

    Рассмотрим наиболее часто используемые, стандартные для всех программ опции:

    • --prefix=PREFIX - папка для установки программы, вместо /, например, может быть /usr/local/, тогда все файлы будут распространены не по основной файловой системе, а в /usr/local;
    • --bindir=DIR - папка для размещения исполняемых файлов, должна находится в PREFIX;
    • --libdir=DIR - папка для размещения и поиска библиотек по умолчанию, тоже в PREFIX;
    • --includedir=DIR - папка для размещения man страниц;
    • --disable-возможность - отключить указанную возможность;
    • --enable-возможность - включить возможность;
    • --with-библиотека - подобно enable активирует указанную библиотеку или заголовочный файл;
    • --without-библиотека - подобное disable отключает использование библиотеки.

    Вы можете выполнить configure без опций, чтобы использовать значения по умолчанию, но также можете вручную указать нужные пути. В нашем случае./configure есть, и мы можем его использовать:

    Во время настройки утилита будет проверять, есть ли все необходимые библиотеки в системе, и если нет, вам придется их установить или отключить эту функцию, если это возможно. Например, может возникнуть такая ошибка: no terminal library found checking for tgetent()... configure: error: NOT FOUND!

    В таком случае нам необходимо установить требуемую библиотеку. Например, программа предлагает ncurses, поэтому ставим:

    sudo apt install libncurces-dev

    Приставка lib всегда добавляется перед библиотеками, а -dev - означает, что нам нужна библиотека со всеми заголовочными файлами. После удовлетворения всех зависимостей настройка пройдет успешно.

    Сборка программы

    Когда настройка будет завершена и Makefile будет готов, вы сможете перейти непосредственно к сборке программы. На этом этапе выполняется непосредственно преобразование исходного кода в машинный. Утилита make на основе Makefile сделает все необходимые действия:

    После этого программа будет установлена в указанную вами папку, и вы сможете ее использовать. Но более правильный путь - создавать пакет для установки программы, это делается с помощью утилиты checkinstall, она позволяет создавать как deb, так и rpm пакеты, поэтому может использоваться не только в Ubuntu. Вместо make install выполните:

    Затем просто установите получившийся пакет с помощью dpkg:

    sudo dpkg install vim.deb

    После этого сборка программы полностью завершена и установлена, так что вы можете переходить к полноценному использованию.

    Если вы устанавливали программу с помощью make install, то удалить ее можно выполнив в той же папке обратную команду:

    sudo make uninstall

    Команда удалит все файлы, которые были скопированы в файловую систему.

    Выводы

    В этой статье мы рассмотрели, как выполняется компиляция программы Linux. Этот процесс может быть сложным для новичков, но в целом, все возможно, если потратить на решение задачи несколько часов. Если у вас остались вопросы, спрашивайте в комментариях!

    На завершение видео о том, что такое компилятор и интерпретатор:

    Одной из ключевых характеристик PHP является то, что это интерпретируемый язык программирования. С другой стороны, языки программирования наподобие C , изначально разрабатывались для компиляции. Что это значит?

    Компилируется ли язык программирования или интерпретируется, на самом деле это не зависит от природы языка программирования. Любой язык программирования может интерпретироваться так называемым интерпретатором или компилироваться с помощью так называемого компилятора.

    Рабочий цикл программы

    При использовании любого языка программирования существует определенный рабочий цикл создания кода. Вы пишете его, запускаете, находите ошибки и отлаживаете. Таким образом, вы переписываете и дописываете программу, проверяете ее. То, о чем пойдет речь в этой статье, это «запускаемая » часть программы.

    Когда пишете программу, вы хотите, чтобы ее инструкции работали на компьютере. Компьютер обрабатывает информацию с помощью процессора, который поэтапно выполняет инструкции, закодированные в двоичном формате. Как из выражения «a = 3; » получить закодированные инструкции, которые процессор может понять?

    Мы делаем это с помощью компиляции. Существует специальные приложения, известные как компиляторы. Они принимают программу, которую вы написали. Затем анализируют и разбирают каждую часть программы и строят машинный код для процессора. Часто его также называют объектным кодом.

    На одном из этапов процесса обработки задействуется компоновщик, принимающий части программы, которые отдельно были преобразованы в объектный код, и связывает их в один исполняемый файл. Вот схема, описывающая данный процесс:

    Конечным элементом этого процесса является исполняемый файл. Когда вы запускаете или сообщаете компьютеру, что это исполняемый файл, он берет первую же инструкцию из него, не фильтрует, не преобразует, а сразу запускает программу и выполняет ее без какого-либо дополнительного преобразования. Это ключевая характеристика процесса компиляции — его результат должен быть исполняемым файлом, не требующим дополнительного перевода, чтобы процессор мог начать выполнять первую инструкцию и все следующие за ней.

    Первые компиляторы были написаны непосредственно через машинный код или с использованием ассемблеров. Но цель компилятора очевидна: перевести программу в исполняемый машинный код для конкретного процессора.

    Некоторые языки программирования разрабатывались с учетом компиляции. C , например, предназначался для того, чтобы дать возможность программистам с легкостью реализовать разные вещи. Но в итоге он разрабатывался таким образом, чтобы его можно было легко перевести на машинный код. Компиляция в программировании это серьезно!

    Не все языки программирования учитывают это в своей концепции. Например, Java предназначался для запуска в «интерпретирующей » среде, а Python всегда должен интерпретироваться.

    Интерпретация программы

    Альтернативой компиляции является интерпретация. Основная разница между компилятором и интерпретатором заключается в том, как они работают. Компилятор берет всю программу и преобразует ее в машинный код, который понимает процессор.

    Интерпретатор — это исполняемый файл, который поэтапно читает программу, а затем обрабатывает, сразу выполняя ее инструкции.

    Другими словами, интерпретатор выполняет программу поэтапно как часть собственного исполняемого файла. Объектный код не передается процессору, интерпретатор сам является объектным кодом, построенным таким образом, чтобы его можно было вызвать в определенное время.

    Это ломает рабочий цикл, который был приведен на диаграмме выше. Теперь у нас есть новая диаграмма:


    На ней мы видим, что в отличие от компилятора, интерпретатор всегда должен быть под рукой, чтобы мы могли вызвать его и запустить нашу программу. В некотором смысле интерпретатор становится процессором. Программы, написанные для интерпретации, называются «скриптами », потому что они являются сценариями действий для другой программы, а не прямым машинным кодом.

    Например, так работают такие языки программирования, как Python . Вы пишете программу. Затем вводите код в интерпретатор Python , и он выполняет все описанные вами шаги. В командной строке вы можете ввести примерно следующее:

    C:>python myprogram.py

    В этой команде Python — это исполняемый файл. Вы вводите в него все, что находится в файле myprogram.py, и он выполняет эти инструкции. Компьютер не запустит myprogram.py без Python . Это не машинный код, который понимает процессор. Можно скомпилировать программы Python в объектный или машинный код и запустить его непосредственно в процессоре. Но эта процедура включает в себя компиляцию кода и добавление в качестве ее части всего интерпретатора Python .

    Природа интерпретатора

    Интерпретаторы могут создаваться по-разному. Существуют интерпретаторы, которые читают исходную программу и не выполняют дополнительной обработки. Они просто берут определенное количество строк кода за раз и выполняют его.

    Некоторые интерпретаторы выполняют собственную компиляцию, но обычно преобразуют программу байтовый код, который имеет смысл только для интерпретатора. Это своего рода псевдо машинный язык, который понимает только интерпретатор.

    Такой код быстрее обрабатывается, и его проще написать для исполнителя (части интерпретатора, которая исполняет ), который считывает байтовый код, а не код источника.

    Есть интерпретаторы, для которых этот вид байтового кода имеет более важное значение. Например, язык программирования Java «запускается » на так называемой виртуальной машине. Она является исполняемым кодом или частью программы, которая считывает конкретный байтовый код и эмулирует работу процессора. Обрабатывая байтовый код так, как если бы процессор компьютера был виртуальным процессором.

    У меня есть эмулятор для игровой приставки NIntendo . Когда я загружаю ROM-файл Dragon Warrior , он форматируется в машинный код, который понимает только процессор NES . Но если я создаю виртуальный процессор, который интерпретирует байтовый код во время работы на другом процессоре, я могу запустить Dragon Warrior на любой машине с эмулятором.

    Это использует концепция компиляции Java , а также все интерпретаторы. На любом процессоре, для которого я могу создать интерпретатор / эмулятор, можно запускать мои интерпретируемые программы / байтовый код. В этом заключается основное преимущество интерпретатора над компилятором.

    За и против

    Основным аргументом за использование процесса компиляции является скорость. Возможность компилировать любой программный код в машинный, который может понять процессор ПК, исключает использование промежуточного кода. Можно запускать программы без дополнительных шагов, тем самым увеличивая скорость обработки кода.

    Но наибольшим недостатком компиляции является специфичность. Когда компилируете программу для работы на конкретном процессоре, вы создаете объектный код, который будет работать только на этом процессоре. Если хотите, чтобы программа запускалась на другой машине, вам придется перекомпилировать программу под этот процессор. А перекомпиляция может быть довольно сложной, если процессор имеет ограничения или особенности, не присущие первому. А также может вызывать ошибки компиляции.

    Основное преимущество интерпретации — гибкость. Можно не только запускать интерпретируемую программу на любом процессоре или платформе, для которых интерпретатор был скомпилирован. Написанный интерпретатор может предложить дополнительную гибкость. В определенном смысле интерпретаторы проще понять и написать, чем компиляторы.

    С помощью интерпретатора проще добавить дополнительные функции, реализовать такие элементы, как сборщики мусора, а не расширять язык.

    Другим преимуществом интерпретаторов является то, что их проще переписать или перекомпилировать для новых платформ.

    Написание компилятора для процессора требует добавления множества функций, или полной переработки. Но как только компилятор написан, можно скомпилировать кучу интерпретаторов и на выходе мы имеем перспективный язык. Не нужно повторно внедрять интерпретатор на базовом уровне для другого процессора.

    Самым большим недостатком интерпретаторов является скорость. Для каждой программы выполняется так много переводов, фильтраций, что это приводит к замедлению работы и мешает выполнению программного кода.

    Это проблема для конкретных real-time приложений, таких как игры с высоким разрешением и симуляцией. Некоторые интерпретаторы содержат компоненты, которые называются just-in-time компиляторами (JIT ). Они компилируют программу непосредственно перед ее исполнением. Это специальные программы, вынесенные за рамки интерпретатора. Но поскольку процессоры становятся все более мощными, данная проблема становится менее актуальной.

    Заключение

    Имейте всегда в виду, что некоторые языки программирования специально предназначены для компиляции кода, например, C . В то время как другие языки всегда должны интерпретироваться, например Java .

    Для меня не имеет значения, скомпилировано что-то или интерпретировано, если оно может выполнить задачу эффективно.

    Некоторые системы не предлагают технические условия для эффективного использования интерпретаторов. Поэтому вы должны запрограммировать их с помощью чего-то, что может быть непосредственно скомпилировано, например C . Иногда нужно выполнить вычисления настолько интенсивно, насколько это возможно. Например, при точном распознавании голоса роботом. В других случаях скорость или вычислительная мощность могут быть не столь критичными, и написать эмулятор на оригинальном языке может быть проще.

    Если вы только начинаете изучать программирование или же просто интересовались данным вопросом, наверняка вам на глаза попадалось таинственное слово «компилятор». Это с виду страшное понятие способно отпугнуть людей. В данной статье постараемся разобраться, так ли все ужасно. Что такое компилятор?

    Определение и история появления

    Если говорить простыми словами, то компилятором является программа, преобразующая текст программы, написанной пользователем, в некоторую форму, которая пригодна для выполнения на вычислительной машине.

    Появились такие программы вместе с зарождением первых языков программирования. Произошло это в конце 50-х годов. Получается, что история, которая связана с компиляторами и языками программирования насчитывает уже более шести десятков лет. Несмотря на такой серьезный срок, данное направление компьютерной науки ни в коем случае нельзя назвать устаревшим или устоявшимся. Наоборот, с ходом времени, с появлением новых отраслей и задач, для решения которых применяются компьютеры, возникает потребность в разработке новых, более удобных языков программирования. Соответственно, для этих языков нужны компиляторы. Windows, Linux, MacOS - для каждой платформы существуют свои разработки.

    Принцип работы

    Исходный текст, написанный разработчиком на языке высокого уровня, преобразуется в программу на специальном машинном языке. Полученный код называется исполняемой программой. Ее можно устанавливать и запускать на любом компьютере, не делая больше никаких преобразований.

    Просто, но сложно

    По традиции, компиляторы в информатике являются одной из базовых вещей вместе с операционными системами, а также базами данных. Что такое в каком-то смысле базис компьютерной науки.

    С другой точки зрения, сама тема создания таких программ подразумевает большое число теоретических и технологических аспектов, которые связаны с программированием. Многие разработчики полагают, что эта тема вообще является самой привлекательной во всей информатике. Когда программист разрабатывает какую-либо программу, которая решает некую задачу, он пишет ее на определенном языке. В процессе разработки он оперирует терминами, близкими именно к той области, с которой приходится иметь дело. Компьютер совсем не понимает того, что ему говорит человек. Он способен разобраться лишь в достаточно простых вещах, к которым можно отнести числа и переменные, ячейки и регистры, постоянную и временную память. Что такое программа, задача которой - перевод понятий, близких к разработчика в понятия, которыми способен манипулировать компьютер.

    Именно такой задачей занимается компилятор Java или любого другого языка программирования. При каждом появлении нового языка возникает нужда в переводе кода, написанного на нем, в тот вид, который сможет понять компьютер. Иначе он ее не выполнит. Ведь всегда присутствует семантический зазор между понятиями человека и компьютера. Именно для его преодоления и предназначены компиляторы языка программирования.

    Трудности в создании

    Создатели таких программ сталкиваются с самыми различными проблемами. Это и научные проблемы, которые связаны с правильным отображением понятий прикладной области. Это и инженерные, и технологические проблемы, связанные с реализацией этого самого отображения.

    Задача создания компилятора состоит из множества разнородных подзадач. Это сложная, но очень увлекательная отрасль, которой посвящают жизнь многие программисты. И не жалеют.

    Класс и компилятор

    Наверное, многие слышали о таких языках, как C и C++. Ведь они являются одними из самых популярных и распространенных. Это очень серьезные языки программирования, содержащие мощные понятия, которые удобны для того, чтобы отображать понятия прикладных областей, в сфере которых трудятся разработчики. К примеру, есть там понятие классов, функций. Они являются основополагающими для многих языков, но для C++ они в особенности характерны.

    Программисту гораздо удобнее создавать модели с помощью таких понятий. Компилятор или другой операционной системы помогает отобразить такие высокоуровневые вещи в форме, которую поймет компьютер. Только тогда он сможет ими манипулировать.

    Любая какой бы мощной и сложной она ни являлась, оперирует очень простыми понятиями. Но является трудным, так как с его помощью очень удобно отображать многие вещи из реальной жизни. Компилятор сложные понятия превращает в примитивные.

    Разработка компиляторов как работа

    В последние годы прослеживается тенденция, когда любая крупная компания, связанная с информационными технологиями, выпускает свой собственный язык программирования, который затем продвигается в широкие массы разработчиков.

    Конечно, для каждого языка необходим компилятор. И фирмы, как правило, создают их вместе с языками. Но существует также и большое число самостоятельных программистов и фирм, которые по тем или иным причинам хотят иметь собственные компиляторы для языков либо они разрабатывают новые языки и, соответственно, компиляторы к ним. Можно с уверенностью утверждать, что специалист, посвятивший себя этой сфере, точно не останется без работы.

    Таким образом, теперь вам должно быть понятно, что такое компилятор. Это программа-переводчик между разработчиком и компьютером, без которой в сфере компьютерной науки никуда.