• Разложение сигналов по гармоническим функциям. Ряды Фурье. Примеры разложения в ряд Фурье

    2.1. Спектры периодических сигналов

    Периодическим сигналом (током или напряжением) называют такой вид воздействия, когда форма сигнала повторяется через некоторый интервал времени T , который называется периодом. Простейшей формой периодического сигнала является гармонический сигнал или синусоида, которая характеризуется амплитудой, периодом и начальной фазой. Все остальные сигналы будут негармоническими или несинусоидальными . Можно показать, и практика это доказывает, что, если входной сигнал источника питания является периодическим, то и все остальные токи и напряжения в каждой ветви (выходные сигналы) также будут периодическими. При этом формы сигналов в разных ветвях будут отличаться друг от друга.

    Существует общая методика исследования периодических негармонических сигналов (входных воздействий и их реакций) в электрической цепи, которая основана на разложении сигналов в ряд Фурье. Данная методика состоит в том, что всегда можно подобрать ряд гармонических (т.е. синусоидальных) сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма ординат которых в любой момент времени равна ординате исследуемого несинусоидального сигнала. Так, например, напряжение u на рис. 2.1. можно заменить суммой напряжений и , поскольку в любой момент времени имеет место тождественное равенство: . Каждое из слагаемых представляет собой синусоиду, частота колебания которой связана с периодом T целочисленными соотношениями.

    Для рассматриваемого примера имеем период первой гармоники совпадающим с периодом негармонического сигнала T 1 = T , а период второй гармоники в два раза меньшим T 2 = T /2, т.е. мгновенные значения гармоник должны быть записаны в виде:

    Здесь амплитуды колебаний гармоник равны между собой ( ), а начальные фазы равны нулю.

    Рис. 2.1. Пример сложения первой и второй гармоники

    негармонического сигнала

    В электротехнике гармоническая составляющая, период которой равен периоду негармонического сигнала, называется первой или основной гармоникой сигнала. Все остальные составляющие называются высшими гармоническими составляющими. Гармоника, частота которой в k раз больше первой гармоники (а период, соответственно, в k раз меньше), называется

    k - ой гармоникой. Выделяют также среднее значение функции за период, которое называют нулевой гармоникой. В общем случае ряд Фурье записывают в виде суммы бесконечного числа гармонических составляющих разных частот:

    (2.1)

    где k - номер гармоники; - угловая частота k - ой гармоники;

    ω 1 = ω =2 π / T - угловая частота первой гармоники; - нулевая гармоника.

    Для сигналов часто встречающихся форм разложение в ряд Фурье можно найти в специальной литературе. В таблице 2 приведены разложения для восьми форм периодических сигналов. Следует отметить, что приведенные в таблице 2 разложения будут иметь место, если начало системы координат выбраны так, как это указано на рисунках слева; при изменении начала отсчета времени t будут изменяться начальные фазы гармоник, амплитуды гармоник при этом останутся такими же. В зависимости от типа исследуемого сигнала под V следует понимать либо величину, измеряемую в вольтах, если это сигнал напряжения, либо величину, измеряемую в амперах, если это сигнал тока.

    Разложение в ряд Фурье периодических функций

    Таблица 2

    График f (t )

    Ряд Фурье функции f (t )

    Примечание

    k=1,3,5,...

    k=1,3,5,...

    k=1,3,5,...

    k=1,2,3,4,5

    k=1,3,5,...

    k=1,2,3,4,5

    S=1,2,3,4,..

    k=1,2,4,6,..

    Сигналы 7 и 8 формируются из синусоиды посредством схем, использующих вентильные элементы.

    Совокупность гармонических составляющих, образующих сигнал несинусоидальной формы, называется спектром этого негармонического сигнала. Из этого набора гармоник выделяют и различают амплитудный и фазовый спектр. Амплитудным спектром называют набор амплитуд всех гармоник, который обычно представляют диаграммой в виде набора вертикальных линий, длины которых пропорциональны (в выбранном масштабе) амплитудным значениям гармонических составляющих, а место на горизонтальной оси определяется частотой (номером гармоники) данной составляющей. Аналогично рассматривают фазовые спектры как совокупность начальных фаз всех гармоник; их также изображают в масштабе в виде набора вертикальных линий.

    Следует заметить, что начальные фазы в электротехнике принято измерять в пределах от –180 0 до +180 0 . Спектры, состоящие из отдельных линий, называют линейчатыми или дискретными . Спектральные линии находятся на расстоянии f друг от друга, где f - частотный интервал, равный частоте первой гармоники f .Таким образом, дискретные спектры периодических сигналов имеют спектральные составляющие с кратными частотами - f , 2f , 3f , 4f , 5f и т.д.

    Пример 2.1. Найти амплитудный и фазовый спектр для сигнала прямоугольной формы, когда длительности положительного и отрицательного сигнала равны, а среднее значение функции за период равно нулю

    u (t ) = Vпри0<t <T /2

    u (t ) = -VприT /2<t <T

    Для сигналов простыхчасто используемых форм решение целесообразно находить с помощью таблиц.

    Рис. 2.2. Линейчатый амплитудный спектр прямоугольного сигнала

    Из разложения в ряд Фурье сигнала прямоугольной формы (см. табл.2 - 1) следует, что гармонический ряд содержит только нечетные гармоники, при этом амплитуды гармоник убывают пропорционально номеру гармоники. Амплитудный линейчатый спектр гармоник представлен на рис. 2.2. При построении принято, что амплитуда первой гармоники (здесь напряжения) равна одному вольту: B; тогда амплитуда третьей гармоники будет равна B, пятой - B и т.д. Начальные фазы всех гармоник сигнала равны нулю, следовательно, фазовый спектр имеет только нулевые значения ординат.

    Задача решена.

    Пример 2.2. Найти амплитудный и фазовый спектр для напряжения, изменяющегося по закону: при -T /4<t <T /4; u (t ) = 0 при T /4<t <3/4T . Такой сигнал формируется из синусоиды посредством исключения (схемным путем с использованием вентильных элементов) отрицательной части гармонического сигнала.


    а)б)

    Рис. 2.3. Линейчатый спектр сигнала однополупериодного выпрямления: а)амплитудный; б)фазовый

    Для сигнала однополупериодного выпрямления синусоидального напряжения (см. табл.2 - 8) ряд Фурье содержит постоянную составляющую (нулевую гармонику), первую гармонику и далее набор только четных гармоник, амплитуды которых быстро убывают с ростом номера гармоники. Если, например, положить величину V = 100 B, то, умножив каждое слагаемое на общий множитель 2V/π , найдем (2.2)

    Амплитудный и фазовый спектры этого сигнала изображены на рис.2.3а,б.

    Задача решена.

    В соответствии с теорией рядов Фурье точное равенство негармонического сигнала сумме гармоник имеет место только при бесконечно большом числе гармоник. Расчет гармонических составляющих на ЭВМ позволяет анализировать любое число гармоник, которое определяется целью расчета, точностью и формой негармонического воздействия. Если длительность сигнала t независимо от его формы много меньше периода T , то амплитуды гармоник будут убывать медленно, и для более полного описания сигнала приходится учитывать большое число членов ряда. Эту особенность можно проследить для сигналов, представленных в таблице 2 - 5 и 6, при выполнении условия τ <<T . Если негармонический сигнал по форме близок к синусоиде (например, сигналы 2 и 3 в табл.2), то гармоники убывают быстро, и для точного описания сигнала достаточно ограничиться тремя - пятью гармониками ряда.

    Цель работы: ознакомление со спектральным описанием периодических функций с помощью рядов Фурье.

    Необходимые теоретические сведения. Разложение в ряд Фурье

    Первым рассматриваемым сигналом будет последовательность прямоугольных импульсов с амплитудой А , длительностью и периодом повторенияТ . Начало отсчета времени примем расположенным в середине импульса (рис.1).

    Рис 1. - Периодическая последовательность прямоугольных импульсов

    Данный сигнал является четной функцией, поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье- в ней будут присутствовать только косинусные слагаемые , равные

    Введем скважность
    в полученную формулу для коэффициентов ряда Фурье, а затем приведем формулу к виду
    .

    Представление последовательности прямоугольных импульсов в виде ряда Фурье имеет вид:

    Амплитуды гармонических слагаемых ряда зависят от номера гармоники по закону
    (см. рис. 2).График функции
    имеет лепестковый характер. Итак, ширина лепестков, измеренная в количестве гармоник, равна скважности последовательности (при
    имеем
    , если
    ). Отсюда следует важное свойство спектра последовательности прямоугольных импульсов - в нем отсутствуют (имеют нулевые амплитуды) гармоники с номерами, кратными скважности.

    Рис. 2 - Коэффициенты ряда Фурье для последовательности прямоугольных импульсов.

    Расстояние по частоте между соседними гармониками равно частоте следования импульсов -
    . Ширина лепестков спектра, измеренная в единицах частоты, равна
    , то есть обратно пропорциональна длительности импульсов, т.е. чем короче сигнал, тем шире его спектр.

    Важным частным случаем предыдущего сигнала является меандр (рис. 3) - последова­тельность прямоугольных импульсов со скважностью, равной
    , когда дли­тельности импульсов и промежутков между ними становятся равными.

    Рис. 3 - Меандр

    ,

    где m – произвольное целое число.

    Таким образом, в спектре меандра присутствуют только нечетные гармоники. Представление меандра в виде ряда Фурье с учетом этого может быть записано следующим образом:

    Гармонические составляющие, из которых складывается меандр, имеют ампли­туды, обратно пропорциональные номерам гармоник, и чередующиеся знаки. На примыкающих к разрыву участках сумма ряда Фурье дает заметные пульса­ции. Это явление, присущее ря­дам Фурье для любых сигналов с разрывами первого рода (скачками), называет­ся эффектом Гиббса. Можно показать, что амплитуда первого (самого большого) выброса составляет примерно 9 % от величины скачка.

    Рисунок 4. Эффект Гиббса.

    Пилообразный сигнал (рис. 5). в пре­делах периода описывается линейной функцией:

    ,
    .

    Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

    Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

    Рис. 5 - Пилообразный сигнал.

    Периодическая последовательность треугольных импульсов имеет симметричную форму (рис. 6):

    ,
    .

    Рис. 6 - Последовательность треугольных импульсов.

    Ряд Фурье имеет следующий вид:

    Рассмотрим программу, реализующую разложение в ряд Фурье прямоугольной последовательности импульсов.

    ЗАДАНИЕ1.

    Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций, либо комплексных экспонент с частотами, образующими арифметическую прогрессию. Для того, чтобы такое разложение существовало, фрагмент сигнала длительностью в один период должен удовлетворять условиям Дирихле:

    1. Не должно быть разрывов второго рода (с уходящими в бесконечность ветвями функции).

    2. Число разрывов первого рода (скачков) должно быть конечным.

      Число экстремумов должно быть конечным.

    Ряд Фурье может быть применён для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчёта коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

    Методы Фурье используются для анализа линейных схем или систем: для предсказания реакции (отклика) системы; для определения передаточной функции; для оценки результатов тестов.

    Произвольный периодический сигнал выражается через бесконечное число гармоник с возрастающими частотами:

    основные члены;

    гармонические члены (при n > 1, n – целое число);

    коэффициенты гармоник;

    постоянный член или составляющая постоянного тока.

    Период функции
    должен равняться или кратной величине; кроме того функция
    должна быть однозначной.Ряд Фурье можно рассматривать как «рецепт приготовления» любого периодического сигнала из синусоидальных составляющих. Чтобы данный ряд имел практическое значение, он должен сходиться, т.е. частичные суммы ряда должны иметь предел.

    Процесс создания произвольного периодического сигнала из коэффициентов, описывающих смешивание гармоник, называется синтезом. Обратный процесс вычисления коэффициентов именуется анализом. Вычисление коэффициентов облегчается тем, что среднее от перекрёстных произведений синусоиды на косинусоиду (и наоборот) равно 0.

    Введём в пространство Гильберта базис:
    Для упрощения будем полагать, что он ортонормированный.

    Тогда любую функцию
    из пространства Гильберта можно представить через проекции вектора х на оси базиса обобщённым рядом Фурье:

    Ряды Фурье особенно полезны при описании произвольных периодических сигналов с конечной энергией каждого периода. Кроме того, они могут использоваться для описания непериодических сигналов, имеющих конечную энергию за конечный интервал. На практике для описания таких сигналов используют интеграл Фурье.

    Выводы

    1. Для описания периодических сигналов широко применяется ряд Фурье. Для описания непериодических сигналов используют интеграл Фурье.

    Заключение

    1. Сообщения, сигналы и помехи как векторы (точки) в линейном пространстве можно описать через набор координат в заданном базисе.

    2. Для ТЭС наибольший интерес при отображении сигналов представляет n-мерное пространство Евклида
    , бесконечное пространство Гильберта
    и дискретное пространство Хэмминга2 n . В этих пространствах вводится понятие скалярного произведения двух векторов (x , y ) .

    3. Любую непрерывную функцию времени как элемент можно представить обобщенным рядом Фурье по заданному ортонормированному базису.

    Литература

    Основная:

      Теория электрической связи: Учеб. Для вузов / А.Г. Зюко, Д. Д. Кловский, В.И. Коржик, М. В. Назаров; Под ред. Д. Д. Кловского. – М.: Радио и связь, 1998. – 433 с.

    Дополнительная:

      Прокис Дж. Цифровая связь: Пер. с англ. / Под ред. Д.Д. Кловского. – М.: Радио и связь, 2000. – 800 с.

      Бернард Скляр. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 1104 с.

      Сухоруков А.С. Теория электрической связи: Конспект лекций. Часть 1. – М.:МТУСИ, ЦЕНТР ДО, 2002. – 65 с.

      Сухоруков А.С. Теория цифровой связи: Учебное пособие. Часть 2. – М.:МТУСИ, 2008. – 53 с.

    5. Линейные электрические цепи в режиме периодических негармонических воздействий. Теория электрических цепей

    5. Линейные электрические цепи в режиме периодических негармонических воздействий

    5.1. Негармонические периодические сигналы

    При передаче информации по каналам связи в процессе преобразования сигналов в различных устройствах, как правило, используют негармонические колебания, поскольку чисто гармонические колебания не могут являться носителями информации. Для передачи сообщений осуществляют модуляцию гармонического колебания по амплитуде – амплитудная модуляция (AM), частоте – частотная модуляция (ЧМ) или фазе – фазовая модуляция (ФМ), либо используют импульсные сигналы, модулируемые по амплитуде – амплитудно-импульсная модуляция (АИМ), ширине – широтно-импульсная модуляция (ШИМ), временному положению – время-импульсная модуляция (ВИМ). Существуют и другие, более сложные сигналы, формируемые по специальным законам. Отличительной чертой указанных сигналов является сложный негармонический характер. Несинусоидальный вид имеют токи и напряжения, формируемые в различных импульсных и цифровых устройствах (19. Дискретные сигналы и цепи), несинусоидальный характер приобретают гармонические сигналы, проходящие через различные нелинейные устройства (11. Нелинейные электрические цепи при гармонических воздействиях) и т. д. Все это приводит к необходимости разработки специальных методов анализа и синтеза электрических цепей, находящихся под воздействием периодических несинусоидальных и непериодических токов и напряжений. В основе этих методов лежат спектральные представления несинусоидальных воздействий, базирующиеся на разложении в ряд или интеграл Фурье.

    Из математического анализа известно, что периодическая негармоническая функция f(t) , удовлетворяющая условиям Дирихле, может быть разложена в ряд Фурье:
    (5.1)
    где a k , b k - коэффициенты разложения, определяемые уравнениями
    (5.2)

    Величина представляет среднее за период значение функции f(t) и называется постоянной составляющей.

    В теоретических исследованиях обычно вместо формулы (5.1) используют другую, основанную на замене независимой переменной :
    (5.3)
    где
    (5.4)

    Уравнение (5.3) есть тригонометрическая форма ряда Фурье. При анализе цепей часто удобней пользоваться комплексной формой ряда Фурье, которая может быть получена из (5.3) с помощью формул Эйлера:
    (5.5)

    Подставив (5.5) в уравнение (5.3), после несложных преобразований получим комплексную форму ряда Фурье:
    (5.6)
    где A k - комплексная амплитуда k -й гармоники:
    (5.7)
    где – амплитуда; – начальная фаза k -й гармоники.

    Подставив значения a k и b k из (5.4) в (5.7), получим:
    (5.8)

    Совокупность амплитуд 0,5А k = 0,5А k в разложении (5.6), отложенных против соответствующих положительных и отрицательных частот, образует симметричный относительно оси координат (вследствие четности коэффициентов а k ) линейчатый амплитудный спектр .

    Совокупность ординат k = – –k из (5.7), входящих в разложение (5.6) и отложенных против соответствующих положительных и отрицательных частот, образует симметричный относительно начала оси координат (вследствие нечетности коэффициентов b k ) линейчатый фазовый спектр .

    Разложение (5.3) можно представить и в другой форме. Если учесть, что а k = А k cos k и b k = А k sin k , то после подстановки в (5.3) получим:
    (5.9)

    Если рассматривать постоянную составляющую a 0 /2 как нулевую гармонику с начальной фазой 0 = 0, то разложение (5.9) примет вид
    (5.10)

    В частном случае, когда функция f (a) симметрична относительно оси ординат (рис. 5.1, а ), в разложении (5.3) окажутся только четные (косинусоидальные) гармоники:

    (5.11)

    а при симметричности f (a) относительно начала координат (рис. 5.1, б ) нечетные гармоники
    (5.12)

    При сдвиге начала отсчета функции f (a) ее амплитудный спектр не изменяется, а меняется только фазовый спектр. Действительно, сдвинем функцию f (a) по оси времени влево на t 0 и обозначим .

    Тогда разложение (5.9) примет вид
    (5.13)

    Пример. Разложить в ряд Фурье прямоугольные колебания (рис. 5.1, б ). Учитывая, что f (a) симметрична относительно начала координат в разложении (5.3) останутся только синусоидальные гармоники (5.12), где b k определится согласно (5.4):

    Подставив b k в (5.12), получим разложение в ряд Фурье:
    (5.14)

    Далее сдвинем f (a) на p/2 влево (см. рис. 5.1, а ). Тогда согласно (5.13) получим

    (5.15)

    Т. е. получили разложение по косинусоидальным составляющим как и должно быть для симметричного относительно оси ординат сигнала.

    В ряде случаев, когда периодичная функция f (a) задана графически и имеет сложную форму, ее разложение в ряд Фурье можно осуществить графо-аналитическим способом. Его суть заключается в том, что период сигнала Т (рис. 5.2) разбивают на m интервалов, равных , причем точки разрыва f (a) не должны попадать на середину участков разбиения; определяют значение сигнала f (a n ) в середине каждого участка разбиения.

    Находят коэффициенты разложения а k и b k путем замены интеграла в (5.2) конечной суммой
    (5.16)

    Уравнение (5.16) легко программируется и при вычислении а k и b k , может использоваться ЭВМ.

    5.2. Действующее, среднее значение и мощность периодического негармонического сигнала

    Для определенности положим, что f (t ) имеет смысл тока i (t ). Тогда действующее значение периодического негармонического тока определяется согласно (3.5), где i (t ) определяется уравнением (5.10):
    (5.17)

    Подставив это значение тока в (3.5), после интегрирования получим
    (5.18)

    т. е. действующее значение периодического негармонического тока I полностью определяется действующими значениями его гармоник I k и не зависит от их начальных фаз k .

    Аналогичным образом находим действующее значение периодического несинусоидального напряжения:
    (5.19)

    Среднее значение тока определяется согласно общему выражению (3.9). Причем обычно берут среднее значение i (t ) по абсолютной величине
    (5.20)

    Аналогично определяется U ср(2) .

    С точки зрения теории цепей, большой интерес представляет средняя активная мощность негармонического сигнала и распределение ее между отдельными гармониками.

    Средняя активная мощность периодического несинусоидального сигнала
    (5.21)
    где
    (5.22)

    k - фазовый сдвиг между током и напряжением k -й гармоники.

    Подставляя значения i (t ) и u (t ) из (5.22) в уравнение (5.21), после интегрирования получаем:
    (5.23)
    т, е. средняя за период активная мощность периодического негармонического сигнала равна сумме мощностей отдельных гармоник. Формула (5.23) является одной из форм широко известного равенства Парсеваля .

    Аналогично находим реактивную мощность
    (5.24)
    и полную мощность
    (5.25)

    Следует подчеркнуть, что в отличие от гармонических сигналов для негармонических сигналов
    (5.26)

    Величина P иcк = носит название мощности искажений и характеризует степень различия в формах тока i (t ) и напряжения u (t ).

    Кроме мощности искажений периодические негармонические сигналы характеризуются еще рядом коэффициентов : мощности, k м = P/S; формы K ф = U/U ср(2) ; амплитуды K a = U m /U; искажений k и = U 1 /U; гармоник k г = и др.

    Для синусоидального сигнала k ф = /21,11; k a = 1,41; k и = 1; k г = 0.

    5.3. Спектры периодических негармонических сигналов

    Рассмотрим последовательность прямоугольных импульсов, изображенную на рис. 5.3, а . Сигналы подобной формы находят очень широкое применение в радиотехнике и электросвязи: телеграфия, цифровые системы передачи, системы многоканальной связи с временным разделением каналов, различные импульсные и цифровые устройства и др. (см. гл. 19). Импульсная последовательность характеризуется следующими основными параметрами: амплитудой импульса A и и может иметь смысл как напряжения, так и тока."> , его длительностью t и и периодом следования Т . Отношение периода Т к длительности t и называется скважностью импульсов и обозначается через q = T/t и . Обычно значения скважности импульсов лежат в пределах от нескольких единиц (в измерительной технике, устройствах дискретной передачи и обработки информации), до нескольких сотен или тысяч (в радиолокации).

    Для нахождения спектра последовательности прямоугольных импульсов воспользуемся рядом Фурье в комплексной форме (5.6). Комплексная амплитуда k -й гармоники равна согласно (5.8) после возвращения к исходной переменной t .



    (5.27)

    Подставив значение A k в уравнение (5.6), получим разложение в ряд Фурье:
    (5.28)

    На рис. 5.4 изображен спектр комплексных амплитуд для q = 2 и q = 4. Как видно из рисунка, спектр последовательности прямоугольных импульсов представляет собой дискретный спектр с огибающей (штриховая линия на рис. 5.4), которая описывается функцией
    (5.29)
    носящей название функции отсчетов (см. гл. 19). Число спектральных линий между началом отсчета по оси частот и первым нулем огибающей равно q- 1. Постоянная составляющая сигнала (среднее значение) , а действующее значение A = , т.е. чем больше скважность, тем меньше уровень постоянной составляющей и действующее значение сигнала. С увеличением скважности q число дискретных составляющих увеличивается - спектр становится гуще (см. рис. 5.4, б ), и амплитуда гармоник убывает медленнее. Следует подчеркнуть, что в соответствии с (5.27) спектр рассматриваемой последовательности прямоугольных импульсов вещественный.

    Из спектра комплексных амплитуд (5.27) можно выделить амплитудный A k = |A k | и фазовый спектр k = argA k , изображенный на рис. 5.5 для случая q = 4. Из рисунков видно, что амплитудный спектр является четной, а фазовый - нечетной функцией частоты. Причем, фазы отдельных гармоник принимают либо нулевое значение между узлами, где синус положительный, либо ±, где синус отрицательный (рис. 5.5, б )

    На основании формулы (5.28) получим тригонометрическую форму разложения в ряд Фурье по четным гармоникам (сравни с (5.15)):
    (5.30)

    При сдвиге импульсной последовательности по оси времени (рис. 5.2, б ) в соответствии с (5.13) ее амплитудный спектр останется прежним, а фазовый спектр изменится:
    (5.31)

    В случае, когда периодическая последовательность имеет разнополярную форму (см. рис. 5.1), в спектре будет отсутствовать постоянная составляющая (сравните (5.30) и (5.31) с (5.14) и (5.15)).

    Аналогичным образом можно исследовать спектральный состав периодических негармонических сигналов другой формы. В табл.5.1 приведено разложение в ряд Фурье некоторых наиболее распространенных сигналов.

    Таблица 5.1

    Типы сигнала Разложение в ряд Фурье
    1
    2
    3
    4
    5
    6

    5.4. Расчет цепей при периодических негармонических воздействиях

    В основе расчета линейных электрических цепей, находящихся под воздействием периодических негармонических сигналов, лежит принцип наложения. Его суть применительно к негармоническим воздействиям заключается в разложении негармонического периодического сигнала в одну из форм ряда Фурье (см. 5.1. Негармонические периодические сигналы. Разложение в ряд Фурье) и определении реакции цепи от каждой гармоники в отдельности. Результирующая реакция находится путем суперпозиции (наложения) полученных частичных реакций. Таким образом, расчет цепей при периодических негармонических воздействиях включает в себя задачу анализа спектрального состава сигнала (разложение его в ряд Фурье), расчет цепи от каждой гармонической составляющей и задачу синтеза, в результате которого определяется результирующий выходной сигнал как функция времени (частоты) или его действующее (амплитудное значение).

    При решении задачи анализа обычно пользуются тригонометрической (5.3) или комплексной (5.6) формой ряда Фурье с ограниченным числом членов разложения, что приводит к некоторой погрешности аппроксимации истинного сигнала. Коэффициенты разложения a k и b k в (5.3) или A k и k в (5.6) определяются с помощью уравнений (5.4), (5.7) и (5.8). При этом входной сигнал f (a) должен быть задан аналитически. В случае, если сигнал задается графически, например в виде осциллограммы, то для нахождения коэффициентов разложения a k и b k можно использовать графоаналитический метод (см. (5.16)).

    Расчет цепи от отдельных гармоник ведется обычно символическим методом. При этом необходимо иметь в виду, что на k -й гармонике индуктивное сопротивление X L (k ) = kL , а емкостное сопротивление X C (k ) = 1/(), т. е. на k -й гармонике индуктивное сопротивление в k раз больше, а емкостное в k раз меньше, чем на первой гармонике. Этим в частности объясняется то обстоятельство, что высокие гармоники в емкости выражены сильнее, а в индуктивности слабее, чем в приложенном к ним напряжении. Активное сопротивление R на низких и средних частотах можно считать не зависящим от частоты.

    После определения искомых токов и напряжений от отдельных гармоник методом наложения находят результирующую реакцию цепи на негармоническое периодическое воздействие. При этом либо определяют мгновенное значение результирующего сигнала на основании расчета амплитуд и фаз отдельных гармоник, либо его амплитудные или действующие значения согласно уравнениям (5.18), (5.19). При определении результирующей реакции необходимо помнить, что в соответствии с представлением периодических негармонических колебаний на комплексной плоскости векторы различных гармоник вращаются с различной угловой частотой.

    Пример. К цепи, изображенной на рис. 5.6, приложено напряжение u (t ) в форме прямоугольных импульсов с периодом повторения T = 2t и и амплитудой A и = 1В (см. рис. 5.3, б ). Определить мгновенное и действующее значения напряжения на емкости.

    Разложение данного напряжения в ряд Фурье определяется по формуле (5.31). Ограничимся первыми тремя членами разложения (5.31):k -й гармонике называется такое состояние электрической цепи, состоящей из разнохарактерных реактивных элементов, при котором фазовый сдвиг между входным током и приложенным напряжением k -x гармоник равен нулю. Явление резонанса может быть использовано для выделения отдельных гармоник из периодического несинусоидального сигнала. Следует подчеркнуть, что в цепи может одновременно быть достигнут резонанс токовна одной частоте и резонанс напряжений на другой.

    Пример. Для цепи, изображенной на рис. 5.7, при заданной 1 , L 1 найти значение C 1 и C 2 , при которых одновременно возникает резонанс напряжений на 1-й и резонанс токов на 5-й гармонике.

    Из условия резонанса напряжений находим, что входное реактивное сопротивление цепи на первой гармонике должно равняться нулю:
    (5.32)

    а на пятой - бесконечности (входная реактивная проводимость на пятой гармонике должна быть равна нулю):
    (5.33)

    Из условий (5.32) и (5.33) находим искомое значение емкостей:

    Анализ цепи во временной области методом переменных состояния при постоянных воздействиях

    4.1 Разложение в ряд Фурье заданной периодической последовательности импульсов

    Схема электрической цепи, с учетом таблицы 1, представлена на рис. 7.

    Любую периодическую функцию f(t), удовлетворяющую условиям Дирихле можно разложить в ряд Фурье. Обозначим период функции T, а основную частоту _ . Ряд Фурье можно записать двояко.

    Первая форма записи:

    Вторая форма записи:

    В обоих формах А 0 - постоянная составляющая ряда; А к - амплитуда k-й гармоники ряда; k - начальная фаза k-й гармоники;

    Из формулы Эйлера следует, что. Следовательно,

    Учитывая это, можно записать ряд Фурье в комплексной форме.

    Составим выражение для комплексной амплитуды.

    Учитывая это, получим выражение для периодической функции времени:

    Сравнивая полученное выражение с формулой (12), получим:

    В связи с этим в нашем случае можно получить коэффициенты для электротехнической формы записи ряда Фурье из полученных в предыдущей части значений амплитудного и фазового спектров. Число членов аппроксимации выберем с учетом ширины спектра входного сигнала.

    Дискретные амплитудный и фазовый спектры изображены на рисунках 25, 26. Их расчеты сведены в таблицу 5.

    "right">Таблица 5.

    Амплитуды и фазы при соответствующих гармониках

    № гармоники

    Рис. 25. Дискретный амплитудный спектр входного сигнала

    Бифуркация Андронова-Хопфа

    Нам дана система: x1=м*x1+ x2+м*x12- x12- x1*x22 x2=- x1+ x22 Первая вариация бифуркационного значения > > В ходе решения получили 4 особые точки, рассмотрим каждую из них и определим их тип. Первая особая точка > > > > > Получили, что в точке (0...

    Дискретная математика

    Пусть F - двоичная функция от n переменных. Предположим, что F не равна тождественно нулю. Пусть T1, T2,…, Tk - все точки ее определения, в которых F=1. Можно доказать, что справедлива следующая формула: , где, j=1,2,…, k...

    Дифференциальные свойства гиперболических функций

    Найдем разложение основных гиперболических функций в ряд Тейлора в окрестности точки, т.е. в ряд вида который называют рядом Маклорена. Показательная и гиперболические функции Пусть, тогда для любого...

    Математические методы проектирования

    Требуется выполнить моделирование шума с законом распределения вероятностей Рэлея и дисперсией D=12, где у=. Для получения реализаций шума с заданным законом распределения используется метод обратной функции...

    Нормированные пространства

    Теория интерполяции имеет многочисленные приложения в теории рядов Фурье. Определение. Пусть -периодическая функция, такая что. Нормой в пространстве называется число, а коэффициентами Фурье функции называются числа...

    Основные положения дискретной математики

    Теорема 1. Всякая логическая функция может быть представлена в СДНФ: , (1) где m, а дизъюнкция берется по всем 2m наборам значений переменных х1,…хm . Функция f разложена по первым n-переменным...

    Преобразование Фурье и его некоторые приложения

    (1) интегральная формула Фурье. Вначале введем понятие главного значения интеграла. Пусть функция интегрируема на любом отрезке числовой прямой. Определение 1.1. Если существует конечный предел,(1...

    Рассмотрим систему. Будем строить систему с заданной четной частью. Пусть нам известна четная часть. Воспользуемся формулой и преобразуем ее Следовательно, можем записать Отсюда зная, получим где - отражающая функция системы...

    Тригонометрические уравнения

    Приводим уравнение к виду f(x)=0 и представляем левую часть уравнения в виде произведения f1(x)*f2(x)*...* fm(x). Тогда данное уравнение приводится к совокупности уравнений: f1(x)=0, f2(x)=0,..., fm(x)=0. Следует помнить...

    Тригонометрические уравнения и неравенства

    Метод разложения на множетели заключается в следующем: если то всякое решение уравнения является решение совокупности уравнений Обратное утверждение, вообще говоря неверно: не всякое решение совокупности является решением уравнения...

    Эллиптические функции Якоби

    Так как при вещественных значениях аргументов функции Якоби snu, cnu, dnu удовлетворяют условию теоремы Дирихле, то для них могут быть построены соответствующие ряды Фурье. Функция f(x) удовлетворяет условиям Дирихле в интервале (?l,l)...