• Схема включения электродвигателя с параллельным возбуждением. Виды возбуждения и схемы включения двигателей постоянного тока

    Двигатель с параллельным возбуждением является наилучшим среди двигателей постоянного тока для привода механизмов, требующих почти постоянной частоты вращения и в то же время экономичного регулирования скорости. Схема этого двигателя показана на рис. 4-25.

    Рис. 4-25. Двигатель параллельного возбуждения.

    Зажимы пускового реостата обозначаются: Л - присоединяемый к линии (питающей сети); М - к зажимам обмотки возбуждения и Я - к зажимам якоря. Черными кружками (рис. 4-25) обозначены рабочие контакты, а пропуски между ними соответствуют секциям сопротивлений реостата. Металлическая дуга 3 при работе двигателя постоянно соединяет зажим Л с зажимами шунтового реостата, регулирующего ток возбуждения Перед замыканием рубильника Необходимо убедиться, что рычаг (подвижный контакт) 1 пускового реостата 2 стоит на холостом контакте 0. Подвижный контакт шунтового реостата в цепи возбуждения должен находиться в крайнем левом положении, при котором сопротивление реостата минимально.

    При замыкании рубильника и переводе рычага пускового реостата на первый из рабочих контактов ток двигателя разветвляется на ток якоря и ток обмотки возбуждения

    Таким образом, ток в питающей цепи

    Первый бросок тока в зависимости от величины пускового сопротивления Под действием начального вращающего момента якорь начинает вращаться и с нарастанием скорости ток якоря уменьшается. Тогда рычаг пускового реостата, может быть переведен на второй контакт. При этом ток якоря, увеличившись броском, вызовет увеличение вращающего момента и дальнейшее приращение скорости, а затем вновь начинает уменьшаться. Тогда рычаг реостата переводят на следующий контакт и т. д. Пуск заканчивается, когда все сопротивление выведено и на якорь подано полное напряжение Сопротивление пускового реостата обычно рассчитано на кратковременную работу пуска и оставлять рукоятку реостата на промежуточных контактах длительно нельзя.

    Рис. 4-26. Скоростные характеристики двигателя параллельного возбуждения.

    Чем быстрее нарастает противо-э. д. с. якоря, тем скорее, уменьшается ток и тем меньше нагрев обмотки якоря. Поэтому пуск производят всегда при наибольшем токе возбуждения, замыкая, накоротко сопротивление регулировочного реостата (рис. 4-25). Тогда магнитный поток машины Ф и противо-э. д. с. будут максимальны. Кроме того, электродвигатель при пуске должен развивать повышенный вращающий, момент, а это может быть также при наибольшем магнитном потоке формула (4-8)].

    Перед отключением двигателя переводят рычаг пускового реостата на нулевой контакт, а затем размыкают рубильник. Этим исключается подгорание контактов рубильника.

    Скоростная характеристика двигателя при показана на рис. 4-26 кривой 1. При отсутствии механической нагрузки ток холостого хода и скорости наибольшая:

    При увеличении нагрузки (момента сопротивления) на валу двигателя частота вращения падает незначительно, так как автоматическое увеличение вращающего момента происходит за счет увеличения тока в цепи якоря который согласно уравнению (4-14а) резко возрастает при незначительном уменьшении противо-э. д. с. вследствие малой величины сопротивления цепи якоря Такая характеристика называется жесткой.

    Рис. 4-27. Рабочце характеристики двигателя параллельного возбуждения.

    При неизменном токе возбуждения магнитный поток Ф можно считать приблизительно постоянным, так как влияние реакции якоря незначительно.

    Тогда вращающий момент двигателя

    приблизительно пропорционален току Поэтому если отложить М по оси абсцисс на рис. 4-26, то получится механическая характеристика двигателя, т. е.

    Очень удобны для пользования рабочие характеристики (рис. 4-27), даваемые в каталогах и описаниях электродвигателя. Это

    при , где - к. п. д. двигателя, а - полезная мощность на валу.

    Развиваемая на валу мощность двигателя

    а вращающий момент

    При неизменной частоте вращения зависимость была бы прямой линией, проходящей через начало координат. Однако скорость при увеличении падает и момент не пропорционален Ток при неизменном U пропорционален мощности в цепи питания Так как потери двигателя малы, то ток приблизительно пропорционален .

    Регулирование скорости двигателя с параллельным возбуждением обычно производится изменением тока возбуждения. Этот способ дает экономичное плавное регулирование в пределах 1: 1,5, а в специальном исполнении - до 1:8. Регулирование происходит следующим образом. Вращающий момент двигателя при Ф = const пропорционален току а ток

    Вследствие малой величины падение напряжения в цепи якоря невелико. Поэтому при постоянных значениях U и якоря может значительно возрасти при небольшом уменьшении противо-э. д. с.

    Например, при и при токе якоря противо-э. д. с. . Если противо-э. д. с. уменьшится всего на 10 В (примерно на 5%) и будет , то ток якоря , т. е. увеличится в 3 раза.

    Таким образом, если при некоторой постоянной нагрузке и частоте вращения уменьшить ток возбуждения например на 5%, то. на столько же сразу уменьшатся магнитный поток Ф и противо-э. д. с. Е. Это вызовет резкое увеличение тока якоря и вращающего момента, причем избыточный момент пойдет на ускорение вращения якоря. Однако по мере нарастания скорости якоря противо-э. д. с. снова увеличится, ток якоря уменьшится до величины, при которой вращающий момент примет прежнее значение. Таким образом, при равенстве установится новая постоянная частота вращения, большая прежней.

    При таком способе регулирования потери энергии в регулировочном реостате (мощность потерь Гвгв) очень малы, так как составляет всего

    Этот способ позволяет изменять частоту вращения двигателя в сторону ее увеличения выше номинальной.

    Если при неизменной нагрузке на валу двигателя включить добавочное сопротивление гл последовательно с обмоткой якоря, то в первый момент ток якоря уменьшится, отчего уменьшится вращающий момент и, так как момент сопротивления окажется больше, скорость уменьшится. Однако вследствие уменьшения скорости и противо-э. д. с. ток якоря станет возрастать, будет возрастать вращающий момент и при равенстве моментов дальнейшее снижение скорости прекратится.

    Двигатель будет продолжать работать с постоянной, но пониженной частотой вращения. Этот способ - регулирования неэкономичен вследствие значительных потерь энергии в сопротивлении реостата.

    Двигатель постоянного тока независимого возбуждения (ДПТ НВ) В этом двигателе (рисунок 1) обмотка возбуждения подключена к отдельному источнику питания. В цепь обмотки возбуждения включен регулировочный реостат r рег , а в цепь якоря - добавочный (пусковой) реостат R п . Характерная особенность ДПТ НВ - его ток возбуждения I в не зависит от тока якоря I я так как питание обмотки возбуждения независимое .

    Схема двигателя постоянного тока независимого возбуждения (ДПТ НВ)

    Рисунок 1

    Механическая характеристика двигателя постоянного тока независимого возбуждения (ДПТ НВ)

    Уравнение механической характе­ристики двигателя постоянного тока независимого возбуждения имеет вид

    где: n 0 — частота вращения вала двигателя при холостом ходе. Δn — изменение частоты вращения двигателя под действием механической нагрузки.

    Из этого уравнения следует, что механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ) прямолинейны и пересекают ось ординат в точке холостого хода n 0 (рис 13.13 а), при этом изменение частоты вращения двигателя Δn , обусловленное изменением его механической нагрузки, пропорционально сопротивлению цепи якоря R а =∑R + R доб . Поэтому при наименьшем сопротивлении цепи якоря R а = ∑R , когда R доб = 0 , соответствует наименьший перепад частоты вращения Δn . При этом механическая характеристика становится жесткой (график 1).

    Механические характеристики двигателя, полученные при номинальных значениях напряжения на обмотках якоря и возбуждения и при отсутствии добавочных сопротивлений в цепи якоря, называют естественными рисунок 13.13, а (график 1 Rдоб = 0 ).

    Если же хотя бы один из перечисленных параметров двигателя изменен (напряжение на обмотках якоря или возбуждения отличаются от номинальных значений, или же изменено сопротивление в цепи якоря введением R доб), то механиче­ские характеристики называют искусственными .

    Искусственные механические характеристики, полученные введением в цепь якоря добавочного сопротивления R доб, называют также реостатными (графики 2 и 3).

    При оценке регулировочных свойств двигателей постоянного тока наибольшее значение имеют механические характеристики n = f(M) . При неизменном моменте нагрузки на валу двигателя с увеличением сопротивления резистора R доб частота вращения уменьшается. Сопротивления резистора R доб для получения искусственной механической характеристики, соответствующей требуемой частоте вращения n при заданной нагрузке (обычно номинальной) для двигателей независимого возбуждения:

    где U - напряжение питания цепи якоря двигателя, В; I я - ток якоря, соответствующий заданной нагрузке двигателя, А; n - требуемая частота вращения, об/мин; n 0 - частота вращения холостого хода, об/мин.

    Частота вращения холостого хода n 0 представляет собой пограничную частоту вращения, при превышении которой двигатель переходит в генераторный режим . Эта частота вращения превышает номинальную n ном на столько, на сколько номинальное напряжение U ном подводимое к цепи якоря, превышает ЭДС якоря Е я ном при номинальной нагрузки двигателя.

    На форму механических характеристик двигателя влияет величина основного магнитного потока возбуждения Ф . При уменьшении Ф (при возрастании сопротивления резистора r peг ) увеличивается частота вращения холостого хода двигателя n 0 и перепад частоты вращения Δn . Это приводит к значительному изменению жесткости механической характеристики двигателя (рис. 13.13, б). Если же изменять напряжение на обмотке якоря U (при неизменных R доб и R рег), то меняется n 0 , a Δn остается неизменным [см. (13.10)]. В итоге механические характеристики смещаются вдоль оси ординат, оставаясь параллельными друг другу (рис. 13.13, в). Это создает наиболее благоприятные условия при регулировании частоты вращения двигателей путем изменения напряжения U , подводимого к цепи якоря. Такой метод регулирования частоты вращения получил наибольшее распространение еще и благодаря разработке и широкому применению регулируемых тиристорных преобразователей напряжения.

    Используемая литература: — Кацман М.М. Справочник по электрическим машинам

    Наличие обмотки возбуждения (ОВ) у двигателя постоянного тока позволяет осуществлять различные схемы подключения. В зависимости от того как включена ОВ, различают двигатели с независимым возбуждением, с самовозбуждением, которое делится на последовательное, параллельное и смешанное.

    Двигатель с независимым возбуждением

    В ДПТ с независимым возбуждением обмотку возбуждения подключают к отдельному источнику питания (рис. 1). Это может быть связано с различными напряжениями возбуждение Uв и напряжения цепи якоря U. При данной схеме подключения ОВ не имеет электрической связи с обмоткой якоря. Для уменьшения потерь в ОВ, и создания необходимой МДС необходимо уменьшить ток возбуждения, увеличив число витков. Обмотку возбуждения выполняют из малого числа витков, так чтобы ток Iв составлял 2…5% от Iя. Выбор данной схемы возбуждения для двигателя зависит от свойств электропривода.

    ДПТ с параллельным возбуждением

    По сути, схема подключения ОВ с параллельным возбуждением(рис.2) аналогична схеме с независимым возбуждением. Свойства двигателя при подключении по обеим схемам одинаковы. Плюсом данного вида подключения является то, что отпадает необходимость в отдельном источнике питания.

    ДПТ с последовательным возбуждением

    При подключении по данной схеме ОВ соединена последовательно цепи якоря (рис.3), при этом ток якоря равен току возбуждения. В связи с этим ОВ изготавливают из провода толстого сечения. Данную схему используют, если требуется обеспечить большой пусковой момент. При уменьшении нагрузки на валу меньше 25% от номинальной, частота вращения резко увеличивается и достигает опасных для двигателя значений. Характеристика ДПТ с последовательным возбуждением “мягкая”.

    ДПТ со смешанным возбуждением

    ДПТ со смешанным возбуждением (рис.4) имеет две ОВ, одна из которых соединена последовательна, а другая параллельно якорной цепи. При согласном соединении обмоток с увеличением нагрузки на валу растёт магнитный поток, что приводит к уменьшению частоты вращения. При встречном соединении суммарный магнитный поток с увеличением нагрузки уменьшается, что приводит к резкому увеличению частоты вращения. Это приводит двигатель к нестабильному режиму работы, поэтому последовательную обмотку выполняют из малого числа витков, чтобы при увеличении нагрузки магнитный поток снижался незначительно, тем самым стабилизируя работу двигателя.

    Рассмотрим более подробно характеристики двигателя параллельного возбуждения, которые определяют его рабочие свойства.

    Скоростная и механическая характеристики двигателя определяются равенствами (7) и (9), представленными в статье " ", при U = const и i в = const. При отсутствии дополнительного сопротивления в цепи якоря эти характеристики называются естественными .

    Если щетки находятся на геометрической нейтрали, при увеличении I а поток Ф δ несколько уменьшится вследствие действия поперечной реакции якоря . В результате этого скорость n , согласно выражению (7), представленному в статье "Общие сведения о двигателях постоянного тока ", будет стремится возрасти. С другой стороны, падение напряжения R а × I а вызывает уменьшение скорости. Таким образом, возможны три вида скоростной характеристики, изображенные на рис. 1: 1 – при преобладании влияния R а × I а; 2 – при взаимной компенсации влияния R а × I а и уменьшения Ф δ ; 3 – при преобладании влияния уменьшения Ф δ .

    Ввиду того что изменение Ф δ относительно мало, механические характеристики n = f (M ) двигателя параллельного возбуждения, определяемые равенством (9), представленным в статье "Общие сведения о двигателях постоянного тока ", при U = const и i в = const совпадают по виду с характеристиками n = f (I а) (рисунок 1). По этой же причине эти характеристики практически прямолинейны.

    Характеристики вида 3 (рисунок 1) неприемлемы по условиям устойчивой работы (смотрите статью " "). Поэтому двигатели параллельного возбуждения изготавливаются со слегка падающими характеристиками вида 1 (рисунок 1). В современных высокоиспользованных машинах ввиду довольно сильного насыщения зубцов якоря влияние поперечной реакции якоря может быть настолько большим, что получить характеристику вида 1 (рисунок 1) невозможно. Тогда для получения такой характеристики на полюсах помещают слабую последовательную обмотку возбуждения согласного включения, намагничивающая сила которой составляет до 10% от намагничивающей силы параллельной обмотки возбуждения. При этом уменьшение Ф δ под воздействием поперечной реакции якоря частично или полностью компенсируется. Такую последовательную обмотку возбуждения называют стабилизирующей , а двигатель с такой обмоткой по-прежнему называется двигателем параллельного возбуждения.

    Изменение скорости вращения Δn (рисунок 1) при переходе от холостого хода (I а = I а0) к номинальной нагрузке (I а = I ан) у двигателя параллельного возбуждения при работе на естественной характеристике мало и составляет 2 – 8% от n н. Такие слабо падающие характеристики называются жесткими. Двигатели параллельного возбуждения с жесткими характеристиками применяются в установках, в которых требуется, чтобы скорость вращения при изменении нагрузки сохранялась приблизительно постоянной (металлорежущие станки и прочее).

    Рисунок 2. Механические и скоростные характеристики двигателя параллельного возбуждения при разных потоках возбуждения

    Регулирование скорости посредством ослабления магнитного потока

    Регулирование скорости посредством ослабления магнитного потока производится обычно с помощью реостата в цепи возбуждения R р.в (смотрите рисунок 1, б в статье " " и рисунок 1 в статье "Пуск двигателей постоянного тока "). При отсутствии добавочного сопротивления в цепи якоря (R ра = 0) и U = const характеристики n = f (I а) и n = f (M ), определяемые равенствами (7) и (9), представленными в статье "Общие сведения о двигателях постоянного тока ", для разных значений R р.в, i в или Ф δ имеют вид, показанный на рисунке 2. Все характеристики n = f (I а) сходятся на оси абсцисс (n = 0) в общей точке при весьма большом токе I а, который, согласно выражению (5), представленному в статье "Общие сведения о двигателях постоянного тока ", равен

    I а = U / R а.

    Однако механические характеристики n = f (M ) пересекают ось абсцисс в разных точках.

    Нижняя характеристика на рисунке 2 соответствует номинальному потоку. Значения n при установившемся режиме работы соответствуют точкам пересечения рассматриваемых характеристик с кривой M ст = f (n ) для рабочей машины, соединенной с двигателем (жирная штриховая линия на рисунке 2).

    Точка холостого хода двигателя (M = M 0 , I а = I а0) лежит несколько правее оси ординат на рисунке 2. С увеличением скорости вращения n вследствие увеличения механических потерь M 0 и I а0 также увеличиваются (тонкая штриховая линия на рисунке 2).

    Если в этом режиме с помощью приложенного извне момента вращения начать увеличивать скорость вращения n , то E а [смотрите выражение (6) в статье "Общие сведения о двигателях постоянного тока "] будет увеличиваться, а I а и M будут, согласно равенствам (5) и (8), представленным в статье "Общие сведения о двигателях постоянного тока ", уменьшаться. При I а = 0 и M = 0 механические и магнитные потери двигателя покрываются за счет подводимой к валу механической мощности, а при дальнейшем увеличении скорости I а и M изменят знак и двигатель перейдет в генераторный режим работы (участки характеристик на рисунке 2 левее оси ординат).

    Двигатели общего применения допускают по условиям коммутации регулирование скорости ослаблением поля в пределах 1: 2. Изготавливаются также двигатели с регулированием скорости таким способом в пределах до 1: 5 или даже 1: 8, но в этом случае для ограничения максимального напряжения между коллекторными пластинами необходимо увеличить воздушный зазор, регулировать поток по отдельным группам полюсов (смотрите статью "Регулирование скорости вращения и устойчивость работы двигателей постоянного тока ") или применить компенсационную обмотку. Стоимость двигателя при этом увеличивается.

    Регулирование скорости сопротивлением в цепи якоря, искусственные механическая и скоростная характеристики

    Если последовательно в цепь якоря включить добавочное сопротивление R ра (рисунок 3, а ), то вместо выражений (7) и (9), представленных в статье "Общие сведения о двигателях постоянного тока ", получим

    (1)
    (2)

    Сопротивление R ра может быть регулируемым и должно быть рассчитано на длительную работу. Цепь возбуждения должна быть включена на напряжение сети.

    Рисунок 3. Схема регулирования скорости вращения двигателя параллельного возбуждения с помощью сопротивления в цепи якоря (а ) и соответствующие механические и скоростные характеристики (б )

    Характеристики n = f (M ) и n = f (I а) для различных значений R ра = const при U = const и i в = const изображены на рисунке 3, б (R ра1 < R ра2 < R ра3). Верхняя характеристика (R ра = 0) является естественной. Каждая из характеристик пересекает ось абсцисс (n = 0) в точке, для которой

    Продолжения этих характеристик под осью абсцисс на рисунке 3 соответствуют торможению двигателя противовключением. В этом случае n < 0, э. д. с. E а имеет противоположный знак и складывается с напряжением сети U , вследствие чего

    а момент двигателя M действует против направления вращения и является поэтому тормозящим.

    Если в режиме холостого хода (I а = I а0) с помощью приложенного извне момента вращения начать увеличивать скорость вращения, то сначала достигается режим I а = 0, а затем I а изменит направление и машина перейдет в режим генератора (участки характеристик на рисунке 3, б слева от оси ординат).

    Как видно из рисунка 3, б , при включении R ра характеристики становятся менее жесткими, а при больших значениях R ра – круто падающими, или мягкими.

    Если кривая момента сопротивления M ст = f (n ) имеет вид, изображенный на рисунке 3, б жирной штриховой линией, то значения n при установившемся режиме работы для каждого значения R ра определяются точками пересечения соответствующих кривых. Чем больше R ра, тем меньше n и ниже коэффициент полезного действия (к. п. д.).

    Регулирование скорости посредством изменения напряжения якоря

    Регулирование скорости посредством изменения напряжения якоря может осуществляется с помощью агрегата "генератор – двигатель" (Г – Д), называемого также агрегатом Леонарда (рисунок 4). В этом случае первичный двигатель ПД (переменного тока, внутреннего сгорания и тому подобный) вращает с постоянной скоростью генератор постоянного тока Г . Якорь генератора непосредственно подключен к якорю двигателя постоянного тока Д , который служит приводом рабочей машины РМ . Обмотки возбуждения генератора ОВГ и двигателя ОВД питаются от независимого источника – сети постоянного тока (рисунок 4) или от возбудителей (небольших генераторов постоянного тока) на валу первичного двигателя ПД . Регулирование тока возбуждения генератора i в.г должно производиться практически от нуля (на рисунке 4 с помощью реостата, включенного по потенциометрической схеме). При необходимости реверсирования двигателя можно изменить полярность генератора (на рисунке 4 с помощью переключателя П ).

    Рисунок 4. Схема агрегата "генератор – двигатель" для регулирования скорости двигателя независимого возбуждения

    Пуск двигателя Д и регулирование его скорости осуществляют следующим образом. При максимальном i в.д и i в.г = 0 производят пуск первичного двигателя ПД . Затем плавно увеличивают i в.г, и при небольшом напряжении генератора U двигатель Д придет во вращение. Регулируя, далее, U в пределах до U = U н, можно получить любые скорости вращения двигателя до n = n н. Дальнейшее увеличение n возможно путем уменьшения i в.д. Для реверсирования двигателя уменьшают i в.г до нуля, переключают ОВГ и снова увеличивают i в.г от значения i в.г = 0.

    Когда рабочая машина создает резко пульсирующую нагрузку (например, некоторые прокатные станы) и нежелательно, чтобы пики нагрузки полностью передавались первичному двигателю или в сеть переменного тока, двигатель Д можно снабдить маховиком (агрегат Г – Д – М, или агрегат Леонарда – Ильгнера). В этом случае при понижении n во время пика нагрузки часть этой нагрузки покрывается за счет кинетической энергии маховика. Эффективность действия маховика будет больше при более мягкой характеристике двигателя ПД или Д .

    В последнее время все чаще двигатель ПД и генератор Г заменяют полупроводниковым выпрямителем с регулируемым напряжением. В этом случае рассматриваемый агрегат называют также вентильным (тиристорным ) приводом.

    Рассмотренные агрегаты используются при необходимости регулирования скорости вращения двигателя с высоким к. п. д. в широких пределах – до 1: 100 и более (крупные металлорежущие станки, прокатные станы и так далее).

    Отметим, что изменение U с целью регулирования n по схеме рисунка 1, б , показанного в статье "Общие сведения о генераторах постоянного тока " и рисунка 3, а , не дает желаемых результатов, так как одновременно с изменением напряжения цепи якоря изменяется пропорционально U также ток возбуждения. Так как регулирование U можно производить только от значения U = U н вниз, то вскоре магнитная цепь окажется насыщенной, вследствие чего U и i в будут изменяться пропорционально друг другу. Согласно равенству (7), представленному в статье "Общие сведения о двигателях постоянного тока "), n при этом существенным образом не меняется.

    В последнее время все больше распространяется так называемое импульсное регулирование двигателей постоянного тока. При этом цепь якоря двигателя питается от источника постоянного тока с постоянным напряжением через тиристоры, которые периодически, с частотой 1 – 3 кГц включаются и отключаются. Чтобы сгладить при этом кривую тока якоря, на его зажимах подключаются конденсаторы. Напряжение на зажимах якоря в этом случае практически постоянно и пропорционально отношению времени включения тиристоров ко времени продолжительности всего цикла. Таким образом, импульсный метод позволяет регулировать скорость вращения двигателя при его питании от источника с постоянным напряжением в широких пределах без реостата в цепи якоря и практически без дополнительных потерь. Таким же образом, без пускового реостата и без дополнительных потерь, может производиться пуск двигателя.

    Импульсный способ регулирования в экономическом отношении весьма выгоден для управления двигателями, работающими в режимах переменной скорости вращения с частыми пусками, например на электрифицированном транспорте.

    Рисунок 5. Рабочие характеристики двигателя параллельного возбуждения P н = 10 кВт, U н = 200 В, n н = 950 об/мин

    Рабочие характеристики

    Рабочие характеристики представляют собой зависимости потребляемой мощности P 1 , потребляемого тока I , скорости n , момента M , и к. п. д. η от полезной мощности P 2 при U = const и неизменных положениях регулирующих реостатов. Рабочие характеристики двигателя параллельного возбуждения малой мощности при отсутствии добавочного сопротивления в цепи якоря представлены на рисунке 5.

    Одновременно с увеличением мощности на валу P 2 растет и момент на валу M . Поскольку с увеличением P 2 и M скорость n несколько уменьшается, то M P 2 / n растет несколько быстрее P 2 . Увеличение P 2 и M , естественно, сопровождается увеличением тока двигателя I . Пропорционально I растет также потребляемая из сети мощность P 1 . При холостом ходе (P 2 = 0) к. п. д. η = 0, затем с увеличением P 2 сначала η быстро растет, но при больших нагрузках в связи с большим ростом потерь в цепи якоря η снова начинает уменьшаться.

    Как и в случае генератора, обмотки индуктора и якоря двигателя могут быть соединены либо последовательно (рис.339), либо параллельно (рис.340). В первом случае двигатель называют двигателем с последовательным возбуждением (или сериесным двигателем), во втором – двигателем с параллельным возбуждением (или шунтовым двигателем). Применяются также двигатели со смешанным возбуждением (компаунд-двигатели), в которых часть обмоток индуктора соединена с якорем последовательно, а часть параллельно. Каждый из этих типов двигателей имеет свои особенности, делающие его применение целесообразным в одних случаях и нецелесообразным в других.

    1. Двигатели с параллельным возбуждением. Схема включения в сеть двигателей этого типа показана на рис. 361. Так как здесь цепи якоря и индуктора не зависят друг от друга, то ток в них можно регулировать независимо при помощи отдельных реостатов, включенных в эти цепи. Реостат , включенный в цепь якоря, называют пусковым, а реостат , включенный в цепь индуктора, – регулировочным. При пуске в ход двигателя с параллельным возбуждением пусковой реостат должен быть обязательно полностью включен; по мере того как двигатель набирает частоту вращения, сопротивление реостата постепенно уменьшают и при достижении нормальной частоты вращения этот реостат выводится из цепи полностью. Двигатели с параллельным возбуждением, особенно значительной мощности, ни в коем случае нельзя включать без пускового реостата. Точно так же при выключении двигателя следует сначала постепенно ввести реостат и лишь после этого выключить рубильник, соединяющий двигатель с сетью.

    Рис. 361. Схема включения двигателя с параллельным возбуждением. Латунная дуга 1, по которой движется рычаг пускового реостата, через зажим 2 присоединена к концу регулировочного реостата, а через зажим 3 – к пусковому реостату. Это делается для того, чтобы при переводе пускового реостата на холостой контакт 4 и выключении тока цепь возбуждения не разрывалась

    Нетрудно понять соображения, которыми вызваны эти правила включения и выключения двигателей. Мы видели (см. формулу (172.1)), что ток в якоре

    ,

    где – напряжение сети, а - э. д. с., индуцированная в обмотках якоря. В первый момент, когда двигатель еще не успел раскрутиться и набрать достаточную частоту вращения, э. д. с. очень мала и ток через якорь приближенно равен

    Сопротивление якоря обычно очень мало. Оно рассчитывается так, чтобы падение напряжения на якоре не превышало 5-10 % от напряжения сети, на которое рассчитан двигатель. Поэтому при отсутствии пускового реостата ток в первые секунды мог бы в 10-20 раз превысить нормальный ток, на который рассчитан двигатель при полной нагрузке, а это для него очень опасно. При введенном же пусковом реостате с сопротивлением пусковой ток через якорь

    . (173.1)

    Сопротивление пускового реостата подбирают так, чтобы пусковой ток превышал нормальный не больше чем в 1,5-2 раза.

    Поясним сказанное числовым примером. Положим, что мы имеем двигатель мощности 1,2 кВт, рассчитанный на напряжение 120 В и имеющий сопротивление якоря . Ток через якорь при полной нагрузке

    .

    Если бы мы включили этот двигатель в сеть без пускового реостата, то в первые секунды пусковой ток через якорь имел бы значение

    ,

    в 10 раз превышающее нормальный рабочий ток в якоре. Если же мы хотим, чтобы пусковой ток превышал нормальный не больше, чем в 2 раза, т. е. был равен 20 А, то мы должны подобрать пусковое сопротивление таким, чтобы имело место равенство

    ,

    откуда Ом.

    Ясно также, что для шунтового двигателя очень опасна внезапная его остановка без выключения, например вследствие резкого возрастания нагрузки, так как при этом э. д. с. падает до нуля и ток в якоре возрастает настолько, что избыток выделяемого в нем джоулева тепла может привести к расплавлению изоляции или даже самих проводов обмотки (двигатель «перегорает»).

    Регулировочный реостат , включенный в цепь индуктора, служит для того, чтобы изменять частоту вращения двигателя. Увеличивая или уменьшая сопротивление цепи индуктора с помощью этого реостата, мы изменяем ток в цепи индуктора, а тем самым и магнитное поле, в котором вращается якорь. Мы видели выше, что при заданной нагрузке двигателя ток в нем автоматически устанавливается такой, чтобы возникающий вращающий момент уравновешивал тормозящий вращающий момент, создаваемый нагрузкой двигателя. Это осуществляется благодаря тому, что индуцированная э. д. с. достигает соответствующего значения. Но индуцированная э. д. с. определяется, с одной стороны, магнитной индукцией, а с другой, – частотой вращения якоря.

    Чем больше магнитный поток индуктора, тем меньше должна быть частота вращения двигателя, чтобы получить определенное значение э. д. с., и, наоборот, чем слабее магнитный поток, тем больше должна быть частота вращения. Поэтому, для того чтобы при заданной нагрузке увеличить частоту вращения шунтового двигателя, нужно ослабить магнитный поток в индукторе, т. е. ввести большее сопротивление в цепь индуктора при помощи регулировочного реостата. Напротив, чтобы уменьшить частоту вращения шунтового двигателя, нужно увеличить магнитный поток в индукторе, т. е. уменьшить сопротивление в цепи индуктора, выводя регулировочный реостат.

    С помощью регулировочного реостата можно при нормальном напряжении и отсутствии нагрузки установить нормальную частоту вращения двигателя. При возрастании нагрузки ток в якоре должен возрастать, а индуцированная в нем э. д. с. – уменьшаться. Это происходит вследствие некоторого уменьшения частоты вращения якоря. Однако уменьшение частоты вращения, обусловленное возрастанием нагрузки от нуля до нормальной мощности двигателя, обычно очень незначительно и не превышает 5-10 % от нормальной частоты вращения двигателя. Это обусловлено главным образом тем, что в двигателях с параллельным возбуждением ток в индукторе не изменяется при изменении тока в якоре. Если бы при изменениях нагрузки мы хотели поддерживать прежнюю частоту вращения, то это можно было бы осуществить, несколько изменяя с помощью регулировочного реостата ток в цепи индуктора.

    Таким образом, с эксплуатационной точки зрения двигатели постоянного тока с параллельным возбуждением (шунтовые двигатели) характеризуются следующими двумя свойствами: а) частота их вращения при изменении нагрузки остается почти постоянной; б) частоту их вращения можно в широких пределах изменять с помощью регулировочного реостата. Поэтому такие двигатели довольно широко применяются в промышленности там, где обе указанные их особенности имеют значение, например для приведения в действие токарных и других станков, частота вращения которых не должна сильно зависеть от нагрузки.

    173.1. На рис. 362 показана схема шунтового двигателя с так называемым комбинированным пуско-регулировочным реостатом. Разберитесь в этой схеме и объясните, какую роль играют отдельные части этого реостата.

    Рис. 362. К упражнению 173.1

    173.2. Нужно пустить в ход шунтовый двигатель. Для этого даны два реостата: один из толстой проволоки с малым сопротивлением, другой из тонкой проволоки с большим сопротивлением. Какой из этих реостатов следует включить как пусковой и какой как регулировочный? Почему?

    2. Двигатели с последовательным возбуждением. Схема включения в сеть этих двигателей показана на рис. 363. Здесь ток якоря является в то же время и током индуктора, и потому пусковой реостат изменяет и ток в якоре, и ток в индукторе. При холостом ходе или очень малых нагрузках ток в якоре, как мы знаем, должен быть очень мал, т. е. индуцированная э. д. с. должна быть почти равна напряжению сети. Но при очень малом токе через якорь и индуктор слабо и поле индуктора. Поэтому при малой нагрузке необходимая э. д. с. может быть получена только за счет очень большой частоты вращения двигателя. Вследствие этого при очень малых токах (малой нагрузке) частота вращения двигателя с последовательным возбуждением становится настолько большой, что это может стать опасным с точки зрения механической прочности двигателя.

    Рис. 363. Схема включения двигателя с последовательным возбуждением

    Говорят, что двигатель идет «вразнос». Это недопустимо, и поэтому двигатели с последовательным возбуждением нельзя пускать в ход без нагрузки или с малой нагрузкой (меньшей 20-25 % от нормальной мощности двигателя). По этой же причине не рекомендуется соединять эти двигатели со станками или другими машинами ременными или канатными передачами, так как обрыв или случайный сброс ремня приведет к «разносу» двигателя. Таким образом, в двигателях с последовательным возбуждением при возрастании нагрузки увеличиваются ток в якоре и магнитное поле индуктора; поэтому частота вращения двигателя резко падает, а развиваемый им вращающий момент резко возрастает.

    Эти свойства двигателей с последовательным возбуждением делают их наиболее удобными для применения на транспорте (трамваи, троллейбусы, электропоезда) и в подъемных устройствах (кранах), так как в этих случаях необходимо иметь в момент пуска при очень большой нагрузке большие вращающие моменты при малых частотах вращения, а при меньших нагрузках (на нормальном ходу) меньшие моменты и большие частоты.

    Регулирование частоты вращения двигателя с последовательным возбуждением производится обычно регулировочным реостатом, включенным, параллельно обмоткам индуктора (рис. 364). Чем меньше сопротивление этого реостата, тем большая часть тока якоря ответвляется в него и тем меньший ток идет через обмотки индуктора. Но при уменьшении тока в индукторе частота вращения двигателя возрастает, а при его увеличении падает. Поэтому, в отличие от того, что имело место для шунтового двигателя, для того чтобы увеличить частоту вращения сериесного двигателя, нужно уменьшить сопротивление цепи индуктора, выводя регулировочный реостат. Для того чтобы уменьшить частоту вращения сериесного двигателя, нужно увеличить сопротивление цепи индуктора, вводя регулировочный реостат.

    Рис. 364. Схема включения реостата для регулирования частоты вращения сериесного двигателя

    173.3. Объясните, почему сериесный двигатель нельзя пускать вхолостую или с малой нагрузкой, а шунтовый можно.

    Таблица 8. Преимущества, недостатки и области применения двигателей различных типов

    Тип двигателя

    Основные преимущества

    Основные недостатки

    Область применения

    Трехфазный двигатель переменного тока с вращающимся полем

    1. Слабая зависимость частоты вращения от нагрузки

    2. Простота и экономичность конструкции

    3. Применение трехфазного тока

    1. Трудность регулирования частоты вращения

    2. Малый вращающий момент при пуске

    Станки и машины, требующие постоянства частоты вращения при изменениях нагрузки, но не нуждающиеся в регулировке частоты вращения

    Двигатель постоянного тока с параллельным возбуждением (шунтовый)

    1. Постоянство частоты вращения при изменениях нагрузки

    2. Возможность регулирования частоты вращения

    Малый вращающий момент при пуске

    Станки и машины, требующие постоянства частоты вращения при изменениях нагрузки и возможности регулировать частоту вращения

    Двигатель постоянного тока с последовательным возбуждением (сериесный)

    Большой вращающий момент при пуске

    Сильная зависимость частоты вращения от нагрузки

    Тяговые двигатели в трамваях и электропоездах, крановые двигатели

    В заключение сопоставим в виде табл. 8 основные преимущества и недостатки различных типов электродвигателей, рассмотренных нами в этой главе, и области их применения.