• Алгоритм JPEG является алгоритмом сжатия данных с потерями

    Старый добрый JPEG, несмотря на массу неоспоримых достоинств, все же имеет и существенные ограничения. Снять их был призван новый метод сжатия изображений, разработки которого велись уже давно. Теперь, когда JPEG2000 стал официально признанным форматом, это должно послужить началу его активной поддержки различными производителями ПО.

    Наверняка многих работающих с графикой на компьютере интересует вопрос: а как удается изображение, занимающее весьма впечатляющий объем в памяти ПК, втиснуть в гораздо меньший размер на диске? Помнится, на заре своей издательской деятельности слово «компрессия» для меня было таким загадочным и удивительным… В самом деле, каким образом происходит сжатие изображений — ведь без него сейчас немыслимо представить ни Сеть, ни цифровую фотографию, ни цветную полиграфию?

    Итак, сжатие. Оно может как приводить к потере качества, так и не приводить. Последний случай — это такие методы, как RLE (Run Length Encoding, кодирование длин серий, в результате которого образуются пары типа (skip , value , где skip — это число подряд идущих нулей, а value — следующее за ними значение) и LZW (компрессия методом Lempel-Ziff-Welch), реализованные в форматах PSD, GIF и TIFF. Широко используются они и архиваторами типа RAR и ZIP. Средняя степень компрессии сжатия без потерь — 2-3 раза.

    Если нужно сжать изображение сильнее, без потери качества не обойтись. Каковы принципы? Во-первых, любое изображение содержит определенную избыточность, удаление которой не приведет к заметному изменению качества картинки. Во-вторых, человеческий глаз более восприимчив к изменениям яркости, нежели цвета. Поэтому для разных каналов изображения применяются различные степени сжатия — информация теряется, но визуально это не заметно. Кроме того, чувствительность глаза к мелким элементам изображения невелика, что позволяет без ущерба для качества их удалить. Так можно сжимать изображение (даже если ухудшение качества становится уже заметным) вплоть до приемлемого порога. Степень деградации качества определяется для каждого конкретного случая. Для полиграфии допустимы лишь минимальные искажения, а для размещения в Интернете (в зависимости от предназначения) — гораздо большие.

    Наибольшую популярность среди методов компрессии с потерями получил JPEG, который даже при тридцатикратном сжатии сохраняет достаточное качество картинки. Кстати, в большинстве современных методов сжатия данных (например, Layer-4, известный как mp3, а также MPEG) реализованы механизмы, аналогичные JPEG. Давайте познакомимся поближе с этим форматом, тем более что не так давно была окончательно утверждена его новейшая реализация JPEG2000, в которую вошли все дополнения, внесенные в JPEG/MPEG за десять лет его развития.

    JPEG

    Название алгоритма компрессии — аббревиатура от Joint Photographic Expert Group, инициативной группы, образованной из экспертов ITU (International Telecommunication Union) и ISO (International Organization for Standartization). Именно поэтому в ее названии присутствует приставка Joint. В 1992 г. JPEG был объявлен международным стандартом в области графических изображений.

    При компрессии методом JPEG качество теряется всегда. При этом всегда есть выбор: отдать предпочтение качеству в ущерб объему (размер файла сожмется приблизительно в три раза) или же наоборот, добиться минимального размера изображения, при котором оно еще останется узнаваемым (степень компрессии может достигать 100). Сжатие, при котором различие в качестве между получающимся изображением и оригиналом еще остается незаметным, дает 10-20-кратное сокращение размера файла.

    Область применения

    JPEG лучше всего компрессирует полноцветные и монохромные изображения фотографического качества. Если же требуется сохранить картинку с индексной палитрой, то сначала она конвертируется в полноцветную. При компрессии методом JPEG нужно иметь в виду, что все зависит от характера изображений: гораздо меньший объем будут занимать те, где изменения цвета незначительны и нет резких цветовых переходов. JPEG применяется всюду, где нужно хранить фотоизображения: в цифровых фотоаппаратах, полиграфии (EPS DCS 2.0), немыслим без него и Интернет.

    Существует несколько разновидностей JPEG-компрессии, мы же рассмотрим только две из них, использующиеся в стандартном пакете для работы с растровыми изображениями Adobe Photoshop, — baseline и progressive . Два других способа — ariphmetic и loseless — экзотика, в силу ряда причин не получившая широкого распространения.

    Как происходит сжатие

    1. Первый этап заключается в конвертировании цветовой модели изображения (обычно RGB) в модель, где яркостная и цветовая составляющие разнесены (например, YCbCr или YUV), что позволяет оптимально подойти к выбору степеней компрессии для каждого канала (с учетом особенностей восприятия глазом). Преобразование происходит следующим образом:

    Y = 0,299xR+0,587*G+0,114xB Cb = (B-Y)/0,866/2+128 Cr = (R-Y)/0,701/2+128

    2. На следующем этапе происходит т. н. префильтрация , при которой соседние пиксели отдельно в каждом из каналов Cb и Cr группируются попарно в горизонтальном и вертикальном направлениях, а яркостный канал Y оставляется без изменений. После этого вся группа из четырех пикселов получает усредненное значение соответствующих компонент Cb и Cr. Для краткости такую схему можно обозначить как 4:1:1 (такая же форма представления принята в DRAW — окно экспорта в jpeg). С учетом того, что каждый пиксел кодируется 3 байтами (по 256 уровней для каждого из трех каналов), в результате объем данных автоматически сокращается в 2 раза (вместо 12 байт для передачи 4 пикселов достаточно передать всего 4+1+1 = 6 байт). С точки зрения математики такое преобразование приводит к существенной потере информации, но человеческий глаз потери не воспринимает, поскольку в обычных фотографических изображениях присутствует существенная избыточность.

    3. Полученная информация, прошедшая стадию первичной «очистки», отдельно в каждом канале снова группируется в блоки, но уже размером 8x8, после чего для них применяется основное сжатие — т. н. дискретное косинусное преобразование , для краткости — DCT (discrete cosine transform). В результате информация о распределении яркости пикселов преобразуется в другой вид, где она описывается распределением, основанном на частоте появления той или иной яркости пикселов. DCT имеет ряд преимуществ перед другими преобразованиями (например, перед преобразованием Фурье), обеспечивая лучшее восстановление информации.

    Вместо массива из 64 значений (8x8 пикселов) для каждого блока, из которых состоит изображение, мы получаем массив из 64 частот. Рассмотрим работу DCT на примере. Допустим, яркость пикселов в одном блоке нашего изображения имеет вид, представленный на рис. 1 слева, тогда результат преобразования будет таким, как показано справа.

    1

    Несмотря на значительную точность, некоторая потеря информации на данном этапе все же происходит — именно поэтому JPEG всегда приводит к потере качества. Основная цель преобразования — выяснить общую картину распределения крупных (на рисунке — сверху слева) и мелких (внизу справа) объектов, что пригодится потом, при устранении малозначимой информации.

    4. Следующий этап — удаление малозаметной глазу информации из блока, или квантование (quantization). Все составляющие делятся на различные коэффициенты, определяющие значимость каждой из них для качественного восстановления исходного изображения, и результат округляется до целого значения. Именно эта процедура вносит наибольшие потери качества, снижая конечный объем изображения. Высокочастотные составляющие квантуются грубо, а низкочастотные — точнее, поскольку наиболее заметны. Дабы несколько сгладить понижение качества, в канале яркости используются меньшие коэффициенты деления, чем в каналах цветности. Но чаще (это делается для ускорения расчетов) вместо специально подобранных значений берется всего одно — то, которое вводит пользователь при выборе степени компрессии.

    Вот, например, как выглядит окно Photoshop при сохранении изображения c помощью операции Save for web, где параметр Quality (вернее, производная от него) — тот самый коэффициент округления (рис. 2).

    В результате квантования получается набор составляющих, по которым исходное изображение восстанавливается с заданной точностью (рис. 3).

    4

    На рис. 4 показан результат восстановления черно-белого квадрата соответственно одной, четырьмя и пятнадцатью составляющими.

    5. После выполнения основной работы по сжатию изображения дальнейшие преобразования сводятся к второстепенным задачам: оставшиеся составляющие собираются в последовательность таким образом, чтобы сначала располагались отвечающие за крупные детали, а потом — за все более мелкие. Если посмотреть на рисунок, то движение кодировщика похоже на зигзагообразную линию. Этап так и называется — ZigZag (рис. 5).

    5

    Затем получившаяся последовательность сжимается: сначала обычным RLE, затем методом Хаффмана.

    6. И наконец, чисто техническая стадия — данные заключаются в оболочку, снабжаются заголовком, в котором указываются все параметры компрессии с тем, чтобы изображение можно было восстановить. Впрочем, иногда в заголовки не включают эту информацию, что дает дополнительный выигрыш в компрессии, однако в этом случае нужно быть уверенным, что приложение, которое будет читать файл, о них знает.

    Вот, в общем, и все преобразования. А теперь давайте подсчитаем, какая компрессия была достигнута в нашем примере. Мы получили 7 значений, по которым восстановится первоначальное изображение размером 8x8. Итак, компрессия от применения DCT-преобразования в обоих каналах цветности составила 8x8/7 ≈ 9 раз. Отведем на канал яркости не семь, а 11 коэффициентов, что даст 8x8/11 ≈ 6. Для всех трех каналов получится (9+9+6)/3=8 раз. Снижение качества при «прореживании» изображения, произошедшего на второй стадии, дает дополнительно двойной прирост (схема 4-1-1, учитывающая особенности кодирования яркостной составляющей), что даст итоговый результат — 16 раз. Это грубый подсчет, не учитывающий некоторых аспектов, но отражающий реальную картину. Чтобы получить тридцатикратное сокращение размера файла, нужно оставить всего 3-4 составляющие.

    Процесс восстановления изображения протекает в обратном порядке: сначала составляющие умножаются на значения из таблицы квантования, и получаются приблизительные коэффициенты для обратного косинусного преобразования. Чем лучшее качество выбрано при компрессии, тем степень приближения к оригинальным коэффициентам выше, а значит, изображение восстановится более точно. Остается добавить лишь одно действие: перед самым завершением внести некоторые корректировки (шум) в граничные пиксели из соседних блоков, чтобы убрать резкие перепады между ними.

    Недостатки JPEG

    1. Невозможность достичь высоких степеней сжатия за счет ограничения на размер блока (только 8x8).
    2. Блочность структуры на высоких степенях компрессии.
    3. Закругление острых углов и размывание тонких элементов в изображении.
    4. Поддерживаются только RGB-изображения (использовать JPEG для CMYK-изображений можно только в формате EPS через DCS).
    5. Изображение нельзя отобразить до тех пор, пока оно не загрузится полностью.

    С тех пор, как JPEG был утвержден в качестве стандарта, прошло уже десять лет. За это время группы исследователей предложили ряд существенных дополнений в первоначальный вариант, которые вылились в конце прошлого года в появление нового стандарта.

    JPEG2000

    С 1997 г. были начаты работы, направленные на создание универсальной системы кодирования, которая снимала бы все ограничения, накладываемые JPEG, и могла эффективно работать со всеми типами изображений: черно-белыми, в градациях серого, полноцветными и многокомпонентными, причем независимо от содержания (будут ли это фотографии, достаточно мелкий текст или даже чертежи). В его разработке принимали участие наряду с международными стандартизирующими организациями такие гранды промышленности, как Agfa, Canon, Fujifilm, Hewlett-Packard, Kodak, LuraTech, Motorola, Ricoh, Sony и др.

    Поскольку новый алгоритм претендовал на универсальный, ему дополнительно ставилась задача использования различных способов передачи данных (в реальном режиме времени и при узкой полосе пропускания), что особенно критично в мультимедийных приложениях, например, в реал-трансляциях через Интернет.

    Основные требования, предъявляемые к формату JPEG2000:

    1. Достижение повышенной по сравнению с JPEG степени компрессии.
    2. Поддержка монохромных изображений, что позволит применять его для компрессии изображений с текстом.
    3. Возможность сжатия вообще без потерь.
    4. Вывод изображений с постепенным улучшением детализации (как в progressive GIF).
    5. Использование в изображении приоритетных областей, для которых качество может устанавливаться выше, чем в остальной части изображения.
    6. Декодирование в реальном режиме времени (без задержек).

    Принцип сжатия

    В качестве основного механизма компрессии в JPEG2000, в отличие от JPEG, используется волновое (wavelet) преобразование — система фильтров, применяемых ко всему изображению. Не вдаваясь в детали компрессии, отметим лишь основные моменты.

    6
    Сначала точно так же, как и для JPEG, происходит конвертирование изображения в систему YCrCb, после чего — первичное удаление избыточной информации (путем уже известного объединения соседних пикселей в блоки 2x2). Затем все изображение делится на части одинакового размера (tile), над каждой из которых независимо от других и будут происходить дальнейшие преобразования (это снижает требования к объему памяти и вычислительным ресурсам). Далее каждый канал проходит фильтрацию низкочастотным и высокочастотным фильтрами отдельно по строкам и по рядам, в результате чего после первого прохода в каждой части формируются четыре более мелких изображения (subband). Все они несут информацию об исходном изображении, но их информативность сильно отличается (рис. 6).

    Например, изображение, полученное после низкочастотной фильтрации по строкам и рядам (вверху слева), несет наибольшее количество информации, а полученное после высокочастотной — минимальное. Информативность у изображений, полученных после НЧ-фильтрации строк и ВЧ для столбцов (и наоборот), средняя. Наиболее информативное изображение опять подвергается фильтрации, а полученные составляющие, как и при jpeg-компрессии, квантуются. Так происходит несколько раз: для сжатия без потерь цикл обычно повторяется 3 раза, с потерями — разумным компромиссом между размером, качеством и скоростью декомпрессии считается 10 итераций. В результате получается одно маленькое изображение и набор картинок с мелкими деталями, последовательно и с определенной точностью восстанавливающих его до нормального размера. Очевидно, что наибольшая степень компрессии получается на крупных изображениях, поскольку можно установить большее количество циклов.

    Практическая реализация

    С тех пор, как были заложены основы компрессии методом JPEG2000, ряд компаний разработал достаточно эффективные алгоритмы ее реализации.

    Среди крупных разработчиков ПО можно отметить Corel (кстати, она одна из первых внедрила в свои пакеты поддержку формата wi, основанного на волновых преобразованиях, за что ей честь и хвала) — все изображения, поставляемые на компакт-дисках с пакетом CorelDRAW вплоть до девятой версии, сжимались именно таким способом.

    Позже к ней подтянулась и Adobe. Часть идей, заложенных в JPEG2000, была применена разработчиками Photoshop 6 в виде продвинутых опций при сохранении изображения в формате JPEG (обычном, основанном на косинусном преобразовании). Среди них — прогрессивный JPEG (параметр Progressive в окне Save for Web). Этот алгоритм предназначен, главным образом, для систем реального времени и работает точно так же, как и прогрессивный GIF. Сначала появляется грубая копия изображения, состоящая всего из нескольких блоков большого размера, а со временем, когда подгружаются остальные данные, структура начинает просматриваться все четче, пока, наконец, конечное изображение не восстановится полностью. В отличие от GIF, такой алгоритм создает большую нагрузку на просмотрщик, поскольку ему придется полностью выполнять весь цикл преобразований для каждой передаваемой версии.

    Из других дополнений отметим включение в файл нескольких JPEG-сжатых изображений с разной степенью компрессии, разрешением и даже цветовыми моделями. Соответственно, в Photoshop 6 появилась возможность выделять в изображении отдельные области и применять для них другие установки компрессии (Region-Of-Interest , впервые такой механизм был предложен еще в 1995 г.), используя более низкие значения в таблице квантования. Для этого задается требуемая область (например, в виде нового канала в изображении) и нажимается пиктограмма маски возле пункта Quality (Качество). В появившемся окне можно экспериментировать с изображением, передвигая ползунки, — готовый результат отображается на экране, позволяя быстро находить необходимый компромисс между качеством и размером.

    Специализированные конверторы и просмотрщики

    Поскольку стандартом не оговариваются конкретные реализации методов компрессии/декомпрессии, это дает простор сторонним разработчикам алгоритмов сжатия. В самом деле, можно использовать либо упрощенный алгоритм волнового преобразования и тем самым ускорить процесс компрессии или же, наоборот, применить более сложный и, соответственно, требующий больших системных ресурсов.

    Специализированные решения от других компаний доступны в виде коммерческих разработок. Одни реализованы в виде отдельных программ (JPEG 2000 разработки Aware), другие — в виде дополнительных модулей для наиболее распространенных растровых редакторов (ImagePress JPEG2000 разработки Pegasus Imaging и модуль LEAD JPEG2000 от LEAD Technologies). На их фоне выделяется компания LuraTech, давно занимающаяся этим вопросом. Она продвигает свою технологию LuraWave в самодостаточном продукте LuraWave SmartCompress (доступна уже третья версия) и предлагает модули для Photoshop, Paintshop, Photopaint. Отличительная особенность — более высокая скорость работы (практически мгновенное преобразование) даже с картинками размером в несколько мегабайт. Соответственно и цена этого модуля самая высокая — 79 долл.

    Чтобы просматривать JPEG2000-изображения браузерами, необходимо установить специальный модуль-просмотрщик (все разработчики предлагают его бесплатно). Вставка изображения в html-документ, как и любого plug-in, сводится к использованию конструкции EMBED (с дополнительными параметрами). Например, означает, что будет использоваться прогрессивный метод переда- чи изображения. То есть в нашем примере (файл размером 139 Кбайт) сначала передаются только 250 байт, на основании которых будет построено грубое изображение, затем, после дозагрузки 500 байт, изображение обновляется (так продолжается до достижения значения LIMIT).

    Если вы захотите получить более качественное изображение, нужно выбрать пункт Improve из меню, всплывающего по правой кнопке (рис. 9). За четыре докачки все изображение будет загружено полностью.

    9

    Выводы

    Итак, JPEG2000 объективно показывает лучшие результаты, чем JPEG только на высоких степенях сжатия. При компрессии в 10-20 раз особой разницы не заметно. Сможет ли он вытеснить или просто составить конкуренцию широко распространенному формату? В ближайшее время — вряд ли, в большинстве случаев соотношение качество/размер, обеспечиваемое JPEG, вполне приемлемо. А те 10-20% дополнительной компрессии, которые дает JPEG2000 при визуально одинаковом качестве, вряд ли приведут к росту его популярности.

    Зато к новому формату проявляют пристальный интерес компании-производители цифро- вых камер, поскольку размеры светочувствительных матриц с каждым годом неуклонно увеличиваются, и помещать изображения в память становится все труднее. И вот тогда новый формат получит большее распространение, и кто знает, возможно, через какое-то время JPEG2000 сравняется с JPEG. Во всяком случае, Analog Micro Devices недавно выпустила специализированный чип, в котором компрессия/декомпрессия по новой технологии реализованы на аппаратном уровне, а министерство обороны США уже сейчас активно использует новый формат для записи фотоснимков, полученных со спутников-шпионов.

    Факты и домыслы

    1. JPEG теряет качество при открытии и повторном сохранении файла.

    Неправда. Качество теряется только тогда, когда выбирается степень компрессии, меньшая, чем та, с которой изображение было сохранено.

    2. JPEG теряет качество при редактировании файла.

    Правда. При сохранении измененного файла все преобразования выполняются вновь — поэтому избегайте частого редактирования изображений. Это относится только к случаю, когда файл закрывается: если же файл остается открытым, причин для беспокойства нет.

    3. Результат компрессии с одинаковыми параметрами в разных программах будет одинаков.

    Неправда. Разные программы по-разному трактуют вводимые пользователем значения. Например, в одной программе указывается качество сохраняемого изображения (как, например, в Photoshop), в другой — степень его компрессии (обратная величина).

    4. При установке максимального качества изображение сохраняется без каких-либо потерь качества.

    Неправда. JPEG сжимает с потерями всегда. Но установка, например, 90% качества вместо 100% дает сокращение размера файла большее, чем воспринимаемое глазом ухудшение качества.

    5. Любой файл JPEG можно открыть в любом редакторе, понимающем формат JPEG.

    Неправда. Такую разновидность JPEG, как прогрессивный (progressive JPEG), некоторые редакторы не понимают.

    6. JPEG не поддерживает прозрачность.

    Правда. Иногда может казаться, что какая-то часть изображения прозрачна, но на самом деле ее цвет просто подобран так, чтобы он совпадал с цветом фона в html-странице.

    7. JPEG сжимает лучше, чем GIF.

    Неправда. У них разная область применения. В общем случае, типичная «гифовская» картинка после конвертирования в JPEG будет иметь больший объем.

    JPEG2000 против JPEG

    7
    1. При двадцати-тридцатикратном сжатии JPEG2000 и JPEG дают приблизительно одинаковое качество (кстати говоря, Photoshop не может сжать обычную фотографию больше этого предела).

    2. При большем сжатии качество JPEG2000 существенно выше, чем у JPEG, что позволяет без особых потерь сжимать до 50 раз, а с некоторыми потерями (речь идет об изображениях для Интернет) — до 100 и даже до 200.

    3. При больших степенях компрессии в тех областях, где происходит плавное изменение цвета, изображение не приобретает характерную для простого JPEG блочную структуру. JPEG2000 также несколько размазывает и закругляет острые контуры — см. фотографии (рис. 7 и 8).

    На нем представлены результаты компрессии тестового файла с разными степенями компрессии (слева — сохраненные в Photoshop в формате JPG, справа — в формате JPEG2000). Для изображения на рис. 7 были выбраны степени компрессии 20, 40, 70 и 145 (их можно явно указывать при сохранении в JPEG2000), степень сжатия JPG выбиралась из того расчета, чтобы размер файла был таким же, как после сжатия по JPEG2000. Как говорится, результаты налицо. Для чистоты был проведен второй эксперимент на изображении с более четкими деталями (со степенями компрессии 10, 20, 40 и 80). Преимущество опять же на стороне JPEG2000 (рис. 8).

    8

    4. Поскольку, по сути, в одном JPEG2000-файле хранятся копии с разным разрешени

    ем, для тех, кто делает галереи изображений в Интернете, отпадает необходимость создавать для них thumbnails.

    5. Особый интерес представляет компрессия без искажений (режим loseless). Так, тестовый файл при LZW-сжатии из Photoshop занял 827 Кбайт, а сжатый JPEG2000 — 473 Кбайт.

    6. По сравнению с JPEG его более продвинутый тезка потребляет значительно больше системных ресурсов. Но существенно возросшая за последние пару лет мощь компьютеров позволяет успешно решать задачи сжатия изображений новым методом.

    7. Отсутствие поддержки JPEG2000 в браузерах. Чтобы просматривать такие изображения, нужно скачать довольно большой дополнительный модуль (1,2 Мбайта).

    8. Отсутствие бесплатного ПО для сохранения изображений в новом формате.

    Журналов в свободном доступе.

    На ту же тему:


    Область применения

    Алгоритм JPEG в наибольшей степени пригоден для сжатия фотографий и картин, содержащих реалистичные сцены с плавными переходами яркости и цвета. Наибольшее распространение JPEG получил в цифровой фотографии и для хранения и передачи изображений с использованием сети Интернет .

    С другой стороны, JPEG малопригоден для сжатия чертежей, текстовой и знаковой графики, где резкий контраст между соседними пикселами приводит к появлению заметных артефактов . Такие изображения целесообразно сохранять в форматах без потерь, таких как TIFF , GIF или PNG .

    JPEG (как и другие методы искажающего сжатия) не подходит для сжатия изображений при многоступенчатой обработке, так как искажения в изображения будут вноситься каждый раз при сохранении промежуточных результатов обработки.

    JPEG не должен использоваться и в тех случаях, когда недопустимы даже минимальные потери, например, при сжатии астрономических или медицинских изображений. В таких случаях может быть рекомендован предусмотренный стандартом JPEG режим сжатия Lossless JPEG (который, однако, не поддерживается большинством популярных кодеков) или стандарт сжатия JPEG-LS .

    Сжатие

    При сжатии изображение преобразуется из цветового пространства RGB в YCbCr (YUV). Следует отметить, что стандарт JPEG (ISO/IEC 10918-1) никак не регламентирует выбор именно YCbCr, допуская и другие виды преобразования (например, с числом компонентов , отличным от трёх), и сжатие без преобразования (непосредственно в RGB), однако спецификация JFIF (JPEG File Interchange Format, предложенная в 1991 году специалистами компании C-Cube Microsystems, и ставшая в настоящее время стандартом де-факто) предполагает использование преобразования RGB->YCbCr.

    После преобразования RGB->YCbCr для каналов изображения Cb и Cr, отвечающих за цвет, может выполняться «прореживание» (subsampling ), которое заключается в том, что каждому блоку из 4 пикселов (2х2) яркостного канала Y ставятся в соответствие усреднённые значения Cb и Cr (схема прореживания «4:2:0» ). При этом для каждого блока 2х2 вместо 12 значений (4 Y, 4 Cb и 4 Cr) используется всего 6 (4 Y и по одному усреднённому Cb и Cr). Если к качеству восстановленного после сжатия изображения предъявляются повышенные требования, прореживание может выполняться лишь в каком-то одном направлении - по вертикали (схема «4:4:0») или по горизонтали («4:2:2»), или не выполняться вовсе («4:4:4»).

    Стандарт допускает также прореживание с усреднением Cb и Cr не для блока 2х2, а для четырёх расположенных последовательно (по вертикали или по горизонтали) пикселов, то есть для блоков 1х4, 4х1 (схема «4:1:1»), а также 2х4 и 4х2 (схема «4:1:0»). Допускается также использование различных типов прореживания для Cb и Cr, но на практике такие схемы применяются исключительно редко.

    Далее яркостный компонент Y и отвечающие за цвет компоненты Cb и Cr разбиваются на блоки 8х8 пикселов. Каждый такой блок подвергается дискретному косинусному преобразованию (ДКП) . Полученные коэффициенты ДКП квантуются (для Y, Cb и Cr в общем случае используются разные матрицы квантования) и пакуются с использованием кодирования серий и кодов Хаффмана . Стандарт JPEG допускает также использование значительно более эффективного арифметического кодирования , однако из-за патентных ограничений (патент на описанный в стандарте JPEG арифметический QM-кодер принадлежит IBM) на практике оно используется редко. В популярную библиотеку libjpeg последних версий включена поддержка арифметического кодирования, но с просмотром сжатых с использованием этого метода изображений могут возникнуть проблемы, поскольку многие программы просмотра не поддерживают их декодирование.

    Матрицы, используемые для квантования коэффициентов ДКП, хранятся в заголовочной части JPEG-файла. Обычно они строятся так, что высокочастотные коэффициенты подвергаются более сильному квантованию, чем низкочастотные. Это приводит к огрублению мелких деталей на изображении. Чем выше степень сжатия, тем более сильному квантованию подвергаются все коэффициенты.

    При сохранении изображения в JPEG-файле указывается параметр качества, задаваемый в некоторых условных единицах, например, от 1 до 100 или от 1 до 10. Большее число обычно соответствует лучшему качеству (и большему размеру сжатого файла). Однако даже при использовании наивысшего качества (соответствующего матрице квантования, состоящей из одних только единиц) восстановленное изображение не будет в точности совпадать с исходным, что связано как с конечной точностью выполнения ДКП, так и с необходимостью округления значений Y, Cb, Cr и коэффициентов ДКП до ближайшего целого. Режим сжатия Lossless JPEG, не использующий ДКП, обеспечивает точное совпадение восстановленного и исходного изображений, однако его малая эффективность (коэффициент сжатия редко превышает 2) и отсутствие поддержки со стороны разработчиков программного обеспечения не способствовали популярности Lossless JPEG.

    Разновидности схем сжатия JPEG

    Стандарт JPEG предусматривает два основных способа представления кодируемых данных.

    Наиболее распространённым, поддерживаемым большинством доступных кодеков , является последовательное (sequential JPEG) представление данных, предполагающее последовательный обход кодируемого изображения поблочно слева направо, сверху вниз. Над каждым кодируемым блоком изображения осуществляются описанные выше операции, а результаты кодирования помещаются в выходной поток в виде единственного «скана», то есть массива кодированных данных, соответствующего последовательно пройденному («просканированному») изображению. Основной или «базовый» (baseline) режим кодирования допускает только такое представление. Расширенный (extended) режим наряду с последовательным допускает также прогрессивное (progressive JPEG) представление данных.

    В случае progressive JPEG сжатые данные записываются в выходной поток в виде набора сканов, каждый из которых описывает изображение полностью с всё большей степенью детализации. Это достигается либо путём записи в каждый скан не полного набора коэффициентов ДКП, а лишь какой-то их части: сначала - низкочастотных, в следующих сканах - высокочастотных (метод «spectral selection» то есть спектральных выборок), либо путём последовательного, от скана к скану, уточнения коэффициентов ДКП (метод «successive approximation», то есть последовательных приближений). Такое прогрессивное представление данных оказывается особенно полезным при передаче сжатых изображений с использованием низкоскоростных каналов связи, поскольку позволяет получить представление обо всём изображении уже после передачи незначительной части JPEG-файла.

    Обе описанные схемы (и sequential, и progressive JPEG) базируются на ДКП и принципиально не позволяют получить восстановленное изображение абсолютно идентичным исходному. Однако стандарт допускает также сжатие, не использующее ДКП, а построенное на основе линейного предсказателя (lossless, то есть «без потерь», JPEG), гарантирующее полное, бит-в-бит, совпадение исходного и восстановленного изображений. При этом коэффициент сжатия для фотографических изображений редко достигает 2, но гарантированное отсутствие искажений в некоторых случаях оказывается востребованным. Заметно большие степени сжатия могут быть получены при использовании не имеющего, несмотря на сходство в названиях, непосредственного отношения к стандарту JPEG ISO/IEC 10918-1 (ITU T.81 Recommendation) метода сжатия JPEG-LS , описываемого стандартом ISO/IEC 14495-1 (ITU T.87 Recommendation).

    Синтаксис и структура

    Файл JPEG содержит последовательность маркеров , каждый из которых начинается с байта 0xFF, свидетельствующего о начале маркера, и байта-идентификатора. Некоторые маркеры состоят только из этой пары байтов, другие же содержат дополнительные данные, состоящие из двухбайтового поля с длиной информационной части маркера (включая длину этого поля, но за вычетом двух байтов начала маркера то есть 0xFF и идентификатора) и собственно данных. Такая структура файла позволяет быстро отыскать маркер с необходимыми данными (например, с длиной строки, числом строк и числом цветовых компонентов сжатого изображения).

    Основные маркеры JPEG
    Маркер Байты Длина Назначение Комментарии
    SOI 0xFFD8 нет Начало изображения
    SOF0 0xFFC0 переменный размер Начало фрейма (базовый, ДКП) Показывает что изображение кодировалось в базовом режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения (двухбайтовые поля со смещением соответственно 5 и 7 относительно начала маркера), количество компонентов (байтовое поле со смещением 8 относительно начала маркера), число бит на компонент (байтовое поле со смещением 4 относительно начала маркера), а также соотношение компонентов (например, 4:2:0).
    SOF1 0xFFC1 переменный размер Начало фрейма (расширенный, ДКП, код Хаффмана) Показывает что изображение кодировалось в расширенном (extended) режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения, количество компонентов, число бит на компонент, а также соотношение компонентов (например, 4:2:0).
    SOF2 0xFFC2 переменный размер Начало фрейма (прогрессивный, ДКП, код Хаффмана) Показывает что изображение кодировалось в прогрессивном режиме с использованием ДКП и кода Хаффмана. Маркер содержит число строк и длину строки изображения, количество компонентов, число бит на компонент, а также соотношение компонентов (например, 4:2:0).
    DHT 0xFFC4 переменный размер Содержит таблицы Хаффмана Задает одну или более таблиц Хаффмана.
    DQT 0xFFDB переменный размер Содержит таблицы квантования Задает одну или более таблиц квантования.
    DRI 0xFFDD 4 байта Указывает интервал повторений Задает интервал между маркерами RST n в макроблоках.
    SOS 0xFFDA переменный размер Начало сканирования Начало первого или очередного скана изображения с направлением обхода слева направо сверху вниз. Если использовался базовый режим кодирования, используется один скан. При использовании прогрессивных режимов используется несколько сканов. Маркер SOS является разделяющим между информативной (заголовком) и закодированной (собственно сжатыми данными) частями изображения.
    RSTn 0xFFDn нет Перезапуск Вставляется в каждом r макроблоке, где r - интервал перезапуска DRI маркера. Не используется при отсутствии DRI маркера. n , младшие 3 бита маркера кода, циклы от 0 до 7.
    APPn 0xFFEn переменный размер Задаётся приложением Например, в EXIF JPEG-файла используется маркер APP1 для хранения метаданных, расположеных в структуре, основанной на TIFF .
    COM 0xFFFE переменный размер Комментарий Содержит текст комментария.
    EOI 0xFFD9 нет Конец закодированной части изображения.

    Достоинства и недостатки

    К недостаткам сжатия по стандарту JPEG следует отнести появление на восстановленных изображениях при высоких степенях сжатия характерных артефактов : изображение рассыпается на блоки размером 8x8 пикселов (этот эффект особенно заметен на областях изображения с плавными изменениями яркости), в областях с высокой пространственной частотой (например, на контрастных контурах и границах изображения) возникают артефакты в виде шумовых ореолов. Следует отметить, что стандарт JPEG (ISO/IEC 10918-1, Annex K, п. K.8) предусматривает использование специальных фильтров для подавления блоковых артефактов, но на практике подобные фильтры, несмотря на их высокую эффективность, практически не используются. Однако, несмотря на недостатки, JPEG получил очень широкое распространение из-за достаточно высокой (относительно существовавших во время его появления альтернатив) степени сжатия, поддержке сжатия полноцветных изображений и относительно невысокой вычислительной сложности .

    Производительность сжатия по стандарту JPEG

    Для ускорения процесса сжатия по стандарту JPEG традиционно используется распараллеливание вычислений, в частности - при вычислении ДКП. Исторически одна из первых попыток ускорить процесс сжатия с использованием такого подхода описана в опубликованной в 1993 г. статье Касперовича и Бабкина , в которой предлагалась оригинальная аппроксимация ДКП, делающая возможным эффективное распараллеливание вычислений с использованием 32-разрядных регистров общего назначения процессоров Intel 80386. Появившиеся позже более производительные вычислительные схемы использовали SIMD -расширения набора инструкций процессоров архитектуры x86. Значительно лучших результатов позволяют добиться схемы, использующие вычислительные возможности графических ускорителей (технологии NVIDIA CUDA и AMD FireStream) для организации параллельных вычислений не только ДКП, но и других этапов сжатия JPEG (преобразование цветовых пространств, run-level, статистическое кодирование и т.п.), причём для каждого блока 8х8 кодируемого или декодируемого изображения. В статье была впервые [источник? ] представлена реализация распараллеливания всех стадий алгоритма JPEG по технологии CUDA, что значительно ускорило производительность сжатия и декодирования по стандарту JPEG.

    В 2010 году ученые из проекта PLANETS поместили инструкции по чтению формата JPEG в специальную капсулу, которую поместили в специальный бункер в швейцарских Альпах. Сделано это было с целью сохранения для потомков информации о популярных в начале XXI века цифровых форматах.

    См. также

    Примечания

    Ссылки

    • Спецификация JFIF 1.02 (текстовый файл)
    • Оптимизация JPEG. Часть 1 , Часть 2 , Часть 3 .

    (произносится «джейпег» Joint Photographic Experts Group, по названию организации-разработчика) - один из популярных графических форматов, применяемый для хранения фотоизображений и подобных им изображений. Файлы, содержащие данные JPEG, обычно имеют расширения.jpeg, .jfif, .jpg, .JPG, или.JPE. Однако из них.jpg самое популярное расширение на всех платформах.

    1. Объединенная группа экспертов в области фотографии;

    2. Разработанный данной группой метод сжатия изображений и соответствующий графический формат, часто используемый в WWW. Характерен компактностью файлов и, соответственно, быстрой передачей, а также «потерей» качества изображения. Используется преимущественно для фотографий, поскольку для них потеря качества менее критична. Сохраняет параметры цвета в цветовой модели RGB.

    JPEG (произносится «джейпег », англ. Joint Photographic Experts Group , по названию организации-разработчика) - один из популярных графических форматов, применяемый для хранения фотоизображений и подобных им изображений. Файлы, содержащие данные JPEG, обычно имеют расширения .jpeg , .jfif , .jpg , .JPG , или .JPE . Однако из них .jpg самое популярное расширение на всех платформах. MIME-типом является image/jpeg.

    Алгоритм JPEG является алгоритмом сжатия данных с потерями.

    Область применения

    Алгоритм JPEG в наибольшей степени пригоден для сжатия фотографий и картин, содержащих реалистичные сцены с плавными переходами яркости и цвета. Наибольшее распространение JPEG получил в цифровой фотографии и для хранения и передачи изображений с использованием сети Интернет.

    С другой стороны, JPEG малопригоден для сжатия чертежей, текстовой и знаковой графики, где резкий контраст между соседними пикселами приводит к появлению заметных артефактов. Такие изображения целесообразно сохранять в форматах без потерь, таких как TIFF, GIF, PNG или RAW.

    JPEG (как и другие методы искажающего сжатия) не подходит для сжатия изображений при многоступенчатой обработке, так как искажения в изображения будут вноситься каждый раз при сохранении промежуточных результатов обработки.

    JPEG не должен использоваться и в тех случаях, когда недопустимы даже минимальные потери, например, при сжатии астрономических или медицинских изображений. В таких случаях может быть рекомендован предусмотренный стандартом JPEG режим сжатия Lossless JPEG (который, к сожалению, не поддерживается большинством популярных кодеков) или стандарт сжатия JPEG-LS.

    Сжатие

    При сжатии изображение преобразуется из цветового пространства RGB в YCbCr (YUV). Следует отметить, что стандарт JPEG (ISO/IEC 10918-1) никак не регламентирует выбор именно YCbCr, допуская и другие виды преобразования (например, с числом компонентов, отличным от трёх), и сжатие без преобразования (непосредственно в RGB), однако спецификация JFIF (JPEG File Interchange Format, предложенная в 1991 году специалистами компании C-Cube Microsystems, и ставшая в настоящее время стандартом де-факто) предполагает использование преобразования RGB->YCbCr.

    После преобразования RGB->YCbCr для каналов изображения Cb и Cr, отвечающих за цвет, может выполняться «прореживание» (subsampling), которое заключается в том, что каждому блоку из 4 пикселов (2х2) яркостного канала Y ставятся в соответствие усреднённые значения Cb и Cr (схема прореживания «4:2:0»). При этом для каждого блока 2х2 вместо 12 значений (4 Y, 4 Cb и 4 Cr) используется всего 6 (4 Y и по одному усреднённому Cb и Cr). Если к качеству восстановленного после сжатия изображения предъявляются повышенные требования, прореживание может выполняться лишь в каком-то одном направлении - по вертикали (схема «4:4:0») или по горизонтали («4:2:2»), или не выполняться вовсе («4:4:4»).

    Стандарт допускает также прореживание с усреднением Cb и Cr не для блока 2х2, а для четырёх расположенных последовательно (по вертикали или по горизонтали) пикселов, то есть для блоков 1х4, 4х1 (схема «4:1:1»), а также 2х4 и 4х2. Допускается также использование различных типов прореживания для Cb и Cr, но на практике такие схемы применяются исключительно редко.

    Далее, яркостный компонент Y и отвечающие за цвет компоненты Cb и Cr разбиваются на блоки 8х8 пикселов. Каждый такой блок подвергается дискретному косинусному преобразованию (ДКП). Полученные коэффициенты ДКП квантуются (для Y, Cb и Cr в общем случае используются разные матрицы квантования) и пакуются с использованием кодов Хаффмана. Стандарт JPEG допускает также использование значительно более эффективного арифметического кодирования, однако, из-за патентных ограничений (патент на описанный в стандарте JPEG арифметический QM-кодер принадлежит IBM) на практике оно не используется.

    Матрицы, используемые для квантования коэффициентов ДКП, хранятся в заголовочной части JPEG-файла. Обычно они строятся так, что высокочастотные коэффициенты подвергаются более сильному квантованию, чем низкочастотные. Это приводит к огрублению мелких деталей на изображении. Чем выше степень сжатия, тем более сильному квантованию подвергаются все коэффициенты.

    При сохранении изображения в JPEG-файле указывается параметр качества, задаваемый в некоторых условных единицах, например, от 1 до 100 или от 1 до 10. Большее число обычно соответствует лучшему качеству (и большему размеру сжатого файла). Однако, даже при использовании наивысшего качества (соответствующего матрице квантования, состоящей из одних только единиц) восстановленное изображение не будет в точности совпадать с исходным, что связано как с конечной точностью выполнения ДКП, так и с необходимостью округления значений Y, Cb, Cr и коэффициентов ДКП до ближайшего целого. Режим сжатия Lossless JPEG, не использующий ДКП, обеспечивает точное совпадение восстановленного и исходного изображений, однако, его малая эффективность (коэффициент сжатия редко превышает 2) и отсутствие поддержки со стороны разработчиков программного обеспечения не способствовали популярности Lossless JPEG.

    Разновидности схем сжатия JPEG

    Стандарт JPEG предусматривает два основных способа представления кодируемых данных.

    Наиболее распространённым, поддерживаемым большинством доступных кодеков, является последовательное (sequential JPEG) представление данных, предполагающее последовательный обход кодируемого изображения поблочно слева направо, сверху вниз. Над каждым кодируемым блоком изображения осуществляются описанные выше операции, а результаты кодирования помещаются в выходной поток в виде единственного «скана», т.е. массива кодированных данных, соответствующего последовательно пройденному («просканированному») изображению. Основной или «базовый» (baseline) режим кодирования допускает только такое представление. Расширенный (extended) режим наряду с последовательным допускает также прогрессивное (progressive JPEG) представление данных.

    В случае progressive JPEG сжатые данные записываются в выходной поток в виде набора сканов, каждый из которых описывает изображение полностью с всё большей степенью детализации. Это достигается либо путём записи в каждый скан не полного набора коэффициентов ДКП, а лишь какой-то их части: сначала - низкочастотных, в следующих сканах - высокочастотных (метод «spectral selection» т.е. спектральных выборок), либо путём последовательного, от скана к скану, уточнения коэффициентов ДКП (метод «successive approximation», т.е. последовательных приближений). Такое прогрессивное представление данных оказывается особенно полезным при передаче сжатых изображений с использованием низкоскоростных каналов связи, поскольку позволяет получить представление обо всём изображении уже после передачи незначительной части JPEG-файла.

    Обе описанные схемы (и sequential, и progressive JPEG) базируются на ДКП и принципиально не позволяют получить восстановленное изображение абсолютно идентичным исходному. Однако, стандарт допускает также сжатие, не использующее ДКП, а построенное на основе линейного предсказателя (lossless, т.е. «без потерь», JPEG), гарантирующее полное, бит-в-бит, совпадение исходного и восстановленного изображений. При этом коэффициент сжатия для фотографических изображений редко достигает 2, но гарантированное отсутствие искажений в некоторых случаях оказывается востребованным. Заметно большие степени сжатия могут быть получены при использовании не имеющего, несмотря на сходство в названиях, непосредственного отношения к стандарту JPEG ISO/IEC 10918-1 (ITU T.81 Recommendation) метода сжатия JPEG-LS, описываемого стандартом ISO/IEC 14495-1 (ITU T.87 Recommendation).

    Синтаксис и структура формата JPEG

    Файл JPEG содержит последовательность маркеров , каждый из которых начинается с байта 0xFF, свидетельствующего о начале маркера, и байта - идентификатора. Некоторые маркеры состоят только из этой пары байтов, другие же содержат дополнительные данные, состоящие из двухбайтового поля с длиной информационной части маркера (включая длину этого поля, но за вычетом двух байтов начала маркера т.е. 0xFF и идентификатора) и собственно данных.

    Основные маркеры JPEG
    Маркер Байты Длина Назначение

    JPEG-сжатие цифрового изображения

    Одним из наиболее полных и популярных стандартов сжатия изображений является стандарт JPEG.

    Сам процесс сжатия состоит из трех последовательных шагов:

    а) Вычисление дискретного косинусного преобразования (ДКП) для матриц 8*8-блоков, полученных после стандартного разбиения матрицы ЦИ;

    б) квантование коэффициентов ДКП;

    в) кодирование неравномерным кодом.

    Сначала ЦИ разбивается на отдельные блоки размером 8*8 элементов, которые обрабатываются последовательно слева направо и сверху вниз. Обработка каждого блока начинается со сдвига по яркости значений всех его 64 элементов, что достигается вычитанием величины , где - максимальное число уровней яркости. Затем вычисляется двумерное ДКП элементов блока. Полученные значения коэффициентов квантуются в соответствии с формулой:

    ,

    где - результат квантования значения коэффициента ДКП , а - соответствующий элемент матрицы коэффициентов квантования:

    .

    (Необходимо отметить, что перед тем, как квантованные коэффициенты ДКП могут быть подвергнуты обратному ДКП для восстановления блока изображения, они должны быть умножены на :

    . (2.5)

    Очевидно, что обратное преобразование полученных значений даст в результате приближение восстановливаемого блока изображения.)

    Отквантованные значения коэффициентов переупорядочиваются зигзаг-преобразованием согласно:

    где показана очередность, в которой выбираются коэффициенты. Результатом является одномерная последовательность квантованных коэффициентов.

    Одномерный массив, полученный после зигзаг-преобразования, упорядочивается по возрастанию пространственной частоты, при этом, как правило, возникают длинные последовательности нулей, что эффективно используется процедурой JPEG-кодирования. Рекомендованная JPEG матрица квантования имеет следующий вид:

    Пример . Последовательное кодирование и декодирование JPEG . Рассмотрим сжатие и восстановление следующего блока 8*8 элементов согласно стандарту последовательного кодирования JPEG:

    Исходные пиксели могут иметь 256 или 2 8 уровней яркости, так что процесс кодирования начинается со сдвига диапазона значений – вычитания из значений пикселей величины 2 7 или 128. В результате получается массив:

    который после прямого ДКП будет иметь вид:

    Если для квантования полученных данных используется приведенная выше матрица квантования, то после квантования коэффициенты примут вид:

    Процедура квантования дает значительное число нулевых элементов. После того, как коэффициенты переупорядочены в соответствии с зигзаг преобразованием, получится следующий массив:

    (-26 -31 -3 -2 -6 2 -4 1 -4 1 1 5 0 2 0 0 -1 2 0 0 0 0 0 -1 -1 КБ)

    Кодовое слово КБ означает конец блока, указывает на то, что все оставшиеся коэффициенты в переупорядоченной последовательности равны 0. Для кодирования полученного массива используются стандартные коды Хаффмана, преобразующие массив в непрерывный поток битов.

    При восстановлении сжатого JPEG блока декодер в первую очередь должен из непрерывного потока битов воссоздать отквантованные коэффициенты ДКП. Поскольку последовательность двоичных кодов Хаффмана является однозначно декодируемой, этот шаг легко реализуется при помощи табличного преобразования. После умножения на коэффициенты квантования, согласно (2.5), получим массив:

    Полностью восстановленный блок получается после выполнения обратного ДКП полученного массива:

    и обратного сдвига диапазона значений на +2 7 =+128. В результате получаем:

    Все отличия значений элементов исходного и восстановленного блоков возникают вследствие самой природы сжатия с потерями, являющегося сутью JPEG процедур сжатия и восстановления. В данном примере ошибки восстановления находятся в диапазоне от -14 до 11 и распределены следующим образом:

    Характерные особенности сингулярных чисел блоков матрицы цифрового изображения при JPEG-сжатии. Пусть исходное ЦИ в градациях серого, хранящееся в некотором формате без потерь, например, в формате TIF, матрица которого имеет размеры , разбивается стандартным образом на блоки . Если для каждого блока ЦИ определить множество всех СНЧ (сингулярный спектр), то оказывается, что в среднем лишь 2.40% от общего числа блоков (ОЧБ) имеют нулевые СНЧ.

    Данный факт не случаен. Ранг любой матрицы определяется количеством ее ненулевых СНЧ, а значит наличие нулей в сингулярном спектре будет говорить о том, что число ее линейно независимых строк (столбцов) меньше размера. Однако, для произвольного реального ЦИ, даже с учетом коррелированности значений яркости пикселей, вероятность того, что строки (столбцы) очередного блока окажутся линейно зависимыми, невелика.

    Квантование коэффициентов DCT, которое происходит в процессе сохранения ЦИ в формате JPEG (с потерями), является необратимой процедурой и приводит к некоторым особенностям возмущений СНЧ блоков.

    Пусть исходное ЦИ подверглось JPEG-сжатию. Проведем для него операцию частичного восстановления (ЧВ), которая включает в себя: 1) энтропийное декодирование; 2) умножение полученных коэффициентов на соответствующие элементы массива нормализации (матрицы квантования); 3) применение обратного DCT, но без последующего округления.

    У полученной матрицы практически все блоки содержат нулевые СНЧ, причем таких значений в блоках будет достаточно много (табл.2.1). Такая ситуация закономерна. После квантования и округления коэффициентов DCT блоков многие из них, отвечающие высоким и средним частотам, обнулятся, оставаясь нулями после ЧВ, что, учитывая соответствие между коэффициентами дискретного преобразования Фурье и сингулярными тройками матрицы изображения, где - СНЧ и отвечающие ему левый и правый СНВ соответственно, приведет к обнулению наименьших (а возможно и средних по величине) СНЧ матриц блоков.

    Табл.2.1. Результаты сингулярного разложения блоков частично восстановленных изображений

    ОЧБ Кол-во блоков, у кот-х нулевых СНЧ больше 2-х, по отношению к ОЧБ (в %)
    m=8 m=7 m=6 m=5 m=4 m=3 m=2 m=1 m=0
    POUT
    CAMERAMAN
    TIRE
    MOON 99.8
    CELL

    Заметим, что, чем меньше нулевых СНЧ в рассматриваемом блоке, тем больше линий контура он содержит. Действительно, наличие контуров в блоке говорит о значительной высокочастотной составляющей в сигнале, отвечающем этому блоку. Тогда коэффициенты DCT, соответствующие высоким и средним частотам, будут сравнительно большими и могут остаться ненулевыми после квантования и ЧВ, а значит внесут свой вклад не только в максимальные СНЧ.

    Для наглядного представления справедливости вышесказанного рассмотрим изображение СELL.TIF (рис.2.5(а)). На рис.2.5(б) представлена матрица нулевых СНЧ блоков (МНСЧБ) размерности ЧВ-изображения, каждый элемент которой равен количеству нулевых СНЧ в соответствующем блоке. На рисунке выделены элементы, имеющие наименьшие значения, что позволяет наглядно увидеть соответствие между контурами исходного ЦИ и блоками, содержащими наименьшее количество нулевых СНЧ.

    Пусть исходное изображение, подвергшееся JPEG-сжатию, восстанавливается полностью. Это означает, что после ЧВ все значения яркости пикселей округляются до целых и вводятся в диапазон . Это действие возмутит матрицу изображения, полученную после ЧВ, определенным образом изменится количество нулевых СНЧ в блоках (табл.2.2). Там, где после ЧВ не было элементов, значительно меньших 0 или больших 255, возмущение матрицы будет небольшим. В соответствии с соотношением

    , (2.6)

    имеющим место для произвольной матрицы, где - СНЧ исходной и возмущенной матриц соответственно, - матрица возмущений блока, - спектральная матричная норма, СНЧ являются нечувствительными к возмущающим воздействиям. Если некоторые из нулевых СНЧ блоков матрицы ЧВ-изображения станут ненулями после полного восстановления (ПВ), то их значения будут сравнимы с погрешностью округления, что не характерно для блоков исходного ЦИ.

    Рис.2.5. Исходное изображение СELL.TIF (а); МНСЧБ после ЧВ (б); МНСЧБ после полного восстановления (в)

    Наиболее заметным различие между совокупным исходным изображением и полностью восстановленным после JPEG-сжатия будет при сравнении их МНСЧБ. Типичная картина представлена на рис.2.5(в), при этом МНСЧБ для CELL.TIF имела только нулевые значения.

    Таблица 2.2. Результаты сингулярного разложения блоков полностью восстановленных изображений

    Изображение в формате без потерь (TIF) ОЧБ Количества блоков, имеющих нулевых СНЧ Кол-во блоков, у которых нулевых СЧ больше двух, по отношению к ОЧБ (%)
    m=8 m=7 m=6 m=5 m=4 m=3 m=2 m=1 m=0
    POUT
    CAMERAMAN
    TIRE
    MOON
    CELL

    Вопросы

    1. Что означает сжатие даннях? Что такое избыточность даннях?
    2. Основные виды избыточности данных.
    3. Как реализуется сжатие посредством квантования?
    4. Что такое малоранговая оппроксимация изображения? Как реализуется сжатие посредством использования малоранговых аппроксимаций изображения?
    5. Что такое сингулярное разложение матрицы?
    6. Что такое спектральное разложение матрицы?
    7. Соответствие между параметрами цифрового изображения в пространственной и частотной областях.
    8. Основные шаги JPEG-сжатие цифрового изображения. Матрицы квантования.
    9. Характерные особенности сингулярных чисел блоков матрицы цифрового изображения при JPEG-сжатии.
    10. Частичное и полное восстановление цифрового изображения после сжатия.

    Литература

    1. Кобозева А.А. Анализ информационной безопасности / А.А.Кобозева, В.А.Хорошко. – К.: Изд. ГУИКТ, 2009. – 251 с.
    2. Деммель Дж. Вычислительная линейная алгебра / Дж.Деммель; пер.с англ. Х.Д.Икрамова. - М.: Мир, 2001. - 430 с.
    3. Бахвалов Н.С. Численные методы / Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. - М.: БИНОМ. Лаборатория знаний, 2006. - 636 с.
    4. Гонсалес Р. Цифровая обработка изображений / Р.Гонсалес, Р.Вудс; пер. с англ. под ред. П.А.Чочиа. - М.: Техносфера, 2005. - 1072 с.
    5. Каханер Д. Численные методы и программное обеспечение / Д.Каханер, К.Моулер, С.Нэш; пер. с англ. Х.Д.Икрамова. - М.: Мир, 2001. - 575 с.
    6. Гантмахер Ф.Р. Теория матриц / Ф.Р.Гантмахер. - М.: Наука, 1988. - 552 с.
    7. Воеводин В.В. Вычислительные основы линейной алгебры / В.В.Воеводин. - М.: Наука. Гл.ред.физ.-мат.лит., 1977. - 304 с.

    Легко подсчитать, что несжатое полноцветное изображение, размером 2000*1000 пикселов будет иметь размер около 6 мегабайт. Если говорить об изображениях, получаемых с профессиональных камер или сканеров высокого разрешения, то их размер может быть ещё больше. Не смотря на быстрый рост ёмкости устройств хранения, по-прежнему весьма актуальными остаются различные алгоритмы сжатия изображений.
    Все существующие алгоритмы можно разделить на два больших класса:

    • Алгоритмы сжатия без потерь;
    • Алгоритмы сжатия с потерями.
    Когда мы говорим о сжатии без потерь, мы имеем в виду, что существует алгоритм, обратный алгоритму сжатия, позволяющий точно восстановить исходное изображение. Для алгоритмов сжатия с потерями обратного алгоритма не существует. Существует алгоритм, восстанавливающий изображение не обязательно точно совпадающее с исходным. Алгоритмы сжатия и восстановления подбираются так, чтобы добиться высокой степени сжатия и при этом сохранить визуальное качество изображения.

    Алгоритмы сжатия без потерь

    Алгоритм RLE
    Все алгоритмы серии RLE основаны на очень простой идее: повторяющиеся группы элементов заменяются на пару (количество повторов, повторяющийся элемент). Рассмотрим этот алгоритм на примере последовательности бит. В этой последовательности будут чередовать группы нулей и единиц. Причём в группах зачастую будет более одного элемента. Тогда последовательности 11111 000000 11111111 00 будет соответствовать следующий набор чисел 5 6 8 2. Эти числа обозначают количество повторений (отсчёт начинается с единиц), но эти числа тоже необходимо кодировать. Будем считать, что число повторений лежит в пределах от 0 до 7 (т.е. нам хватит 3 бит для кодирования числа повторов). Тогда рассмотренная выше последовательность кодируется следующей последовательностью чисел 5 6 7 0 1 2. Легко подсчитать, что для кодирования исходной последовательности требуется 21 бит, а в сжатом по методу RLE виде эта последовательность занимает 18 бит.
    Хоть этот алгоритм и очень прост, но эффективность его сравнительно низка. Более того, в некоторых случаях применение этого алгоритма приводит не к уменьшению, а к увеличению длины последовательности. Для примера рассмотрим следующую последовательность 111 0000 11111111 00. Соответствующая ей RL-последовательность выглядит так: 3 4 7 0 1 2. Длина исходной последовательности – 17 бит, длина сжатой последовательности – 18 бит.
    Этот алгоритм наиболее эффективен для чёрно-белых изображений. Также он часто используется, как один из промежуточных этапов сжатия более сложных алгоритмов.

    Словарные алгоритмы

    Идея, лежащая в основе словарных алгоритмов, заключается в том, что происходит кодирование цепочек элементов исходной последовательности. При этом кодировании используется специальный словарь, который получается на основе исходной последовательности.
    Существует целое семейство словарных алгоритмов, но мы рассмотрим наиболее распространённый алгоритм LZW, названный в честь его разработчиков Лепеля, Зива и Уэлча.
    Словарь в этом алгоритме представляет собой таблицу, которая заполняется цепочками кодирования по мере работы алгоритма. При декодировании сжатого кода словарь восстанавливается автоматически, поэтому нет необходимости передавать словарь вместе с сжатым кодом.
    Словарь инициализируется всеми одноэлементными цепочками, т.е. первые строки словаря представляют собой алфавит, в котором мы производим кодирование. При сжатии происходит поиск наиболее длинной цепочки уже записанной в словарь. Каждый раз, когда встречается цепочка, ещё не записанная в словарь, она добавляется туда, при этом выводится сжатый код, соответствующий уже записанной в словаре цепочки. В теории на размер словаря не накладывается никаких ограничений, но на практике есть смысл этот размер ограничивать, так как со временем начинаются встречаться цепочки, которые больше в тексте не встречаются. Кроме того, при увеличении размеры таблицы вдвое мы должны выделять лишний бит для хранения сжатых кодов. Для того чтобы не допускать таких ситуаций, вводится специальный код, символизирующий инициализацию таблицы всеми одноэлементными цепочками.
    Рассмотрим пример сжатия алгоритмом. Будем сжимать строку кукушкакукушонкукупилакапюшон. Предположим, что словарь будет вмещать 32 позиции, а значит, каждый его код будет занимать 5 бит. Изначально словарь заполнен следующим образом:

    Эта таблица есть, как и на стороне того, кто сжимает информацию, так и на стороне того, кто распаковывает. Сейчас мы рассмотрим процесс сжатия.

    В таблице представлен процесс заполнения словаря. Легко подсчитать, что полученный сжатый код занимает 105 бит, а исходный текст (при условии, что на кодирование одного символа мы тратим 4 бита) занимает 116 бит.
    По сути, процесс декодирования сводится к прямой расшифровке кодов, при этом важно, чтобы таблица была инициализирована также, как и при кодировании. Теперь рассмотрим алгоритм декодирования.


    Строку, добавленную в словарь на i-ом шаге мы можем полностью определить только на i+1. Очевидно, что i-ая строка должна заканчиваться на первый символ i+1 строки. Т.о. мы только что разобрались, как можно восстанавливать словарь. Некоторый интерес представляет ситуация, когда кодируется последовательность вида cScSc, где c - это один символ, а S - строка, причём слово cS уже есть в словаре. На первый взгляд может показаться, что декодер не сможет разрешить такую ситуацию, но на самом деле все строки такого типа всегда должны заканчиваться на тот же символ, на который они начинаются.

    Алгоритмы статистического кодирования
    Алгоритмы этой серии ставят наиболее частым элементам последовательностей наиболее короткий сжатый код. Т.е. последовательности одинаковой длины кодируются сжатыми кодами различной длины. Причём, чем чаще встречается последовательность, тем короче, соответствующий ей сжатый код.
    Алгоритм Хаффмана
    Алгоритм Хаффмана позволяет строить префиксные коды. Можно рассматривать префиксные коды как пути на двоичном дереве: прохождение от узла к его левому сыну соответствует 0 в коде, а к правому сыну – 1. Если мы пометим листья дерева кодируемыми символами, то получим представление префиксного кода в виде двоичного дерева.
    Опишем алгоритм построения дерева Хаффмана и получения кодов Хаффмана.
    1. Символы входного алфавита образуют список свободных узлов. Каждый лист имеет вес, который равен частоте появления символа
    2. Выбираются два свободных узла дерева с наименьшими весами
    3. Создается их родитель с весом, равным их суммарному весу
    4. Родитель добавляется в список свободных узлов, а двое его детей удаляются из этого списка
    5. Одной дуге, выходящей из родителя, ставится в соответствие бит 1, другой - бит 0
    6. Шаги, начиная со второго, повторяются до тех пор, пока в списке свободных узлов не останется только один свободный узел. Он и будет считаться корнем дерева.
    С помощью этого алгоритма мы можем получить коды Хаффмана для заданного алфавита с учётом частоты появления символов.
    Арифметическое кодирование
    Алгоритмы арифметического кодирования кодируют цепочки элементов в дробь. При этом учитывается распределение частот элементов. На данный момент алгоритмы арифметического кодирования защищены патентами, поэтому мы рассмотрим только основную идею.
    Пусть наш алфавит состоит из N символов a1,…,aN, а частоты их появления p1,…,pN соответственно. Разобьем полуинтервал }