• NFS: сетевая файловая система. Сетевая файловая служба

    Для раздачи файлов внутри локальной сети можно выделить такие технологии (рассматриваются системы на базе Linux):

    • Network File System (NFS) - протокол сетевого доступа к файловым системам;
    • Files transferred over Shell protocol (FISH) - сетевой протокол, который использует или RSH для передачи файлов между компьютерами;
    • Secure SHell FileSystem (SSHFS) - клиент файловой системы для монтирования дисковых устройств на удаленных системах, для взаимодействия с удаленной системой используется SFTP ;
    • Samba - пакет программ, которые позволяют обращаться к сетевым дискам и принтерам на различных операционных системах по протоколу SMB/CIFS;

    В данной заметке речь пойдет про NFS .

    NFS (Network File System) полезна когда нужно раздать файлы/директории всем внутри сети. Прозрачность доступа с помощью NFS позволяет клиентам подключить удаленную файловую систему как локальную директорию, причем файловые системы могут быть разных типов. Это означает, что любое приложение клиента, которое может работать с локальным файлом, с таким же успехом может работать и с файлом подключенным по NFS , без каких либо модификаций самой программы.

    К преимуществам NFS можно отнести:

  • уменьшение нагрузки на процессор;
  • отображение совместно используемых ресурсов как обычных директорий в системе;
  • На данный момент доступна NFS v4.1 , в которой ввели новую возможность pNFS позволяющей распараллелить реализацию общего доступа к файлам. Также есть расширение для NFS 2 и 3 - WebNFS , которое позволяют легче интегрироваться в веб-браузеры и дает возможность работать через брандмауэр.

    Схема работы NFS протокола.

    Установка и настройка NFS-сервер под Linux

    Проверим поддерживает ли система NFS

    Cat /proc/filesystems | grep nfs

    Под Arch Linux сервер и клиент находиться в одном пакете

    Yaourt -S nfs-utils

    Для установки сервера (nfs-kernel-server ) и клиента (nfs-common ) под Ubuntu необходимы пакеты

    Sudo apt-get install nfs-kernel-server nfs-common portmap

    Дальше в заметке для сервера будет использоваться IP 192.168.1.100 . Для того что бы за сервером всегда был закреплен один и тот же IP необходимо в DHCP-сервере (чаще всего роутер) указать раздачу конкретного IP конкретному MAC-адресу. Или поднять свой локальный DNS-сервер. Например или .

    MAC-адрес можно узнать с помощью ifconfig (поле ether в Arch Linux ).

    NFSv4 предполагает что есть корневая директория, внутри которой уже расположены файлы для раздачи. Например, /srv/nfs - корень, /srv/nfs/audio - директория для раздачи музыки. Если не следовать этому новому указанию в версии 4 , то можно получить ошибку при подключении клиентом:

    Mount.nfs: access denied by server while mounting 192.168.1.100:/home/proft/torrents

    Если все же хочется использовать на сервере подход без корневой-директории для NFS , то при монтировании клиентом надо явно указать версию 3

    # для команды mount mount -o "vers=3" 192.168.1.100:/home/proft/torrents /home/proft/nfs/torrents # для fstab 192.168.1.100:/home/proft/torrents /home/proft/nfs/torrents nfs soft,nfsvers=3 0 0

    Я буду использовать NFSv4 с root-директорией в /srv/nfs/ и монтированием вложенных директорий с помощью mount --bind .

    Предположим, что мы хотим

    • раздавать директорию ~/torrents с rw доступом для всех внутри локальной сети;
    • раздавать директорию ~/photos с ro доступом для хоста с IP 192.168.1.101 ;

    Для начала создадим корневую директорию и необходимые вложенные.

    Sudo mkdir -p /srv/nfs/{torrents,photos}

    Примонтируем существующие директории torrents, photos в /srv/nfs .

    # sudo vim /etc/fstab /home/proft/torrents /srv/nfs/torrents none bind 0 0 /home/proft/photos /srv/nfs/photos none bind 0 0

    Отредактируем /etc/exports , в котором описываются все директории для совместного доступа

    # sudo vim /etc/exports # формат файла: directory allowed-hosts(options) /srv/nfs/torrents 192.168.1.1/24(rw,async) /srv/nfs/photos 192.168.1.101(ro,async)

    Обратите внимание на отсутствие пробела между allowed-hosts и (options) . Наличие пробела вводит другую трактовку правил.

    Доступные опции:

    • ro (rw) - разрешить доступ только на чтение (чтение/запись);
    • subtree_check (no_subtree_check) - в некоторых случаях приходится экспортировать не весь раздел, а лишь его часть. При этом сервер NFS должен выполнять дополнительную проверку обращений клиентов, чтобы убедиться в том, что они предпринимают попытку доступа лишь к файлам, находящимся в соответствующих подкаталогах. Такой контроль поддерева (subtree checks ) несколько замедляет взаимодействие с клиентами, но если отказаться от него, могут возникнуть проблемы с безопасностью системы. Отменить контроль поддерева можно с помощью опции no_subtree_check . Опция subtree_check , включающая такой контроль, предполагается по умолчанию. Контроль поддерева можно не выполнять в том случае, если экспортируемый каталог совпадает с разделом диска;
    • sync (async) - указывает, что сервер должен отвечать на запросы только после записи на диск изменений, выполненных этими запросами. Опция async указывает серверу не ждать записи информации на диск, что повышает производительность, но понижает надежность, т.к. в случае обрыва соединения или отказа оборудования возможна потеря данных;
    • noaccess - запрещает доступ к указанной директории. Может быть полезной, если перед этим был задан доступ всем пользователям сети к определенной директории, и теперь хотите ограничить доступ в поддиректории лишь некоторым пользователям;
    • no_root_squash – по умолчанию пользователь root на клиентской машине не будет обладать теми же правами к директории на сервера. Эта опция снимает это ограничение;
    • nohide - NFS автоматически не показывает нелокальные ресурсы (например, примонтированые с помощью mount --bind), эта опция включает отображение таких ресурсов;
    • insecure - использование непривилегированных портов (> 1024);

    Запускаем NFS-сервер

    # под archlinux sudo systemctl start rpc-idmapd.service rpc-mountd.service # под ubuntu sudo /etc/init.d/nfs-kernel-server start

    В дальнейшем при изменении конфигурационного файла достаточно его перечитать командой:

    Sudo exportfs -rav

    Команда rpcinfo -p | grep nfs позволяет проверить успешность запуска сервера.

    Клиент под Linux

    Установка

    # под archlinux yaourt -S nfs-utils # под ubuntu sudo apt-get install portmap nfs-common

    Создадим директории для монтирования сетевых ресурсов torrents и photos

    Mkdir -p ~/nfs/{torrents,photos}

    Для ручного монтирования выполним

    Sudo mount -t nfs -o rw,soft 192.168.1.100:/srv/nfs/torrents /home/proft/nfs/torrents sudo mount -t nfs -o rw,soft 192.168.1.100:/srv/nfs/photos /home/proft/nfs/photos

    Опция soft указывает тихо отменить попытки подключить шару после определенного количества времени (время задается опцией retrans ). Подробнее в man nfs .

    Данный способ не очень удобен, так как каждый раз после перезагрузки придется выполнять эти команды. Сделаем монтирование автоматическим.

    Для автоматического монтирования редактируем файл /etc/fstab

    # sudo vim /etc/fstab 192.168.1.100:/srv/nfs/torrents /home/proft/net/torrents nfs rw,soft 0 0 192.168.1.100:/srv/nfs/photos /home/proft/net/photos nfs ro,soft 0 0

    Но и у этого способа есть свои недостатки, например, если сервер не доступен то загрузка клиента может подвиснуть из-за попыток подключиться к NFS-серверу. Для исправления этого см. ниже про AutoFS .

    AutoFS - автоматическое подключение сетевых ресурсов

    Есть возможность монтировать удаленный ресурс с помощью AutoFS при первом обращении и автоматически отмонтировать при отсутствии активности.

    AutoFS использует для настройки шаблоны, расположенные в /etc/autofs . Основной шаблон называется auto.master , он может указывать на один или несколько других шаблонов для конкретных типов носителей.

    Установка

    # под archlinux yaourt -S autofs # под ubuntu sudo apt-get install autofs

    Существует несколько способов указать способы автомонтирования. Я использую такой: в /home/proft/nfs автоматически создается директория с именем NFS-сервера, в которой автоматически создаются доступные директории на сервере.

    # sudo vim /etc/autofs/auto.master /home/proft/nfs /etc/autofs/auto.nfs --timeout=60

    Дополнительный параметр timeout устанавливает количество секунд после которых устройство будет размонтировано. Параметр ghost указывает что сконфигурированные ресурсы будут отображаться всегда, а не только тогда, когда они доступны (эта опция включена по умолчанию в AutoFS 5 )

    Опишем в /etc/autofs/auto.nfs NFS-сервер и root-директорию.

    # sudo vim /etc/autofs/auto.nfs nfsserver 192.168.1.100:/srv/nfs

    Теперь при первом обращении /home/proft/nfs/torrents произойдет автоматическое монтирование NFS-ресурса.

    Перезапустим службу autofs:

    # под archlinux sudo systemctl restart autofs # под ubuntu sudo /etc/init.d/autofs restart

    Еще можно указать время ожидания доступности NFS-ресурса. Для этого необходимо изменить значения MOUNT_WAIT .

    # под archlinux # sudo vim /etc/conf.d/autofs MOUNT_WAIT=5 # под ubuntu sudo /etc/default/autofs MOUNT_WAIT=5

    Форсирование использования NFS v3

    В некоторых случаях NFSv4 может работать медленно. Для исправления этого можно принудительно указать использовать третью версию.

    пользователь может работать в разное время на разных компьютерах. С помощью файлового сервера решается сразу несколько задач:
    1. регулярное резервное копирование всех данных: нереально выполнять эту операцию для нескольких десятков или сотен компьютеров, но вполне реально - с единственного сервера или нескольких серверов.
    2. повышение надежности хранения данных: неразумно каждый компьютер сети оснащать RAID-массивом, ведь подавляющее большинство файлов в компьютере, таких, как установленные пакеты программ, проще установить заново, чем защищать их от сбоя; но будет вполне разумным укомплектовать файловый сервер аппаратным RAID-массивом или организовать там программный RAID-массив, хотя бы простое зеркалирование дисков.
    3. уменьшение стоимости хранения данных: дорого и неэффективно в каждый компьютер устанавливать огромный диск на случай, если потребуется хранить много данных, но на сервере вполне можно установить масштабируемую дисковую подсистему большого объема.
    4. обеспечение доступа к одним и тем же данным с любого компьютера.

    Описание NFS

    Служба NFS позволяет серверу обеспечить разделяемый доступ к указанным каталогам его локальной файловой системы , а клиенту - монтировать эти каталоги так же, как если бы они были локальными каталогами клиента.

    Версии NFS

    NFS , разработанная компанией Sun Microsystems, оказалась настолько удачной, что ее реализации были воплощены разными компаниями почти во всех операционных системах. Существует несколько принципиально разных реализаций NFS . Достаточно распространена версия NFS 2.0, хотя уже в Solaris 2.5 была введена NFS 3.0. В последующих версиях Solaris, включая Solaris 9, в NFS были внесены существенные дополнения, но сам протокол остался совместимым с реализациями NFS 3.0 в других системах. Начиная с NFS 3.0, поддерживается передача пакетов посредством TCP и UDP, ранее поддерживался только UDP.

    Будьте внимательны ! В сети следует использовать клиенты и серверы NFS одной и той же версии . NFS 2.0 можно встретить в старых системах, например, в HP-UX 10.0. Совместная работа систем, использующих разные версии NFS , нежелательна.

    Совместимость NFS и других служб разделяемых каталогов

    NFS по смыслу и по организации работы похожа на разделяемые каталоги (shared folders) в системах Windows, но эти службы используют совершенно разные протоколы работы и между собой не совместимы. Однако существует несколько программных продуктов, которые устанавливают поддержку NFS в системах Windows, поэтому применение NFS в сети с различными операционными системами не представляет проблемы, надо только помнить о необходимости использовать одинаковые версии NFS .

    Служба NFS предполагает работу модели клиент-сервер, причем на компьютерах-клиентах и компьютерах-серверах запускаются разные программы для обеспечения доступа к общим каталогам на сервере.

    Поскольку компьютеры на рабочих местах сотрудников в России обычно управляются Windows-системами, в качестве файловых серверов часто используются также Windows-системы. Однако нередко возникает желание установить UNIX на файл-сервер, чтобы повысить надежность, сократить затраты на оборудование или использовать этот же сервер для ряда других корпоративных нужд: в качестве web-сервера, сервера баз данных и т.п. Чтобы не устанавливать дополнительное ПО для поддержки NFS , в таком случае достаточно установить пакет samba на UNIX-машину. Он позволит ей "прикинуться" Windows-сервером так, чтобы все клиентские компьютеры воспринимали его как самый обычный файл-сервер или принт-сервер Windows-сети. Пакет samba обеспечивает поддержку "родного" для Windows-сетей протокола SMB.

    В тех случаях, когда в сети работают несколько UNIX-компьютеров и им нужно обращаться к одному файл-серверу, имеет смысл использовать механизм NFS (network file system).

    NFS не очень устойчив к сбоям сети, требует ее бесперебойной работы и предполагает быстрое соединение между клиентом и сервером. Использование NFS для монтирования файловых систем вне локальной сети, например, через Интернет, технически осуществимо, но не очень рационально и небезопасно.

    Терминология NFS

    После настройки NFS-сервера UNIX-компьютер будет предоставлять доступ внешним пользователям к некоторым каталогам своей файловой системы . Такое предоставление доступа называется "экспортом": говорят, что система экспортирует свои каталоги. Как именно каталоги будут экспортироваться, определяется списком, который задает системный администратор. В большинстве систем UNIX этот список содержится в файле /etc/exports , но в Solaris он находится в другом файле - /etc/dfs/dfstab .

    NFS работает посредством механизма удаленного вызова процедур ( RPC - Remote Procedure Call ).

    Что такое RPC

    Идеология RPC очень проста и привлекательна для программиста. Как обычно работает сетевое приложение? Оно следует некоему протоколу (например, HTTP): формирует пакет с запросом, вызывает системную функцию установления соединения, затем функцию отправки пакета, затем ждет ответного пакета и вызывает функцию закрытия соединения. Это значит, что вся работа с сетью является заботой программиста, который пишет приложение: он должен помнить о вызове функций сетевого API системы, думать о действиях в случае сбоев сети.

    RPC предполагает иной способ обмена данными между клиентом и сервером. С точки зрения программиста, приложение клиента, работающее с помощью RPC , вызывает функцию на сервере, она выполняется и возвращает результат. Пересылка запроса на выполнение функции через сеть и возврат результатов от сервера клиенту происходит незаметно для приложения, поэтому последнее не должно беспокоиться ни о сбоях сети, ни о деталях реализации транспортного протокола.

    Для того чтобы обеспечить прозрачность пересылки данных через сеть, придумана двухступенчатая процедура. На сервере любое приложение, предоставляющее свой сервис через RPC , должно зарегистрироваться в программе, которая называется транслятором портов (port mapper). Функция этой программы - устанавливать соответствие между номером процедуры RPC , которую запросил клиент, и номером TCP или UDP порта, на котором приложение сервера ждет запросов. Вообще говоря, RPC может работать не только с TCP или UDP. В Solaris как раз реализована работа на базе механизма TI (TransportIndependent), поэтому в Solaris транслятор портов называется rpcbind , а не portmap , как в Linux или FreeBSD.

    Приложение, которое регистрируется у транслятора портов, сообщает ему номер программы, номер версии и номера процедур, которые могут обрабатываться данной программой. Эти процедуры будут впоследствии вызываться клиентом по номеру. Кроме этого, приложение сообщает номера портов TCP и UDP, которые будут использоваться для приема запросов на выполнение процедур.

    Клиент, желающий вызвать выполнение процедуры на сервере, сначала отправляет запрос транслятору портов на сервер, чтобы узнать, на какой TCP или UDP порт надо отправить запрос. Транслятор портов запускается при старте системы и всегда работает на стандартном порту 111. Получив ответ от него, клиент отправляет запрос на тот порт, который соответствует требуемому приложению. Например, сервер NFS работает на порту 2049.

    Процедура монтирования общего каталога через NFS

    Прежде чем мы перейдем к описанию настроек сервера и клиентов NFS , следует понять, как осуществляется монтирование удаленных файловых систем в принципе.

    Клиент NFS посылает запрос на монтирование удаленному компьютеру, который предоставляет свою файловую систему (обычно - некоторую ее часть) для общего пользования. При этом говорят, что сервер NFS "экспортирует" тот или иной каталог (подразумевается - с подкаталогами). Запрос от клиента

    NFS: удобная и перспективная сетевая файловая система

    Сетевая файловая система – это сетевая абстракция поверх обычной файловой системы, позволяющая удаленному клиенту обращаться к ней через сеть так же, как и при доступе к локальным файловым системам. Хотя NFS не является первой сетевой системой, она сегодня развилась до уровня наиболее функциональной и востребованной сетевой файловой системы в UNIX®. NFS позволяет организовать совместный доступ к общей файловой системе для множества пользователей и обеспечить централизацию данных для минимизации дискового пространства, необходимого для их хранения.

    Эта статья начинается с краткого обзора истории NFS, а затем переходит к исследованию архитектуры NFS и путей её дальнейшего развития.

    Краткая история NFS

    Первая сетевая файловая система называлась FAL (File Access Listener - обработчик доступа к файлам) и была разработана в 1976 году компанией DEC (Digital Equipment Corporation). Она являлась реализацией протокола DAP (Data Access Protocol – протокол доступа к данным) и входила в пакет протоколов DECnet. Как и в случае с TCP/IP, компания DEC опубликовала спецификации своих сетевых протоколов, включая протокол DAP.

    NFS была первой современной сетевой файловой системой, построенной поверх протокола IP. Её прообразом можно считать экспериментальную файловую систему, разработанную в Sun Microsystems в начале 80-х годов. Учитывая популярность этого решения, протокол NFS был представлен в качестве спецификации RFC и впоследствии развился в NFSv2. NFS быстро утвердилась в качестве стандарта благодаря способности взаимодействовать с другими клиентами и серверами.

    Впоследствии стандарт был обновлен до версии NFSv3, определенной в RFC 1813. Эта версия протокола была более масштабируема, чем предыдущие, и поддерживала файлы большего размера (более 2 ГБ), асинхронную запись и TCP в качестве транспортного протокола. NFSv3 задала направление развития файловых систем для глобальных (WAN) сетей. В 2000 году в рамках спецификации RFC 3010 (переработанной в версии RFC 3530) NFS была перенесена в корпоративную среду. Sun представила более защищенную NFSv4 c поддержкой сохранения состояния (stateful) (предыдущие версии NFS не поддерживали сохранение состояния, т.е. относились к категории stateless). На текущий момент последней версией NFS является версия 4.1, определенная в RFC 5661, в которой в протокол посредством расширения pNFS была добавлена поддержка параллельного доступа для распределенных серверов.

    История развития NFS, включая конкретные RFC, описывающие её версии, показана на рисунке 1.


    Как ни удивительно, NFS находится в стадии разработки уже почти 30 лет. Она является исключительно стабильной и переносимой сетевой файловой системой с выдающимися характеристиками масштабируемости, производительности и качества обслуживания. В условиях увеличения скорости и снижения задержек при обмене данными внутри сети NFS продолжает оставаться популярным способом реализации файловой системы внутри сети. Даже в случае локальных сетей виртуализация побуждает хранить данные в сети, чтобы обеспечить виртуальным машинам дополнительную мобильность. NFS также поддерживает новейшие модели организации вычислительных сред, нацеленные на оптимизацию виртуальных инфраструктур.

    Архитектура NFS

    NFS использует стандартную архитектурную модель "клиент-сервер" (как показано на рисунке 2). Сервер отвечает за реализацию файловой системы совместного доступа и хранилища, к которому подключаются клиенты. Клиент реализует пользовательский интерфейс к общей файловой системе, смонтированной внутри локального файлового пространства клиента.

    Рисунок 2. Реализация модели "клиент-сервер" в архитектуре NFS

    В ОС Linux® виртуальный коммутатор файловой системы (virtual file system switch - VFS) предоставляет средства для одновременной поддержки на одном хосте нескольких файловых систем (например, файловой системы ISO 9660 на CD-ROM и файловой системы ext3fs на локальном жестком диске). Виртуальный коммутатор определяет, к какому накопителю выполняется запрос, и, следовательно, какая файловая система должна использоваться для обработки запроса. Поэтому NFS обладает такой же совместимостью, как и другие файловые системы, применяющиеся в Linux. Единственное отличие NFS состоит в том, что запросы ввода/вывода вместо локальной обработки на хосте могут быть направлены для выполнения в сеть.

    VFS определяет, что полученный запрос относится к NFS, и передает его в обработчик NFS, находящийся в ядре. Обработчик NFS обрабатывает запрос ввода/вывода и транслирует его в NFS-процедуру (OPEN , ACCESS , CREATE , READ , CLOSE , REMOVE и т.д.). Эти процедуры, описанные в отдельной спецификации RFC, определяют поведение протокола NFS. Необходимая процедура выбирается в зависимости от запроса и выполняется с помощью технологии RPC (вызов удаленной процедуры). Как можно понять по названию, RPC позволяет осуществлять вызовы процедур между различными системами. RPC-служба соединяет NFS-запрос с его аргументами и отправляет результат на соответствующий удаленный хост, а затем следит за получением и обработкой ответа, чтобы вернуть его инициатору запроса.

    Также RPC включает в себя важный уровень XDR (external data representation – независимое представление данных), гарантирующий, что все пользователи NFS для одинаковых типов данных используют один и тот же формат. Когда некая платформа отправляет запрос, используемый ею тип данных может отличаться от типа данных, используемого на хосте, обрабатывающего этот запрос. Технология XDR берет на себя работу по преобразованию типов в стандартное представление (XDR), так что платформы, использующие разные архитектуры, могут взаимодействовать и совместно использовать файловые системы. В XDR определен битовый формат для таких типов, как float , и порядок байтов для таких типов, как массивы постоянной и переменной длины. Хотя XDR в основном известна благодаря применению в NFS, это спецификация может быть полезна во всех случаях, когда приходится работать в одной среде с различными архитектурами.

    После того как XDR переведет данные в стандартное представление, запрос передается по сети с помощью определенного транспортного протокола. В ранних реализациях NFS использовался протокол UDP, но сегодня для обеспечения большей надежности применяется протокол TCP.

    На стороне NFS-сервера применяется схожий алгоритм. Запрос поднимается по сетевому стеку через уровень RPC/XDR (для преобразования типов данных в соответствии с архитектурой сервера) и попадает в NFS-сервер, который отвечает за обработку запроса. Там запрос передается NFS-демону для определения целевой файловой системы, которой он адресован, а затем снова поступает в VFS для обращения к этой файловой системе на локальном диске. Полностью схема этого процесса приведена на рисунке 3. При этом локальная файловая система сервера – это стандартная для Linux файловая система, например, ext4fs. По сути NFS – это не файловая система в традиционном понимании этого термина, а протокол удаленного доступа к файловым системам.


    Для сетей с большим временем ожидания в NFSv4 предлагается специальная составная процедура (compound procedure ). Эта процедура позволяет поместить несколько RPC-вызовов внутрь одного запроса, чтобы минимизировать затраты на передачу запросов по сети. Также в этой процедуре реализован механизм callback-функций для получения ответов.

    Протокол NFS

    Когда клиент начинает работать с NFS, первым действием выполняется операция mount , которая представляет собой монтирование удаленной файловой системы в пространство локальной файловой системы. Этот процесс начинается с вызова процедуры mount (одной из системных функций Linux), который через VFS перенаправляется в NFS-компонент. Затем с помощью RPC-вызова функции get_port на удаленном сервере определяется номер порта, который будет использоваться для монтирования, и клиент через RPC отправляет запрос на монтирование. Этот запрос на стороне сервера обрабатывается специальным демоном rpc.mountd , отвечающим за протокол монтирования (mount protocol ). Демон проверяет, что запрошенная клиентом файловая система имеется в списке систем, доступных на данном сервере. Если запрошенная система существует и клиент имеет к ней доступ, то в ответе RPC-процедуры mount указывается дескриптор файловой системы. Клиент сохраняет у себя информацию о локальной и удаленной точках монтирования и получает возможность осуществлять запросы ввода/вывода. Протокол монтирования не является безупречным с точки зрения безопасности, поэтому в NFSv4 вместо него используются внутренние RPC-вызовы, которые также могут управлять точками монтирования.

    Для считывания файла его необходимо сначала открыть. В RPC нет процедуры OPEN , вместо этого клиент просто проверяет, что указанные файл и каталог существуют в смонтированной файловой системе. Клиент начинает с выполнения RPC-запроса GETATTR к каталогу, в ответ на который возвращаются атрибуты каталога или индикатор, что каталог не существует. Далее, чтобы проверить наличие файла, клиент выполняет RPC-запрос LOOKUP . Если файл существует, для него выполняется RPC-запрос GETATTR , чтобы узнать атрибуты файла. Используя информацию, полученную в результате успешных вызовов LOOKUP и GETATTR , клиент создает дескриптор файла, который предоставляется пользователю для выполнения будущих запросов.

    После того как файл идентифицирован в удаленной файловой системе, клиент может выполнять RPC-запросы типа READ . Этот запрос состоит из дескриптора файла, состояния, смещения и количества байт, которое следует считать. Клиент использует состояние (state ), чтобы определить может ли операция быть выполнена в данный момент, т.е. не заблокирован ли файл. Смещение (offset ) указывает, с какой позиции следует начать чтение, а счетчик байт (count ) определяет, сколько байт необходимо считать. В результате RPC-вызова READ сервер не всегда возвращает столько байт, сколько было запрошено, но вместе с возвращаемыми данными всегда передает, сколько байт было отправлено клиенту.

    Инновации в NFS

    Наибольший интерес представляют две последние версии NFS – 4 и 4.1, на примере которых можно изучить наиболее важные аспекты эволюции технологии NFS.

    До появления NFSv4 для выполнения таких задач по управлению файлами, как монтирование, блокировка и т.д. существовали специальные дополнительные протоколы. В NFSv4 процесс управления файлами был упрощен до одного протокола; кроме того, начиная с этой версии UDP больше не используется в качестве транспортного протокола. NFSv4 включает поддержку UNIX и Windows®-семантики доступа к файлам, что позволяет NFS "естественным" способом интегрироваться в другие операционные системы.

    В NFSv4.1 для большей масштабируемости и производительности была введена концепция параллельной NFS (parallel NFS - pNFS). Чтобы обеспечить больший уровень масштабируемости, в NFSv4.1 реализована архитектура, в которой данные и метаданные (разметка ) распределяются по устройствам аналогично тому, как это делается в кластерных файловых системах. Как показано на , pNFS разделяет экосистему на три составляющие: клиент, сервер и хранилище. При этом появляются два канала: один для передачи данных, а другой для передачи команд управления. pNFS отделяет данные от описывающих их метаданных, обеспечивая двухканальную архитектуру. Когда клиент хочет получить доступ к файлу, сервер отправляет ему метаданные с "разметкой". В метаданных содержится информация о размещении файла на запоминающих устройствах. Получив эту информацию, клиент может обращаться напрямую к хранилищу без необходимости взаимодействовать с сервером, что способствует повышению масштабируемости и производительности. Когда клиент заканчивает работу с файлом, он подтверждает изменения, внесенные в файл и его "разметку". При необходимости сервер может запросить у клиента метаданные с разметкой.

    С появлением pNFS в протокол NFS было добавлено несколько новых операций для поддержки такого механизма. Метод LayoutGet используется для получения метаданных с сервера, метод LayoutReturn "освобождает" метаданные, "захваченные" клиентом, а метод LayoutCommit загружает "разметку", полученную от клиента, в хранилище, так что она становится доступной другим пользователям. Сервер может отозвать метаданные у клиента с помощью метода LayoutRecall . Метаданные с "разметкой" распределяются между несколькими запоминающими устройствами, чтобы обеспечить параллельный доступ и высокую производительность.


    Данные и метаданные хранятся на запоминающих устройствах. Клиенты могут выполнять прямые запросы ввода/вывода на основе полученной разметки, а сервер NFSv4.1 хранит метаданные и управляет ими. Сама по себе эта функциональность и не нова, но в pNFS была добавлена поддержка различных методов доступа к запоминающим устройствам. Сегодня pNFS поддерживает использование блочных протоколов (Fibre Channel), объектных протоколов и собственно NFS (даже не в pNFS-форме).

    Развитие NFS продолжается, и в сентябре 2010 года были опубликованы требования к NFSv4.2. Некоторые из нововведений связаны с наблюдающейся миграцией технологий хранения данных в сторону виртуализации. Например, в виртуальных средах с гипервизором весьма вероятно возникновение дублирования данных (несколько ОС выполняют чтение/запись и кэширование одних и тех же данных). В связи с этим желательно, чтобы система хранения данных в целом понимала, где происходит дублирование. Такой подход поможет сэкономить пространство в кэше клиента и общую емкость системы хранения. В NFSv4.2 для решения этой проблемы предлагается использовать "карту блоков, находящихся в совместном доступе" (block map of shared blocks). Поскольку современные системы хранения все чаще оснащаются собственными внутренними вычислительными мощностями, вводится копирование на стороне сервера, позволяющее снизить нагрузку при копировании данных во внутренней сети, когда это можно эффективно делать на самом запоминающем устройстве. Другие инновации включают в себя субфайловое кэширование для флэш-памяти и рекомендации по настройке ввода-вывода на стороне клиента (например, с использованием mapadvise).

    Альтернативы NFS

    Хотя NFS – самая популярная сетевая файловая система в UNIX и Linux, кроме нее существуют и другие сетевые файловые системы. На платформе Windows® чаще всего применяется SMB, также известная как CIFS ; при этом ОС Windows также поддерживает NFS, равно как и Linux поддерживает SMB.

    Одна из новейших распределенных файловых систем, поддерживаемых в Linux - Ceph - изначально спроектирована как отказоустойчивая POSIX-совместимая файловая система. Дополнительную информацию о Ceph можно найти в разделе .

    Стоит также упомянуть файловые системы OpenAFS (Open Source-версия распределенной файловой системы Andrew, разработанной в университете Карнеги-Меллона и корпорации IBM), GlusterFS (распределенная файловая система общего назначения для организации масштабируемых хранилищ данных) и Lustre (сетевая файловая система с массовым параллелизмом для кластерных решений). Все эти системы с открытым исходным кодом можно использовать для построения распределенных хранилищ.

    Заключение

    Развитие файловой системы NFS продолжается. Подобно ОС Linux, подходящей для поддержки и бюджетных, и встраиваемых, и высокопроизводительных решений, NFS предоставляет архитектуру масштабируемых решений для хранения данных, подходящих как отдельным пользователям, так и организациям. Если посмотреть на путь, уже пройденный NFS, и перспективы её дальнейшего развития, становится понятно, что эта файловая система будет продолжать изменять наши взгляды на то, как реализуются и используются технологии хранения файлов.

    Файловая система NFS (Network File System) создана компанией Sun Microsystems. В настоящее время это стандартная сетевая файловая система для ОС семейства UNIX, кроме того, клиенты и серверы NFS реализованы для многих других ОС. Принципы ее организации на сегодня стандартизованы сообществом Интернета, последняя версия NFS v.4 описывается спецификацией RFC ЗОЮ, выпущенной в декабре 2000 года.

    NFS представляет собой систему, поддерживающую схему удаленного доступа к файлам. Работа пользователя с удаленными файлами после выполнения операции монтирования становится полностью прозрачной - поддерево файловой системы сервера NFS становится поддеревом локальной файловой системы.

    Одной из целей разработчиков NFS была поддержка неоднородных систем с клиентами и серверами, работающими под управлением различных ОС на различной аппаратной платформе. Этой цели способствует реализация NFS на основе механизма Sun RFC, поддерживающего по умолчанию средства XDR для унифицированного представления аргументов удаленных процедур.

    Для обеспечения устойчивости клиентов к отказам серверов в NFS принят подход stateless, то есть серверы при работе с файлами не хранят данных об открытых клиентами файлах.

    Основная идея NFS - позволить произвольной группе пользователей разделять общую файловую систему. Чаще всего все пользователи принадлежат одной локальной сети, но не обязательно. Можно выполнять NFS и на глобальной сети. Каждый NFS-сервер предоставляет один или более своих каталогов для доступа удаленным клиентам. Каталог объявляется достудным со всеми своими подкаталогами. Список каталогов, которые сервер передает, содержится в файле /etc/exports, так что эти каталоги экспортируются сразу автоматически при загрузке сервера. Клиенты получают доступ к экспортируемым каталогам путем монтирования. Многие рабочие станции Sun бездисковые, но и в этом случае можно монтировать удаленную файловую систему к корневому каталогу, при этом вся файловая система целиком располагается на сервере. Выполнение программ почти не зависит от того, где расположен файл: локально или на удаленном диске. Если два или более клиента одновременно смонтировали один и тот же каталог, то они могут связываться путем разделения файла.

    В своей работе файловая система NFS использует два протокола.

    Первый NFS-протокол управляет монтированием. Клиент посылает серверу полное имя каталога и запрашивает разрешение на монтирование этого каталога в какую-либо точку собственного дерева каталогов. При этом серверу не указывается, в какое место будет монтироваться каталог сервера. Получив имя, сервер проверяет законность этого запроса и возвращает клиенту дескриптор файла, являющегося удаленной точкой монтирования. Дескриптор включает описатель типа файловой системы, номер диска, номер индексного дескриптора (inode) каталога, который является удаленной точкой монтирования, информацию безопасности. Операции чтения и записи файлов из монтируемых файловых систем используют дескрипторы файлов вместо символьного имени.


    Монтирование может выполняться автоматически, с помощью командных файлов при загрузке. Существует другой вариант автоматического монтирования: при загрузке ОС на рабочей станции удаленная файловая система не монтируется, но при первом открытии удаленного файла ОС посылает запросы каждому серверу и после обнаружения этого файла монтирует каталог того сервера, на котором расположен найденный файл.

    Второй NFS-протокол используется для доступа к удаленным файлам и каталогам. Клиенты могут послать запрос серверу для выполнения какого-либо действия над каталогом или операции чтения или записи файла. Кроме того, они могут запросить атрибуты файла, такие как тип, размер, время создания и модификации. NFS поддерживается большая часть системных вызовов UNIX, за исключением open и close. Исключение open и close не случайно. Вместо операции открытия удаленного файла клиент посылает серверу сообщение, содержащее имя файла, с запросом отыскать его (lookup) и вернуть дескриптор файла. В отличие от вызова open вызов lookup не копирует никакой информации во внутренние системные таблицы. Вызов read содержит дескриптор того файла, который нужно читать, смещение в уже читаемом файле и количество байт, которые нужно прочитать. Преимуществом такой схемы является то, что сервер не запоминает ничего об открытых файлах. Таким образом, если сервер откажет, а затем будет восстановлен, информация об открытых файлах не потеряется, потому что она не поддерживается.

    При отказе сервера клиент просто продолжает посылать на него команды чтения или записи в файлы, однако не получив ответа и исчерпав тайм-аут, клиент повторяет свои запросы. После перезагрузки сервер получает очередной повторный запрос клиента и отвечает на него. Таки образом, крах сервера вызывает только некоторую паузу в обслуживании клиентов, но никаких дополнительных действий по восстановлению соединений и повторному открытию файлов от клиентов не требуется.

    К сожалению, NFS затрудняет блокировку файлов. Во многих ОС файл может быть открыт и заблокирован так, чтобы другие процессы не имели к нему доступа. Когда файл закрывается, блокировка снимается. В системах stateless, подобных NFS, блокирование не может быть связано с открытием файла, так как сервер не знает, какой файл открыт. Следовательно, NFS требует специальных дополнительных средств управления блокированием.

    В NFS используется кэширование на стороне клиента, данные в кэш переносятся поблочно и применяется упреждающее чтение, при котором чтение блока в кэш по требованию приложения всегда сопровождается чтением следующего блока по инициативе системы. Метод кэширования NFS не сохраняет семантику UNIX для разделения файлов. Вместо этого используется не раз подвергавшаяся критике семантика, при которой изменения данных в кэшируемом клиентом файле видны другому клиенту, в зависимости от временных соотношений. Клиент при очередном открытии файла, имеющегося в его кэше, проверяет у сервера, когда файл был в последний раз модифицирован. Если это произошло после того, как файл был помещен в кэш, файл удаляется из кэша и от сервера получается новая копия файла. Клиенты распространяют модификации, сделанные в кэше, с периодом в 30 секунд, так что сервер может получить обновления с большой задержкой. В результате работы механизмов удаления данных из кэша и распространения модификаций данные, получаемые каким-либо клиентом, не всегда, являются самыми свежими.

    Репликация в NFS не поддерживается.

    Служба каталогов

    Назначение и принципы организации

    Подобно большой организации, большая компьютерная сеть нуждается в централизованном хранении как можно более полной справочной информации о самой себе. Решение многих задач в сети опирается на информацию о пользователях сети - их именах, используемых для логического входа в систему, паролях, правах доступа к ресурсам сети, а также о ресурсах и компонентах сети: серверах, клиентских компьютерах, маршрутизаторах, шлюзах, томах файловых систем, принтерах и т. п.

    Приведем примеры наиболее важных задач, требующих наличия в сети централизованной базы справочной информации:

    • Одной из наиболее часто выполняемых в системе задач, опирающихся на справочную информацию о пользователях, является их аутентификация, на основе которой затем выполняется авторизация доступа. В сети должны каким-то образом централизованно храниться учетные записи пользователей, содержащие имена и пароли.
    • Наличия некоторой централизованной базы данных требует поддержка прозрачности доступа ко многим сетевым ресурсам. В такой базе должны храниться имена этих ресурсов и отображения имен на числовые идентификаторы (например, IP-адреса), позволяющие найти этот ресурс в сети. Прозрачность может обеспечиваться при доступе к серверам, томам файловой системы, интерфейсам процедур RPC, программным объектам распределенных приложений и многим другим сетевым ресурсам.
    • Электронная почта является еще одним популярным примером службы, для которой желательна единая для сети справочная служба, хранящая данные о почтовых именах пользователей.
    • В последнее время в сетях все чаще стали применяться средства управления качеством обслуживания трафика (Quality of Service, QoS), которые также требуют наличия сведений обо всех пользователях и приложениях системы, их требованиях к параметрам качества обслуживания трафика, а также обо всех сетевых устройствах, с помощью которых можно управлять трафиком (маршрутизаторах, коммутаторах, шлюзах и т. п.).
    • Организация распределенных приложений может существенно упроститься, если в сети имеется база, хранящая информацию об имеющихся программных модулях-объектах и их расположении на серверах сети. Приложение, которому необходимо выполнить некоторое стандартное действие, обращается с запросом к такой базе и получает адрес программного объекта, имеющего возможность выполнить требуемое действие.
    • Система управления сетью должна располагать базой для хранения информации о топологии сети и характеристиках всех сетевых элементов, таких как маршрутизаторы, коммутаторы, серверы и клиентские компьютеры. Наличие полной информации о составе сети и ее связях позволяет системе автоматизированного управления сетью правильно идентифицировать сообщения об аварийных событиях и находить их первопричину. Упорядоченная по подразделениям предприятия информация об имеющемся сетевом оборудовании и установленном программном обеспечении полезна сама по себе, так как помогает администраторам составить достоверную картину состояния сети и разработать планы по ее развитию.

    Такие примеры можно продолжать, но нетрудно привести и контраргумент, заставляющий усомниться в необходимости использования в сети централизованной базы справочной информации - долгое время сети работали без единой справочной базы, а многие сети и сейчас работают без нее. Действительно, существует много частных решений, позволяющих достаточно эффективно организовать работу сети на основе частных баз справочной информации, которые могут быть представлены обычными текстовыми файлами или таблицами, хранящимися в теле приложения. Например, в ОС UNIX традиционно используется для хранения данных об именах и паролях пользователей файл passwd, который охватывает пользователей только одного компьютера. Имена адресатов электронной почты также можно хранить в локальном файле клиентского компьютера. И такие частные справочные системы неплохо работают - практика это подтверждает.

    Однако это возражение справедливо только для сетей небольших и средних размеров, в крупных сетях отдельные локальные базы справочной информации теряют свою эффективность. Хорошим примером, подтверждающим неприменимость локальных решений для крупных сетей, является служба имен DNS, работающая в Интернете. Как только размеры Интернета превысили определенный предел, хранить информацию о соответствии имен и IP-адресов компьютеров сети в локальных текстовых файлах стало неэффективно. Потребовалось создать распределенную базу данных, поддерживаемую иерархически связанными серверами имен, и централизованную службу над этой базой, чтобы процедуры разрешения символьных имен в Интернете стали работать быстро и эффективно.

    Для крупной сети неэффективным является также применение большого числа справочных служб узкого назначения: одной для аутентификации, другой - для управления сетью, третей - для разрешения имен компьютеров и т. д. Даже если каждая из таких служб хорошо организована и сочетает централизованный интерфейс с распределенной базой данных, большое число справочных служб приводит к дублированию больших объемов информации и усложняет администрирование и управление сетью. Например, в Windows NT имеется по крайней мере пять различных типов справочных баз данных. Главный справочник домена (NT Domain Directory Service) хранит информацию о пользователях, которая требуется при организации их логического входа в сеть. Данные о тех же пользователях могут содержаться и в другом справочнике, используемом электронной почтой Microsoft Mail. Еще три базы данных поддерживают разрешение адресов: WINS устанавливает соответствие Netbios-имен IP-адресам, справочник DNS (сервер имен домена) оказывается полезным при подключении NT-сети к Интернету, и наконец, справочник протокола DHCP используется для автоматического назначения IP-адресов компьютерам сети. Очевидно, что такое разнообразие справочных служб усложняет жизнь администратора и приводит к дополнительным ошибкам, когда учетные данные одного и того же пользователя нужно ввести в несколько баз данных. Поэтому в новой версии Windows 2000 большая часть справочной информации о системе может храниться службой Active Directory - единой централизованной справочной службой, использующей распределенную базу данных и интегрированной со службой имен DNS.

    Результатом развития систем хранения справочной информации стало появление в сетевых операционных системах специальной службы - так называемой службы каталогов (Directory Services), называемой также справочной службой (directory - справочник, каталог). Служба каталогов хранит информацию обо всех пользователях и ресурсах сети в виде унифицированных объектов с определенными атрибутами, а также позволяет отражать взаимосвязи между хранимыми объектами, такие как принадлежность пользователей к определенной группе, права доступа пользователей к компьютерам, вхождение нескольких узлов в одну подсеть, коммуникационные связи между подсетями, производственную принадлежность серверов и т. д. Служба каталогов позволяет выполнять над хранимыми объектами набор некоторых базовых операций, таких как добавление и удаление объекта, включение объекта в другой объект, изменение значений атрибута объекта, чтение атрибутов и некоторые другие. Обычно над службой каталогов строятся различные специфические сетевые приложения, которые используют информацию службы для решения конкретных задач: управления сетью, аутентификации пользователей, обеспечения прозрачности служб и других, перечисленных выше. Служба каталогов обычно строится на основе модели клиент-сервер: серверы хранят базу справочной информации, которой пользуются клиенты, передавая серверам по сети соответствующие запросы. Для клиента службы каталогов она представляется единой централизованной системой, хотя большинство хороших служб каталогов имеют распределенную структуру, включающую большое количество серверов, но эта структура для клиентов прозрачна.

    Важным вопросом является организация базы справочных данных. Единая база данных, хранящая справочную информацию большого объема, порождает все то же множество проблем, что и любая другая крупная база данных. Реализация справочной службы как локальной базы данных, хранящейся в виде одной копии на одном из серверов сети, не подходит для большой системы по нескольким причинам, и в первую очередь вследствие низкой производительности и низкой надежности такого решения. Производительность будет низкой из-за того, что запросы к базе от всех пользователей и приложений сети будут поступать на единственный сервер, который при большом количестве запросов обязательно перестанет справляться с их обработкой. То есть такое решение плохо масштабируется в отношении количества обслуживаемых пользователей и разделяемых ресурсов. Надежность также не может быть высокой в системе с единственной копией данных. Кроме снятия ограничений по производительности и надежности желательно, чтобы структура базы данных позволяла производить логическое группирование ресурсов и пользователей по структурным подразделениям предприятия и назначать для каждой такой группы своего администратора.

    Проблемы сохранения производительности и надежности при увеличении масштаба сети обычно решаются за счет распределенных баз данных справочной информации. Разделение данных между несколькими серверами снижает нагрузку на каждый сервер, а надежность при этом достигается за счет наличия нескольких реплик каждой части базы данных. Для каждой части базы данных можно назначить своего администратора, который обладает правами доступа только к объектам своей порции информации обо всей системе. Для пользователя же (и для сетевых приложений) такая распределенная база данных представляется единой базой данных, которая обеспечивает доступ ко всем ресурсам сети вне зависимости от того, с какой рабочей станции поступил запрос.

    Существуют два популярных стандарта для служб каталогов. Во-первых, это стандарт Х.500, разработанный ITU-T (во время разработки стандарта эта организация носила имя CCITT). Этот стандарт определяет функции, организацию справочной службы и протокол доступа к ней. Разработанный в первую очередь для использования вместе с почтовой службой Х.400 стандарт Х.500 позволяет эффективно организовать хранение любой справочной информации и служит хорошей основой для универсальной службы каталогов сети.

    Другим стандартом является стандарт LDAP (Light-weight Directory Access Protocol), разработанный сообществом Интернета. Этот стандарт определяет упрощенный протокол доступа к службе каталогов, так как службы, построенные на основе стандарта Х.500, оказались чересчур громоздкими. Протокол LDAP получил широкое распространение и стал стандартом де-факто в качестве протокола доступа клиентов к ресурсам справочной службы.

    Существует также несколько практических реализаций служб каталогов для сетевых ОС. Наибольшее распространение получила служба NDS компании Novell, разработанная в 1993 году для сетевой ОС NetWare 4.0, а сегодня реализованная также и для Windows NT/2000. Большой интерес вызывает служба каталогов Active Directory, разработанная компанией Microsoft для Windows 2000. Обе эти службы поддерживают протокол доступа LDAP и могут работать в очень крупных сетях благодаря своей распределенности.

    Служба каталогов NDS

    Служба NDS (NetWare Directory Services) - это глобальная справочная служба, опирающаяся на распределенную объектно-ориентированную базу данных сетевых ресурсов. База данных NDS содержит информацию обо всех сетевых ресурсах, включая информацию о пользователях, группах пользователей, принтерах, томах и компьютерах. ОС NetWare (а также другие клиенты NDS, работающие на других платформах) использует информацию NDS для обеспечения доступа к этим ресурсам.

    База данных NDS заменила в свое время справочник bindery предыдущих версий NetWare. Справочник bindery - это «плоская», или одноуровневая база данных, разработанная для поддержки одного сервера. В ней также использовалось понятие «объект» для сетевого ресурса, но трактовка этого термина отличалась от общепринятой. Объекты bindery идентифицировались простыми числовыми значениями и имели определенные атрибуты. Однако для этих объектов не определялись явные взаимоотношения наследования классов объектов, поэтому взаимоотношения между объектами bindery устанавливались администратором произвольно, что часто приводило к нарушению целостности данных.

    База данных службы NDS представляет собой многоуровневую базу данных, поддерживающую информацию о ресурсах всех серверов сети. Для совместимости с предыдущими версиями NetWare в службе NDS предусмотрен механизм эмуляции базы bindery.

    Служба NDS - это значительный шаг вперед по сравнению с предыдущими версиями за счет:

    • распределенности;
    • реплицируемости;
    • прозрачности;
    • глобальности.

    Распределенность заключается в том, что информация не хранится на одном сервере, а разделена на части, называемые разделами (partitions). NetWare хранит эти разделы на нескольких серверах сети (рис. 10.8). Это свойство значительно упрощает администрирование и управление большой сетью, так как она представляется администратору единой системой. Кроме того, обеспечивается более быстрый доступ к базе данных сетевых ресурсов за счет обращения к ближайшему серверу.

    Рис. 10.8. Разделы базы данных NDS

    Реплика - это копия информации раздела NDS. Можно создать неограниченное количество реплик каждого раздела и хранить их на разных серверах. Если один сервер останавливается, то копии этой информации могут быть получены с другого сервера. Это увеличивает отказоустойчивость системы, так как ни один из серверов не отвечает за всю информацию базы данных NDS.

    Прозрачность заключается в том, что NDS автоматически создает связи между программными и аппаратными компонентами, которые обеспечивают пользователю доступ к сетевым ресурсам. NDS при этом не требует от пользователя знаний физического расположения этих ресурсов. Задавая сетевой ресурс по имени, вы получите к нему корректный доступ даже в случае изменения его сетевого адреса или места расположения.

    Глобальность NDS заключается в том, что после входа вы получаете доступ к ресурсам всей сети, а не только одного сервера, как было в предыдущих версиях. Это достигается за счет процедуры глобального логического входа (global login). Вместо входа в отдельный сервер пользователь NDS входит в сеть, после чего он получает доступ к разрешенным для него ресурсам сети. Информация, предоставляемая во время логического входа, используется для идентификации пользователя. Позже, при попытке пользователя получить доступ к ресурсам, таким как серверы, тома или принтеры, фоновый процесс идентификации проверяет, имеет ли пользователь право на данный ресурс.

    N FS (Network File System ) в основном разработана для совместного использования файлов и папок между /Unix систем от компании Sun Microsystems в 1980 году . Она позволяет монтировать локальные файловые системы по сети и удаленных хостов, для взаимодействия с ними так, как будто они установлены локально на той же системе. С помощью NFS , мы можем настроить общий доступ к файлам между Unix в Linux системе и Linux для системы Unix .

    Преимущества NFS

    1. NFS создает локальный доступ к удаленным файлам.
    2. Он использует стандартную архитектуру клиент /сервер для обмена файлами между всеми машинами на базе * NIX .
    3. С помощью NFS не нужно, чтобы обе машины работали на той же ОС .
    4. С помощью NFS мы можем настроить решение централизованного хранения .
    5. Пользователи получают свои данные независимо от их физического расположения.
    6. Автоматическое обновление для новых файлов.
    7. Более новая версия NFS поддерживает монтирование acl , pseudo под root.
    8. Может быть защищен брандмауэрами и Kerberos .

    Услуги NFS

    Cервис System V-launched . Серверный пакет NFS включает в себя три средства, входящие в состав пакетов portmap и nfs-Utils .

    1. portmap : отображает вызовы, сделанные из других машин к правильной службе RPC (не требуется с NFSv4 ).
    2. nfs : преобразует удаленные запросы общего доступа к файлам в запросы на локальной файловой системе.
    3. rpc.mountd : эта служба отвечает за монтирование и размонтирования файловых систем.

    Важные файлы конфигурации для NFS

    1. /etc/exports : его основной конфигурационный файл NFS , все экспортируемые файлы и каталоги , которые определены в этом файле и на конечном сервере NFS .
    2. /etc/fstab : Для того, чтобы смонтировать каталог NFS на вашей системе без перезагрузок , нам нужно сделать запись в /etc/fstab .
    3. /etc/sysconfig/nfs : Конфигурационный файл NFS для управления, на котором порт RPC и другие услуги прослушивания .

    Настройка и монтирование NFS на сервере Linux

    Для настройки монтирования NFS , мы будем нуждаться по крайней мере, в двух машинах Linux /Unix . Вот в этом учебнике, мы будем использовать два сервера.

    1. Сервер NFS : nfsserver.example.ru с IP – 192.168.0.55
    2. Клиент NFS : nfsclient.example.ru с IP – 192.168.0.60

    Установка сервера NFS и клиента NFS

    Нам нужно установить пакеты NFS на нашем сервере NFS , а также на машине клиента NFS . Мы можем установить его с помощью “ ” (Red Hat Linux) и установочный пакет “apt-get ” (Debian и Ubuntu ).

    # yum install nfs-utils nfs-utils-lib # yum install portmap (not required with NFSv4) # apt-get install nfs-utils nfs-utils-lib

    Теперь запустите службы на обеих машинах.

    # /etc/init.d/portmap start # /etc/init.d/nfs start # chkconfig --level 35 portmap on # chkconfig --level 35 nfs on

    После установки пакетов и запуск сервисов на обеих машинах, нам нужно настроить обе машины для совместного использования файлов.

    Настройка сервера NFS

    Сначала настроим сервер NFS .

    Настройка каталога экспорта

    # mkdir /nfsshare

    Теперь нам нужно сделать запись в “/etc/exports ” и перезапустить службы, чтобы сделать наш каталог разделяемыми в сети.

    # vi /etc/exports /nfsshare 192.168.0.60(rw,sync,no_root_squash)

    В приведенном выше примере, есть каталог, в разделе / под названием “nfsshare “, в настоящее время совместно с клиентом IP “192.168.0.60 ” с привилегиями чтения и записи (RW ), вы можете также использовать имя хоста клиента вместо IP в приведенном выше примере.

    Параметры NFS

    Некоторые другие варианты мы можем использовать в файлы “/etc/exports ” для совместного использования файлов выглядит следующим образом.

    1. ro : С помощью этой опции мы можем предоставить доступ только для чтения к общим файлам, то есть клиент будет только в состоянии прочитать .
    2. rw : Эта опция позволяет клиент – серверу доступ для обоих для чтения и записи в пределах общего каталога.
    3. sync : Синхронизация подтверждает запросы к общему каталогу только после того, как изменения были совершены.
    4. no_subtree_check : Эта опция предотвращает проверку поддерева . Когда общий каталог является подкаталогом большей файловой системы, NFS выполняет сканирование каждой директории над ним, чтобы проверить свои разрешения и детали. Отключение проверки поддерева может повысить надежность NFS , но снижают безопасность .
    5. no_root_squash : Эта фраза позволяет root , подключиться к определенной папке.

    Для большего количества вариантов с “/etc/exports “, рекомендуется прочитать страницы руководства для экспорта .

    Настройка клиента NFS

    После настройки NFS -сервера, нам необходимо смонтировать этот общий каталог или раздел на клиентском сервере.

    Монтирование общих каталогов на клиенте NFS

    Теперь на клиенте NFS , нам нужно смонтировать этот каталог для доступа к нему на местном уровне. Для этого, во-первых, мы должны выяснить, какие ресурсы доступны на удаленном сервере или сервере NFS.

    # showmount -e 192.168.0.55 Export list for 192.168.0.55: /nfsshare 192.168.0.60

    Монтирование доступного каталога в NFS

    Для того, чтобы смонтировать общий NFS каталог, мы можем использовать следующую команду монтирования.

    # mount -t nfs 192.168.0.55:/nfsshare /mnt/nfsshare

    Приведенная выше команда установит общий каталог в “/mnt/nfsshare ” на сервере клиента. Вы можете проверить его следующей командой.

    # mount | grep nfs sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw) nfsd on /proc/fs/nfsd type nfsd (rw) 192.168.0.55:/nfsshare on /mnt type nfs (rw,addr=192.168.0.55)

    Выше команда mount монтирует на NFS совместно используемый каталог на NFS клиента временно, чтобы смонтировать каталог NFS постоянно на вашей системе вне зависимости от перезагрузок, нам нужно сделать запись в “/etc/fstab “.

    # vi /etc/fstab

    Добавьте следующую новую строку, как показано ниже.

    192.168.0.55:/nfsshare /mnt nfs defauls 0 0

    Тестирование режима работы установки NFS

    Мы можем протестировать нашу установку сервера NFS путем создания тестового файла на стороне сервера и проверить его наличие на NFS клиента стороне или наоборот.

    На стороне сервера nfsserver

    Мы создали новый текстовый файл с именем “nfstest.txt ” в этом общем каталоге.

    # cat > /nfsshare/nfstest.txt This is a test file to test the working of NFS server setup.

    На стороне клиента nfsclient

    Перейдите в общий каталог на сервере клиента и вы обнаружите общий файл без какого-либо ручного обновления или службы перезагрузки.

    # ll /mnt/nfsshare total 4 -rw-r--r-- 1 root root 61 Sep 21 21:44 nfstest.txt root@nfsclient ~]# cat /mnt/nfsshare/nfstest.txt This is a test file to test the working of NFS server setup.

    Удаление монтирования NFS

    Если вы хотите размонтировать этот общий каталог с сервера после того, как вы закончите с обменом файлами, вы можете просто размонтировать этот конкретный каталог с помощью команды “umount “. Смотрите этот пример ниже.

    Root@nfsclient ~]# umount /mnt/nfsshare

    Вы можете видеть, что монтирование было удалено в файловой системе.

    # df -h -F nfs

    Вы увидите, что эти общие каталоги не доступны больше.

    Важные команды для NFS

    Некоторые более важные команды для NFS .

    1. showmount -e : Показывает доступные расшаренные объекты на локальном компьютере
    2. showmount -e : Список доступных расшаренных объектов на удаленном сервере
    3. showmount -d : Список всех поддиректорий
    4. exportfs -v : Отображает список расшаренных файлов и опций на сервере
    5. exportfs -a : Экспорт всех доступных объектов, перечисленных в /etc/exports , или имя
    6. exportfs -u : Реэкспорт всех доступных объектов, перечисленные в /etc/exports , или имя
    7. exportfs -r : Обновить список сервера после изменения /etc/exports

    Это все про монтирование NFS на данный момент, если интересно, можете прочитать гид о том . Оставляйте свои