• Симметричное шифрование. Алгоритмы шифрования данных. Симметричные алгоритмы шифрования. Алгоритм шифрования RSA. Алгоритм шифрования DES. Выбор алгоритма шифрования

    В симметричной криптосистеме шифрования используется один и тот же ключ для зашифрования и расшифрования информации. Это означает, что любой, кто имеет доступ к ключу шифрования, может расшифровать сообщение. С целью предотвращения несанкционированного раскрытия зашифрованной информации все ключи шифрования в симметричных криптосистемах должны держаться в секрете. Именно поэтому симметричные криптосистемы называют криптосистемами с секретным ключом – ключ шифрования должен быть доступен только тем, кому предназначено сообщение. Симметричные криптосистемы называют еще одноключевыми криптографическими системами. Схема симметричной криптосистемы шифрования показана на рис. 4.3.

    Рис. 4.3. Система симметричной криптосистемы шифрования

    Данные криптосистемы характеризуются наиболее высокой скоростью шифрования, и с их помощью обеспечивается как конфиденциальность и подлинность, так и целостность передаваемой информации.

    Конфиденциальность передачи информации с помощью симметричной криптосистемы зависит от надежности шифра и обеспечения конфиденциальности ключа шифрования. Обычно ключ шифрования представляет собой файл или массив данных и хранится на персональном ключевом носителе, например дискете или смарт-карте; обязательно принятие мер, обеспечивающих недоступность персонального ключевого носителя кому-либо, кроме его владельца.

    Подлинность обеспечивается за счет того, что без предварительного расшифровывания практически невозможно осуществить смысловую модификацию и подлог криптографически закрытого сообщения. Фальшивое сообщение не может быть правильно зашифровано без знания секретного ключа.

    Целостность данных обеспечивается присоединением к передаваемым данным специального кода (имитоприставки), вырабатываемого по секретному ключу. Имитоприставка является разновидностью контрольной суммы, то есть некоторой эталонной характеристикой сообщения, по которой осуществляется проверка целостности последнего. Алгоритм формирования имитоприставки должен обеспечивать ее зависимость по некоторому сложному криптографическому закону от каждого бита сообщения. Проверка целостности сообщения выполняется получателем сообщения путем выработки по секретному ключу имитоприставки, соответствующей полученному сообщению, и ее сравнения с полученным значением имитоприставки. При совпадении делается вывод о том, что информация не была модифицирована на пути от отправителя к получателю.



    Симметричное шифрование идеально подходит для шифрования информации «для себя», например с целью предотвратить несанкционированный доступ к ней в отсутствие владельца. Это может быть как архивное шифрование выбранных файлов, так и прозрачное (автоматическое) шифрование целых логических или физических дисков.

    Обладая высокой скоростью шифрования, одноключевые криптосистемы позволяют решать многие важные задачи защиты информации. Однако автономное использование симметричных криптосистем в компьютерных сетях порождает проблему распределения ключей шифрования между пользователями.

    Перед началом обмена зашифрованными данными необходимо обменяться секретными ключами со всеми адресатами. Передача секретного ключа симметричной криптосистемы не может быть осуществлена по общедоступным каналам связи, секретный ключ надо передавать отправителю и получателю по защищенному каналу.

    Существуют реализации алгоритмов симметричного шифрования для абонентского шифрования данных – то есть для отправки шифрованной информации абоненту, например, через Интернет. Использование одного ключа для всех абонентов подобной криптографической сети недопустимо по соображениям безопасности. Действительно, в случае компрометации (утери, хищения) ключа под угрозой будет находиться документооборот всех абонентов. В этом случае может быть использована матрица ключей (рис. 4.4).

    Матрица ключей представляет собой таблицу, содержащую ключи парной связи абонентов. Каждый элемент таблицы предназначен для связи абонентов i и j и доступен только двум данным абонентам. Соответственно, для всех элементов матрицы ключей соблюдается равенство

    . (4.3)

    Рис.4.4. Матрица ключей

    Каждая i -я строка матрицы представляет собой набор ключей конкретного абонента i для связи с остальными N - 1 абонентами. Наборы ключей (сетевые наборы) распределяются между всеми абонентами криптографической сети. Аналогично сказанному выше, сетевые наборы должны распределяться по защищенным каналам связи или из рук в руки.



    Характерной особенностью симметричных криптоалгоритмов является то, что в ходе своей работы они производят преобразование блока входной информации фиксированной длины и получают результирующий блок того же объема, но недоступный для прочтения сторонним лицам, не владеющим ключом. Схему работы симметричного блочного шифра можно описать функциями

    где М – исходный (открытый) блок данных; С – зашифрованный блок данных.

    Ключ К является параметром симметричного блочного криптоалгоритма и представляет собой блок двоичной информации фиксированного размера. Исходный М и зашифрованный С блоки данных также имеют фиксированную разрядность, равную между собой, но необязательно равную длине ключа К .

    Блочные шифры являются той основой, на которой реализованы практически все симметричные криптосистемы. Симметричные криптосистемы позволяют кодировать и декодировать файлы произвольной длины. Практически все алгоритмы используют для преобразований определенный набор обратимых математических преобразований.

    Методика создания цепочек из зашифрованных блочными алгоритмами байтов позволяет шифровать ими пакеты информации неограниченной длины. Отсутствие статистической корреляции между битами выходного потока блочного шифра используется для вычисления контрольных сумм пакетов данных и в хэшировании паролей.

    Криптоалгоритм считается идеально стойким, если для прочтения зашифрованного блока данных необходим перебор всех возможных ключей до тех пор, пока расшифрованное сообщение не окажется осмысленным. В общем случае стойкость блочного шифра зависит только от длины ключа и возрастает экспоненциально с ее ростом.

    Для получения стойких блочных шифров использовать два общих принципа:

    ¨ рассеивание – собой распространение влияния одного знака откры­того текста на много знаков шифртекста, что позволяет скрыть статистические свойства открытого текста.

    ¨ перемешивание – использование таких шифрующих преобразований, которые усложняют восстановление взаимосвязи статистических свойств открытого и шифрованного текстов.

    Однако шифр должен не только затруднять раскрытие, но и обеспечивать легкость зашифрования и расшифрования при известном пользователю секретном ключе.

    Распространенным способом достижения эффектов рассеивания и перемешивания является использование составного шифра, то есть такого, который может быть реализован в виде некоторой последовательности простых шифров, каждый из которых вносит свой вклад в значительное суммарное рассеивание и перемешивание.

    В составных шифрах в качестве простых шифров чаще всего используются простые перестановки и подстановки. При перестановке просто перемешивают символы открытого текста, причем конкретный вид перемешивания определяется секретным ключом. При подстановке каждый символ открытого текста заменяют другим символом из того же алфавита, а конкретный вид подстановки также определяется секретным ключом. Следует заметить, что в современном блочном шифре блоки открытого текста и шифртекста представляют собой двоичные последовательности обычно длиной 64 или 128 бит. При длине 64 бит каждый блок может принимать 2 64 значений. Поэтому подстановки выполняются в очень большом алфавите, содержащем до 2 64 ~ 10 19 «символов».

    При многократном чередовании простых перестановок и подстановок, управляемых достаточно длинным секретным ключом, можно получить стойкий шифр с хорошим рассеиванием и перемешиванием.

    Все действия, производимые блочным криптоалгоритмом над данными, основаны на том факте, что преобразуемый блок может быть представлен в виде целого неотрицательного числа из диапазона, соответствующего его разрядности. Например, 32-битный блок данных можно интерпретировать как число из диапазона 0...4294 967 295. Кроме того, блок, разрядность которого представляет собой «степень двойки», можно трактовать как сцепление нескольких независимых неотрицательных чисел из меньшего диапазона (указанный выше 32-битный блок можно также представить в виде сцепления двух независимых 16-битных чисел из диапазона 0...65 535 или в виде сцепления четырех независимых 8-битных чисел из диапазона 0...255).

    Над этими числами блочный криптоалгоритм производит по определенной схеме действия, перечисленные в табл. 4.1.

    Таблица 4.1. Действия, выполняемые криптоалгоритмами над числами

    В качестве параметра V для любого из этих преобразований может использоваться:

    ¨ фиксированное число (например, X "= X + 125);

    ¨ число, получаемое из ключа (например, X "= X + F(K ));

    ¨ число, получаемое из независимой части блока (например, Х 2" = Х 2 + F (Х 1)).

    Последовательность выполняемых над блоком операций, комбинации перечисленных выше вариантов V и сами функции F и составляют отличительные особенности конкретного симметричного блочного криптоалгоритма.

    Характерным признаком блочных алгоритмов является многократное и косвенное использование материала ключа. Это определяется в первую очередь требованием невозможности обратного декодирования в отношении ключа при известных исходном и зашифрованном текстах. Для решения этой задачи в приведенных выше преобразованиях чаще всего используется не само значение ключа или его части, а некоторая, иногда необратимая, функция от материала ключа. Более того, в подобных преобразованиях один и тот же блок или элемент ключа используется многократно. Это позволяет при выполнении условия обратимости функции относительно величины X сделать функцию необратимой относительно ключа К .

    определенный алгоритм шифрования, на вход которому подаются исходное незашифрованное сообщение, называемое также plaintext , и ключ. Выходом алгоритма является зашифрованное сообщение, называемое также ciphertext . Ключ является значением, не зависящим от шифруемого сообщения. Изменение ключа должно приводить к изменению зашифрованного сообщения.

    Зашифрованное сообщение передается получателю. Получатель преобразует зашифрованное сообщение в исходное незашифрованное сообщение с помощью алгоритма дешифрования и того же самого ключа, который использовался при шифровании, или ключа, легко получаемого из ключа шифрования .

    Незашифрованное сообщение будем обозначать P или M, от слов plaintext и message. Зашифрованное сообщение будем обозначать С, от слова ciphertext .

    Безопасность, обеспечиваемая традиционной криптографией , зависит от нескольких факторов.

    Во-первых, криптографический алгоритм должен быть достаточно сильным, чтобы передаваемое зашифрованное сообщение невозможно было расшифровать без ключа, используя только различные статистические закономерности зашифрованного сообщения или какие-либо другие способы его анализа.

    Во-вторых, безопасность передаваемого сообщения должна зависеть от секретности ключа, но не от секретности алгоритма. Алгоритм должен быть проанализирован специалистами, чтобы исключить наличие слабых мест, при наличии которых плохо скрыта взаимосвязь между незашифрованным и зашифрованным сообщениями. К тому же при выполнении этого условия производители могут создавать дешевые аппаратные чипы и свободно распространяемые программы, реализующие данный алгоритм шифрования .

    В-третьих, алгоритм должен быть таким, чтобы нельзя было узнать ключ, даже зная достаточно много пар (зашифрованное сообщение, незашифрованное сообщение), полученных при шифровании с использованием данного ключа.

    Клод Шеннон ввел понятия диффузии и конфузии для описания стойкости алгоритма шифрования.

    Диффузия - это рассеяние статистических особенностей незашифрованного текста в широком диапазоне статистических особенностей зашифрованного текста. Это достигается тем, что значение каждого элемента незашифрованного текста влияет на значения многих элементов зашифрованного текста или, что то же самое, любой элемент зашифрованного текста зависит от многих элементов незашифрованного текста.

    Конфузия - это уничтожение статистической взаимосвязи между зашифрованным текстом и ключом.

    Если Х - это исходное сообщение и K - криптографический ключ , то зашифрованный передаваемый текст можно записать в виде

    Получатель, используя тот же ключ, расшифровывает сообщение

    Противник, не имея доступа к K и Х, должен попытаться узнать Х , K или и то, и другое.

    Алгоритмы симметричного шифрования различаются способом, которым обрабатывается исходный текст. Возможно шифрование блоками или шифрование потоком.

    Блок текста рассматривается как неотрицательное целое число, либо как несколько независимых неотрицательных целых чисел. Длина блока всегда выбирается равной степени двойки. В большинстве блочных алгоритмов симметричного шифрования используются следующие типы операций:

    Эти операции циклически повторяются в алгоритме, образуя так называемые раунды . Входом каждого раунда является выход предыдущего раунда и ключ, который получен по определенному алгоритму из ключа шифрования K . Ключ раунда называется подключом . Каждый алгоритм шифрования может быть представлен следующим образом:


    Рис. 2.2.

    Области применения

    Стандартный алгоритм шифрования должен быть применим во многих приложениях:

    • Шифрование данных . Алгоритм должен быть эффективен при шифровании файлов данных или большого потока данных.
    • Создание случайных чисел. Алгоритм должен быть эффективен при создании определенного количества случайных бит.
    • Хэширование. Алгоритм должен эффективно преобразовываться в одностороннюю хэш-функцию .

    Платформы

    Стандартный алгоритм шифрования должен быть реализован на различных платформах, которые, соответственно, предъявляют различные требования.

    • Алгоритм должен эффективно реализовываться на специализированной аппаратуре, предназначенной для выполнения шифрования/ дешифрования .
    • Большие процессоры. Хотя для наиболее быстрых приложений всегда используется специальная аппаратура, программные реализации применяются чаще. Алгоритм должен допускать эффективную программную реализацию на 32-битных процессорах.
    • Процессоры среднего размера. Алгоритм должен работать на микроконтроллерах и других процессорах среднего размера.
    • Малые процессоры. Должна существовать возможность реализации алгоритма на смарт-картах , пусть даже с учетом жестких ограничений на используемую память.

    Дополнительные требования

    Алгоритм шифрования должен, по возможности, удовлетворять некоторым дополнительным требованиям.

    • Алгоритм должен быть простым для написания кода, чтобы минимизировать вероятность программных ошибок.
    • Алгоритм должен иметь плоское пространство ключей и допускать любую случайную строку бит нужной длины в качестве возможного ключа . Наличие слабых ключей нежелательно.
    • Алгоритм должен легко модифицироваться для различных уровней безопасности и удовлетворять как минимальным, так и максимальным требованиям.
    • Все операции с данными должны осуществляться над блоками, кратными байту или 32-битному слову.

    Симметричные криптосистемы

    Симметричные криптосистемы (также симметричное шифрование, симметричные шифры) -- способ шифрования, в котором для зашифровывания и расшифровывания применяется один и тот же криптографический ключ. До изобретения схемы асимметричного шифрования единственным существовавшим способом являлось симметричное шифрование. Ключ алгоритма должен сохраняться в секрете обеими сторонами. Ключ алгоритма выбирается сторонами до начала обмена сообщениями.

    В настоящее время симметричные шифры - это:

    1. Блочные шифры - обрабатывают информацию блоками определенной длины (обычно 64, 128 бит), применяя к блоку ключ в установленном порядке, как правило, несколькими циклами перемешивания и подстановки, называемыми раундами. Результатом повторения раундов является лавинный эффект - нарастающая потеря соответствия битов между блоками открытых и зашифрованных данных.

    2. Поточные шифры - в которых шифрование проводится над каждым битом либо байтом исходного (открытого) текста с использованием гаммирования. Поточный шифр может быть легко создан на основе блочного (например, ГОСТ 28147-89 в режиме гаммирования), запущенного в специальном режиме.

    Криптографическая система с открытым ключом

    Криптографическая система с открытым ключом (или Асимметричное шифрование, Асимметричный шифр) -- система шифрования информации, при которой ключ, которым зашифровывается сообщение и само зашифрованное сообщение передаётся по открытому, (то есть незащищённому, доступному для наблюдения) каналу. Для генерации открытого ключа и для прочтения зашифрованного сообщения получатель использует секретный ключ. Криптографические системы с открытым ключом в настоящее время широко применяются в различных сетевых протоколах, в частности, в протоколе SSL и основанных на нём протоколах прикладного уровня HTTPS, SSH и т. д.

    Рис. 7.

    1. Получатель генерирует ключ. Ключ разбивается на открытую и закрытую часть. При этом открытый ключ не должен передаваться по открытому каналу. Либо его подлинность должна быть гарантирована некоторым сертифицирующим органом.

    2. Отправитель с помощью открытого ключа шифрует сообщение.

    3. Получатель с помощью закрытого ключа дешифрует сообщение.

    Недостаток метода: хотя сообщение надежно шифруется, но «засвечиваются» получатель и отправитель самим фактом пересылки шифрованного сообщения.

    Общая идея криптографической системы с открытым ключом заключается в использовании при зашифровке сообщения такой функции от открытого ключа и сообщения (шифр -функции), которую алгоритмически очень трудно обратить, то есть вычислить по значению функции её аргумент, даже зная значение ключа.

    Особенности системы

    Преимущество асимметричных шифров перед симметричными шифрами состоит в отсутствии необходимости передачи секретного ключа. Сторона, желающая принимать зашифрованные тексты, в соответствии с используемым алгоритмом вырабатывает пару «открытый ключ -- закрытый ключ». Значения ключей связаны между собой, однако вычисление одного значения из другого должно быть невозможным с практической точки зрения. Открытый ключ публикуется в открытых справочниках и используется для шифрования информации контрагентом. Закрытый ключ держится в секрете и используется для расшифровывания сообщения, переданного владельцу пары ключей. Начало асимметричным шифрам было положено в 1976 году в работе Уитфилда Диффи и Мартина Хеллмана «Новые направления в современной криптографии». Они предложили систему обмена общим секретным ключом на основе проблемы дискретного логарифма. Вообще, в основу известных асимметричных криптосистем кладётся одна из сложных математических проблем, которая позволяет строить односторонние функции и функции-ловушки. Например, криптосистема Ривеста-Шамира-Адельмана использует проблему факторизации больших чисел, а криптосистемы Меркля-Хеллмана и Хора-Ривеста опираются на так называемую задачу об укладке рюкзака.

    Недостатки - асимметричные криптосистемы требуют существенно больших вычислительных ресурсов. Кроме того, необходимо обеспечить аутентичность (подлинность) самих публичных ключей, для чего обычно используют сертификаты.

    Гибридная (или комбинированная) криптосистема -- это система шифрования, обладающая всеми достоинствами криптосистемы с открытым ключом, но лишенная ее основного недостатка -- низкой скорости шифрования.

    Принцип: Криптографические системы используют преимущества двух основных криптосистем: симметричной и асимметричной криптографии. На этом принципе построены такие программы, как PGP и GnuPG.

    Основной недостаток асимметричной криптографии состоит в низкой скорости из-за сложных вычислений, требуемых ее алгоритмами, в то время как симметричная криптография традиционно показывает блестящую скорость работы. Однако симметричные криптосистемы имеет один существенный недостаток -- её использование предполагает наличие защищенного канала для передачи ключей. Для преодоления этого недостатка прибегают к асимметричным криптосистемам, которые используют пару ключей: открытый и закрытый.

    Шифрование: Большинство шифровальных систем работают следующим образом. Для симметричного алгоритма (3DES, IDEA, AES или любого другого) генерируется случайный ключ. Такой ключ, как правило, имеет размер от 128 до 512 бит (в зависимости от алгоритма). Затем используется симметричный алгоритм для шифрования сообщения. В случае блочного шифрования необходимо использовать режим шифрования (например, CBC), что позволит шифровать сообщение с длиной, превышающей длину блока. Что касается самого случайного ключа, он должен быть зашифрован с помощью открытого ключа получателя сообщения, и именно на этом этапе применяется криптосистема с открытым ключом (RSA или Алгоритм Диффи -- Хеллмана). Поскольку случайный ключ короткий, его шифрование занимает немного времени. Шифрование набора сообщений с помощью асимметричного алгоритма -- это задача вычислительно более сложная, поэтому здесь предпочтительнее использовать симметричное шифрование. Затем достаточно отправить сообщение, зашифрованное симметричным алгоритмом, а также соответствующий ключ в зашифрованном виде. Получатель сначала расшифровывает ключ с помощью своего секретного ключа, а затем с помощью полученного ключа получает и всё сообщение.

    Цифровая подпись обеспечивает:

    * Удостоверение источника документа. В зависимости от деталей определения документа могут быть подписаны такие поля, как «автор», «внесённые изменения», «метка времени» и т. д.

    * Защиту от изменений документа. При любом случайном или преднамеренном изменении документа (или подписи) изменится шифр, следовательно, подпись станет недействительной.

    Возможны следующие угрозы цифровой подписи:

    *Злоумышленник может попытаться подделать подпись для выбранного им документа.

    *Злоумышленник может попытаться подобрать документ к данной подписи, чтобы подпись к нему подходила.

    При использовании надёжной шифр - функции, вычислительно сложно создать поддельный документ с таким же шифром, как у подлинного. Однако, эти угрозы могут реализоваться из-за слабостей конкретных алгоритмов кэширования, подписи, или ошибок в их реализациях. Тем не менее, возможны ещё такие угрозы системам цифровой подписи:

    *Злоумышленник, укравший закрытый ключ, может подписать любой документ от имени владельца ключа.

    *Злоумышленник может обманом заставить владельца подписать какой-либо документ, например используя протокол слепой подписи.

    *Злоумышленник может подменить открытый ключ владельца на свой собственный, выдавая себя за него.

    Средства криптографической защиты гостайны до сих пор приравниваются к оружию. Очень немногие страны мира имеют свои криптографические компании, которые делают действительно хорошие средства защиты информации. Даже во многих развитых странах нет такой возможности: там отсутствует школа, которая позволяла бы эти технологии поддерживать и развивать. Россия одна из немногих стран мира, – может быть таких стран пять, или около того, – где все это развито. Причем и в коммерческом, и в государственном секторе есть компании и организации, которые сохранили преемственность школы криптографии с тех времен, когда она только зарождалась.

    Алгоритмы шифрования

    На сегодняшний день существует масса алгоритмов шифрования, имеющих значительную стойкость перед криптоанализом (криптографическую стойкость). Принято деление алгоритмов шифрования на три группы:

    • Симметричные алгоритмы
    • Ассиметричные алгоритмы
    • Алгоритмы хэш-функций

    Симметричные алгоритмы

    Симметричное шифрование предусматривает использование одного и того же ключа и для зашифрования, и для расшифрования. К симметричным алгоритмам применяются два основных требования: полная утрата всех статистических закономерностей в объекте шифрования и отсутствие линейности. Принято разделять симметричные системы на блочные и поточные.

    В блочных системах происходит разбиение исходных данных на блоки с последующим преобразованием с помощью ключа.

    В поточных системах вырабатывается некая последовательность (выходная гамма), которая в последующем накладывается на само сообщение, и шифрование данных происходит потоком по мере генерирования гаммы. Схема связи с использованием симметричной криптосистемы представлена на рисунке.

    Где где М - открытый текст, К - секретный ключ, передаваемый по закрытому каналу, Еn(М) - операция зашифрования, а Dk(M) - операция расшифрования

    Обычно при симметричном шифровании используется сложная и многоступенчатая комбинация подстановок и перестановок исходных данных, причем ступеней (проходов) может быть множество, при этом каждой из них должен соответствовать «ключ прохода»

    Операция подстановки выполняет первое требование, предъявляемое к симметричному шифру, избавляясь от любых статистических данных путем перемешивания битов сообщения по определенному заданному закону. Перестановка необходима для выполнения второго требования – придания алгоритму нелинейности. Достигается это за счет замены определенной части сообщения заданного объема на стандартное значение путем обращения к исходному массиву.

    Симметричные системы имеют как свои преимущества, так и недостатки перед асимметричными.

    К преимуществам симметричных шифров относят высокую скорость шифрования, меньшую необходимую длину ключа при аналогичной стойкости, большую изученность и простоту реализации. Недостатками симметричных алгоритмов считают в первую очередь сложность обмена ключами ввиду большой вероятности нарушения секретности ключа при обмене, который необходим, и сложность управления ключами в большой сети.

    Примеры симметричных шифров

    • ГОСТ 28147-89 - отечественный стандарт шифрования
    • 3DES (Triple-DES, тройной DES)
    • RC6 (Шифр Ривеста)
    • Twofish
    • SEED - корейский стандарт шифрования
    • Camellia – японский стандарт шифрования
    • CAST (по инициалам разработчиков Carlisle Adams и Stafford Tavares)
    • XTEA - наиболее простой в реализации алгоритм
    • AES – американский стандарт шифрования
    • DES – стандарт шифрования данных в США до AES

    Асимметричные алгоритмы

    Ассиметричные системы также называют криптосистемами с открытым ключом. Это такой способ шифрования данных, при котором открытый ключ передается по открытому каналу (не скрывается) и используется для проверки электронной подписи и для шифрования данных. Для дешифровки же и создания электронной подписи используется второй ключ, секретный.

    Само устройство асимметричных криптосистем использует идею односторонних функций ƒ(х), в которых несложно найти х, зная значение самой функции но почти невозможно найти саму ƒ(х), зная только значение х. Примером такой функции может служить телефонный справочник большого города, в котором легко найти номер человека, зная его фамилию и инициалы, но крайне сложно, зная номер, вычислить владельца.

    Принцип работы асимметричных систем

    Допустим, имеются два абонента: А и В, и абонент В хочет отправить шифрованное сообщение абоненту А. Он зашифровывает сообщение с помощью открытого ключа и передает его уже зашифрованным по открытому каналу связи. Получив сообщение, абонент А подвергает его расшифрованию с помощью секретного ключа и читает.

    Здесь необходимо сделать уточнение. При получении сообщения абонент А должен аутентифицировать свою личность перед абонентом В для того, чтобы недоброжелатель не смог выдать себя за абонента А и подменить его открытый ключ своим.

    Примеры асимметричных шрифтов

    • RSA (Rivest-Shamir-Adleman, Ривест - Шамир - Адлеман)
    • DSA (Digital Signature Algorithm)
    • Elgamal (Шифросистема Эль-Гамаля)
    • Diffie-Hellman (Обмен ключами Диффи - Хелмана)
    • ECC (Elliptic Curve Cryptography, криптография эллиптической кривой)

    Хеш-функции

    Хешированием (от англ. hash) называется преобразование исходного информационного массива произвольной длины в битовую строку фиксированной длины.

    Алгоритмов хеш-функций немало, а различаются они своими характеристиками – криптостойкостью, разрядностью, вычислительной сложностью и т.д.

    Нас интересуют криптографически стойкие хеш-функции. К таким обычно предъявляют два требования:

    • Для заданного сообщения С практически невозможно подобрать другое сообщение С" с таким же хешем
    • Практически невозможно подобрать пар сообщений (СС"), имеющих одинаковый хеш.

    Требования называются стойкостью к коллизиям первого рода и второго рода соответственно. Для таких функций остается важным и другое требование: при незначительном изменении аргумента должно происходить значительное изменение самой функции. Таким образом, значение хеша не должно давать информации даже об отдельных битах аргумента.

    Примеры хеш-алгоритмов

    • Adler-32
    • SHA-1
    • SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)
    • HAVAL
    • N-Hash
      • RIPEMD-160
    • RIPEMD-256
    • RIPEMD-320
    • Skein
    • Snefru
    • Tiger (TTH)
    • Whirlpool
    • ГОСТ Р34.11-94 (ГОСТ 34.311-95)
    • IP Internet Checksum (RFC 1071)

    Криптографические примитивы

    Для придания зашифрованной информации большей криптографической стойкости, в криптографической системе могут многократно применяться относительно простые преобразования – примитивы. В качестве примитивов могут использоваться подстановки, перестановки, циклический сдвиг или гаммирование.

    Квантовая криптография

    Криптография в цифровых технологиях

    История

    Криптография является древнейшей наукой, и первоначальными ее объектами были текстовые сообщения, которые с помощью определенных алгоритмов лишались смысла для всех, не обладающих специальным знанием по дешифровке этого сообщения – ключом.

    Изначально использовались методы, сегодня применяемые разве что для головоломок, то есть, на взгляд современника, простейшие. К таким способам шифрования относятся, например, метод замены, когда каждая буква заменяется другой, отстоящей от нее на строго определенном расстоянии в алфавите. Или метод перестановочного шифрования, когда буквы меняют местами в определенной последовательности внутри слова.

    В древние времена шифрование применялось главным образом в военном и торговом деле, шпионаже, среди контрабандистов.

    Несколько позже ученые-историки определяют дату появления другой родственной науки – стеганография. Эта наука занимается маскировкой самого факта передачи сообщения. Зародилась она в античности, а примером здесь может служить получение спартанским царем Леонидом перед битвой с персами провощенной дощечки с текстом, покрытой сухим легкосмываемым раствором. При очистке оставленные на воске стилусом знаки становились отчетливо видимыми. Сегодня для сокрытия сообщения служат симпатические чернила, микроточки, микропленки и т.д.

    С развитием математики стали появляться математические алгоритмы шифрования, но все эти виды криптографической защиты информации сохраняли в разной объемной степени статистические данные и оставались уязвимыми. Уязвимость стала особенно ощутима с изобретением частотного анализа, который был разработан в IX веке нашей эры предположительно арабским энциклопедистом ал-Кинди. И только в XV веке, после изобретения полиалфавитных шрифтов Леоном Баттистой Альберти (предположительно), защита перешла на качественно новый уровень. Однако в середине XVII века Чарлз Бэббидж представил убедительные доказательства частичной уязвимости полиалфавитных шрифтов перед частотным анализом.

    Развитие механики позволило создавать приборы и механизмы, облегчающие шифрование – появились такие устройства, как квадратная доска Тритемиуса, дисковый шифр Томаса Джефферсона. Но все эти приборы ри в какое сравнение не идут с теми, были созданы в XX веке. Именно в это время стали появляться различные шифровальные машины и механизмы высокой сложности, например, роторные машины, самой известной из которых является «Энигма »

    До бурного развития науки в XX веке криптографам приходилось иметь дело только с лингвистическими объектами, а в ХХ веке открылись возможности применения различных математических методов и теорий, статистики, комбинаторики, теории чисел и абстракной алгебры.

    Но настоящий прорыв в криптографической науке произошел с появлением возможности представления любой информации в бинарном виде, разделенной на биты с помощью компьютеров, что позволило создавать шрифты с доселе невиданной криптографической стойкостью. Такие системы шифрования, конечно, могут быть подвергнуты взлому, но временные затраты на взлом себя в подавляющем большинстве случаев не оправдывают.

    Сегодня можно говорить о значительных разработках в квантовой криптографии.

    Литература

    • Баричев С.Г., Гончаров В.В., Серов Р.Е. Основы современной криптографии. - М.: *Варфоломеев А. А., Жуков А. Е., Пудовкина М. А. Поточные криптосистемы. Основные свойства и методы анализа стойкости. М.: ПАИМС, 2000.
    • Ященко В. В. Введение в криптографию. СПб.: Питер, 2001. .
    • ГОСТ 28147-89. Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. М.: ГК СССР по стандартам, 1989.
    • ГОСТ Р 34.10-94.Информационная технология. Криптографическая защита информации. *ГОСТ Р 34.11-94. Информационная технология. Криптографическая защита информации. Функция хэширования. М., 1995.
    • ГОСТ Р 34.10-2001 Информационная технология. Криптографическая защита информации. Процессы формирования и проверки электронной цифровой подписи. М., 2001.
    • Нечаев В. И. Элементы криптографии (Основы теории защиты информации). М.: Высшая школа, 1999.
    • Жельников В. Криптография от папируса до компьютера. М.: АВР,1996.

    Под симметричными криптосистемами понимаются такие системы, в которых для шифрования и расшифровки сообщений используется один и тот же ключ (рис. 9.1).

    Все многообразие симметричных систем основывается на следующих базовых классах:

    Моно- и многоалфавитные подстановки;

    Перестановки;

    Блочные шифры;

    Гаммирование.

    Подстановки

    В прямых подстановках каждый знак исходного текста заменяется одним или несколькими знаками. Одним из важных подклассов прямых подстановок являются моноалфавитные подстановки , в которых устанавливается взаимнооднозначное соответствие между знаком e i исходного алфавита и соответствующим знаком с j зашифрованного текста. Все методы моноалфавитной подстановки можно представить как числовые преобразования букв исходного текста, рассматриваемых как числа, по следующей формуле:

    c ≡ (a*e +s) mod K , (5.1)

    где a – десятичный коэффициент; s – коэффициент сдвига; e – код буквы исходного текста; c – код зашифрованной буквы; K – длина алфавита; mod – операция вычисления остатка от деления выражения в скобках на модуль К.

    Пример. Шифр Цезаря

    Рассмотрим шифрование на алфавите, состоящим и 26 латинских букв и знака пробела (пробел будем изображать знаком #). Знаку # присвоим код 0, букве A – код 1, B – код 2,… букве Z – код 26.

    Возьмем следующие параметры: a = 1 s = 2 K = 27

    Формула для шифрования примет вид

    c ≡ (e + 2) mod 27 (5.2)

    Входной алфавит:

    # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

    Выходной алфавит

    B C D E F G H I J K L M N O P Q R S T U V W X Y Z # A

    (Буквы сдвигаются на две позиции: A-C B-D и т.д.)

    Тогда исходное сообщение в зашифрованном виде будет выглядеть так:

    Для расшифровки (для случая, когда a=1) используется следующая формула

    e ≡ (K+ c - s) mod K (5.3)

    Простая многоалфавитная подстановка последовательно и циклически меняет используемые алфавиты (в предыдущем случае для шифрования использовался один алфавит). При m-алфавитной подстановке знак a 1 из исходного сообщения заменяется знаком из алфавита B 1 , знак a 2 - знаком из алфавита B 2 , … знак a m - знаком из алфавита B m , знак a m +1 - знаком из алфавита B 1 и т.д. Эффект использования многоалфавитной подстановки состоит в том, что обеспечивается маскировка частотной статистики исходного языка, так как конкретный знак из алфавита А преобразуется в несколько различных знаков шифровального алфавита В.

    Пример

    Исходное сообщение: WE#NEED#SNOW

    Ключ: SECURITYSECU

    В качестве ключа выбрано слово SECURITY. Слово записывается под исходным сообщением, когда буквы ключа исчерпываются, начинаем повторять слово, пока не закончатся буквы исходного сообщения. Каждая буква ключа (точнее ее код) будет задавать сдвижку в исходном алфавите для получения зашифрованного символа. В качестве алфавита используем латинские буквы и знак # вместо пробела.

    Исходный ключ Шифр

    (W + S) mod 27 = (23 + 19) mod 27 = 15→O

    (E + E) mod 27 = (5 + 5) mod 27 = 10 → J

    (# + C) mod 27 = (0 + 3) mod 27 = 3 → C

    Задание

    Предлагаем в качестве упражнения составить шифровку до конца.

    Перестановки

    Знаки исходного текста можно переставлять в соответствии с определенным правилом.

    Пример 1. Линейная перестановка

    Пусть необходимо зашифровать следующий текст:

    ГРУЗИТЕ#АПЕЛЬСИНЫ#БОЧКАХ

    Разобьем текст на группы длиной, например по 4 символа:

    ГРУЗ ИТЕ# АПЕЛ ЬСИН Ы#БО ЧКАХ

    Зададим следующее правило перестановки: “переставить группировки из четырех букв, находящихся в порядке 1-2-3-4 в порядок 3-1-4-2”.

    Получим следующий зашифрованный текст:

    УГРЗ ЕИ#Т ЕАЛП ИЬНС БЫО# АЧХК

    Замечание

    Если длина сообщения не кратна длине группы, то последнюю группу дополняем символами (например, пробелами) до нужной длины.

    Запись исходного текста и последующее считывание шифротекста можно производить по разным путям некоторой геометрической фигуры, например, квадрата или прямоугольника.

    Пример 2 . Решетка Кардано

    Решетка Кардано – это прямоугольная карточка с отверстиями, чаще квадратная, которая при наложении на лист бумаги оставляет открытыми лишь некоторые его части. Число строк и столбцов четно. Карточка сделана так, что при ее последовательном повороте каждая клетка лежащего под ним листа будет занятой. Если решетка квадратная, то можно последовательно поворачивать ее вокруг центра квадрата на 90°.

    Шифровка:

    ВАВОЧС МУНОТИ МЫЖРОЕ ЬУХСОЙ МДОСТО ЯАСНТВ

    Расшифровать сообщение, вращая решетку по часовой стрелке на 90°. Сообщение впишите в квадрат по строкам.

    Методы подстановок и перестановок по отдельности не обеспечивают необходимую криптостойкость. Поэтому их используют совместно, а также также аддитивным методом. При шифровании аддитивным методом в начале исходный текст шифруют методом подстановки, преобразуя каждую букву в число, а затем к каждому числу добавляют секретную гамму (см. далее) – псевдослучайную числовую последовательность.

    Блочные шифры

    Блочные шифры представляют собой семейство обратимых преобразований блоков (частей фиксированной длины) исходного текста.

    Под N-разрядным блоком будем понимать последовательность из нулей и единиц длины N:

    x = (x 0 , x 1 , …x N -1) . (5.5)

    x в Z 2, N можно интерпретировать как вектор и как двоичное представление целого числа

    (5.6)

    Под блочным шифром будем понимать элемент

    Где x = (x 0 , x 1 , …x N -1), y = (y 0 , y 1 , …y N -1)

    Хотя блочные шифры являются частным случаем подстановок, их следует рассматривать особо, поскольку, во-первых, большинство симметричных шифров, используемых в системах передачи данных, являются блочными, и, во-вторых, блочные шифры удобнее описывать в алгоритмическом виде, а не как обычные подстановки.

    Потоковые шифры

    Потоковые шифры представляют собой разновидность гаммирования и преобразуют открытый текст в шифрованный последовательно по одному биту. Генератор ключевой последовательности, иногда называемой генератором бегущего ключа, выдает последовательность бит k 1 , k 2 , … k N . Эта ключевая последовательность складывается по модулю 2 (“исключающее или”) с последовательностью бит исходного текста e 1 , e 2 , …, e N:

    На приемной стороне шифрованный текст складывается по модулю 2 с идентичной ключевой последовательностью для получения исходного текста:

    Стойкость системы целиком зависит от внутренней структуры генератора ключевой последовательности. Если генератор выдает последовательность с небольшим периодом, то стойкость системы невелика. Напротив, если генератор будет выдавать бесконечную последовательность истинно случайных бит, то получим одноразовый блокнот с идеальной стойкостью.

    Потоковые шифры наиболее пригодны для шифрования непрерывных потоков данных, например, в сетях передачи данных.