• Транспортные сети. Классификация транспортных сетей. Обзор технологий для транспортной сети (ТС)

    К атегория: Товарищества

    Транспортные связи

    При организации садоводческого товарищества очень важно обеспечить рациональное решение основных и второстепенных транспортных связей. Основные транспортные связи - это электропоезда, маршрутные автобусы, личный транспорт. Весь этот транспорт проходит по уже проложенным магистралям. Именно к ним привязываются выделяемые для садоводческих товариществ территории. Расстояние от основных магистралей до участков должно быть не более 3 км. Второстепенные транспортные связи - дороги местного значения, которые соединяют непосредственно автомагистраль или станцию железной дороги с садоводческим товариществом, а также проезды на его территории.

    Для удобства подъезда к каждому участку всю территорию разделяют на секторы, охватывающие по два ряда участков. Между секторами прокладывают основные проезды шириной 6-8 м (проезжая часть 2,5-3,5 м, обочины по 1,5-2 м), а перпендикулярно к ним примерно через 400 м (не более) - поперечные такой же ширины. На основных проездах, посередине между поперечными, устраивают разъездные площадки длиной 14 и шириной 7 м (не менее). Вдоль общего забора предусматривается обходная дорожка шириной 1,5 м. Если садоводческое товарищество включает свыше 50 участков, то следует устраивать не менее двух въездов на территорию. Ширина ворот должна быть 4,5, калитки - 1 м.

    Подъездные пути и основные проезды по участку выполняются из местных материалов - песка, гравия, доломита, шлака и др. Вдоль проезжей части устраиваются кюветы глубиной до 0,5-0,6 м для стока ливневых вод.

    Важным моментом благоустройства территории является создание транспортных стоянок и разворотных площадок (рис. 3.). Устраиваются они, как правило, в конце улиц или проездов для удобного маневра при разъездах и выездах машин. Автостоянки можно разместить и у основного въезда на территорию. Однако садоводы зачастую предпочитают ставить машину на своем участке, хотя это требует достаточно большой площади. В этом случае стоянку удобнее расположить под террасой или в цокольном этаже.

    Рис. 1. Примеры устройства поворотных тупиков и автостоянок (размеры в метрах)

    Планировка садовых участков (рис. 2). При разбивке территории на отдельные участки обычно стремятся к тому, чтобы они занимали как можно меньшую длину вдоль улицы, что дает снижение затрат на устройство дорог, инженерных коммуникаций и т. п. Для застройки применяются отдельные или блокированные домики. Улучшить планировку участков и внести в застройку разнообразие можно путем устройства тупиковых и петельных подъездов к расположенным с отступом от улицы домикам. Домики можно размещать по отношению к улице короткими или протяженными фасадами. Петельные и тупиковые приемы застройки позволяют на 15-30 % сократить длину улиц и инженерных коммуникаций и одновременно значительно улучшить архитектурно-художественные качества застройки всей территории. Групповое размещение садовых домиков вокруг небольшого замкнутого дворика создает хорошие защитные условия от ветров. На образовавшемся замкнутом дворике можно организовать детскую площадку со спортивным инвентарем или общее место отдыха группы садоводов.

    Планировка небольшого по площади садового участка должна быть продуманной и экономичной. Он может делиться на три части: зону сада и огорода, занимающую 60- 65 % площади; зону отдыха, включая садовый домик,- 20-25 %; зону хозяйственного двора с постройками - 10-15 %. В каждом отдельном случае следует учитывать особенности участка: его площадь, форму, рельеф, направление господствующих ветров, ориентацию относительно сторон света, наличие растительности, водоема и т. д.

    Зона сада и огорода должна быть расположена в южной или юго-восточной части участка. Основной организующей осью сада является дорожка, идущая от домика (шириной 0,5-0,6 м). Рядом с ней прокладывается оросительный трубопровод. По периметру участка на расстоянии 1 м от границ можно высадить ряд ягодных кустарников - крыжовник, смородину красную и белую (в ряду через 1,5 м), смородину черную, малину (в ряду через 1 м).

    Рис. 2. Примеры застройки садоводческих товариществ отдельными и блокированными домиками: а - отдельными домиками вдоль улицы; б - то же, в шахматном порядке; в - блокированными домиками вдоль улицы; г-то же, в шахматном порядке; д - петельная застройка; е - тупиковая застройка

    Ягодные кустарники сажать одновременно нецелесообразно. Лучше это сделать в четыре приема (через 2-3 года), создавая тем самым ягодниковый оборот, в котором четвертую часть предназначенной для них площади отводят для подготовки под посадку, еще одну такую же часть - под молодые кусты, столько же - под плодоносящие, а остальное - под находящиеся уже в стадии завершения плодоношения. Это будет гарантировать равномерное поступление урожая, большую надежность от вымерзания и меньшее повреждение кустарников вредителями и болезнями.

    С одной стороны участка, отступив 3 м от ягодных кустарников, можно разместить ряд (или два) яблонь. Эти высокорослые и раски дистые деревья располагают в 4 м от границы, чтобы они не затеняли соседний участок. В ряду их также высаживают через 4 м. Косточковые деревья (вишня, слива, черешня, алыча) высаживают в ряду через 3 м.

    Свободное пространство отводится под выращивание земляники садовой (клубники), овощных, зеленных культур и картофеля. Эту площадь разбивают на 8-10 участков и устанавливают овоще-земляничный севооборот. В результате местоположение каждой культуры периодически меняется, что очень важно для рационального использования питательных веществ в почве и защиты растений от вредителей и болезней, а в конечном счете для получения более высокого урожая каждой культуры. Чередование в севообороте может быть следующим: вначале редис, салат, укроп, петрушка. Вслед за их уборкой высаживается садовая земляника разных сроков плодоношения. Затем может быть высажен картофель, огурцы, помидоры, морковь, свекла, лук, чеснок, горошек.

    Целесообразно практиковать смешанные и уплотненные посевы. При этом культуры подбирают с учетом их индивидуальных особенностей и взаимного влияния друг на друга. Соседство растений может быть благоприятным или вредным. Например, огурцы дружат с горохом, капустой, но враждуют с картофелем. Капуста белокочанная в качестве соседей признает укроп, сельдерей, лук, салат, картофель и недолюбливает помидоры и столовую фасоль. Морковь хорошо соседствует с помидорами и горохом. Картофель уживается с фасолью, капустой, хреном и луком, но не терпит помидоров и огурцов.

    Разбивка сада и огорода, конечно, дело индивидуальное, и здесь многое зависит от запросов садовода, местных и природных условий, но принципами правильного ведения агротехники все же следует руководствоваться. Тогда растения меньше болеют, лучше плодоносят. Об этом каждый садовод-любитель может прочитать в специальной агротехнической литературе (см. список рекомендуемой литературы, помещенный в конце книги).

    При выборе площадки для строительства садового домика кроме местных условий (направление ветра, солнечное освещение, рельеф) следует учитывать и характер застройки соседних участков. Домик ставят с отступом от дороги не менее чем на 3 м. Его располагают таким образом, чтобы расстояние между соседними домиками в продольном и поперечном направлении было не менее 12 м. При блокировке домиков между каждой парой должен быть 15-метровый разрыв.

    Так как тень от строений затрудняет рост растений, домик следует строить компактным. При входе на участок с северной стороны его лучше разместить в начале участка, а с южной - в глубине. Выгодно сместить домик с оси участка в сторону падения тени. Обычно его располагают фасадом к дороге и параллельно ей, но строго соблюдать это правило необязательно. Он может стоять даже под углом к ней. Если участок ориентирован к дороге северной стороной, домик в эту сторону лучше развернуть боковым фасадом.

    Зона отдыха, как никакая другая, отражает вкусы и любимые занятия людей. Она формируется, как правило, возле домика, продолжая террасу, что дает как бы добавочные резервы жилой площади. Умело оборудованная, она с большой пользой может быть приспособлена для различных видов деятельности. Одни увлекаются цветоводством и хотят создать богатую коллекцию цветов, другие любят посидеть у воды и размещают здесь красиво выполненный водоем, третьи предпочитают заняться на открытом воздухе творческим, допустим, столярным трудом и приспосабливают для этой деятельности всю площадку. Если в семье есть маленькие дети, можно сделать небольшой уголок для игр - повесить качели, устроить песочницу и т. д., а для детей постарше организовать спортивную площадку (турник, бревно и т. д.). Зону отдыха можно создать легко перестраиваемой за счет выносной мебели и организации временного проведения досуга. Хорошей площадкой для отдыха будет зеленая лужайка с вкраплением мощений из каменных плит, или декоративный садик, оформленный группой цветущих кустов, или декоративные экраны - решетки, заплетенные лианами (рис. 3).

    Небольшое пространство зоны отдыха не следует загромождать малыми формами. Надо стремиться к простому и естественному их оформлению, бережно относиться к природным элементам, если они оказались на участке: камням, рельефу, растениям. Хорошо, если на зеленом газоне будет расти одно-два дерева, под сенью которых удобно разместить садовую мебель - стол, скамьи, шезлонг и т. д. (рис. 3).

    Одно из основных требований к расположению домика на участке - удобная взаимосвязь его со всеми зонами и в первую очередь с хозяйственной, которую составляют хозяйственный двор, теплица, сарай, погреб, летний душ, туалет. Они должны находиться в противоположной от проезжей дороги стороне. Их можно строить или отдельно стоящими, или блокировать между собой или с хозяйственными строениями соседнего участка.

    Рис. 4. Садовая мебель

    Для разведения птиц или кроликов во дворе следует предусмотреть выгульную площадку, обязательно огородив ее. Здесь же, у сарая, следует отвести площадку для строительных материалов. Другую площадку (15-20 м2) надо предусмотреть со стороны проезжей части (для привозного удобрения, песка, топлива, для стоянки машины).

    Возможна и блокировка хозяйственных построек с домиком. Это позволяет рациональнее использовать землю и достигнуть большого комфорта. Выиграет также архитектурный облик садового домика. Однако в этом случае следует устраивать вентиляцию для санитарных и складских помещений. При пристройке к глухим стенам домика или к летним помещениям (террасе, веранде) вход в хозяйственные постройки лучше расположить с противоположной от входа в жилье и зону отдыха стороны. К домику могут быть пристроены теплицы, с южной или юго-восточной стороны.

    Спортивно-игровые площадки следует устраивать в местах, защищенных от господствующих ветров. Они должны быть сухими (при уровне грунтовых вод не менее 0,7 м от спланированной поверхности) и находиться не ближе 15-18 м от хозяйственных построек, дорог, улиц, садовых домиков. Спортивно-игровые площадки имеют, как правило, прямоугольную форму, однако в зависимости от местных условий их конфигурация может изменяться. Земельный участок, отведенный для спортивно-игрового комплекса, огораживают посадками древесно-декоративных растений. Газон здесь должен состоять из стойких к вытаптыванию травосмесей. Допустимы и другие покрытия. Водоотвод осуществляется поверхностным стоком за счет уклона поверхности в сторону проездов.

    Рис. 8. Оборудование детской площадки

    Общие детские площадки в садовом товариществе также необходимы, ведь дети почти весь день проводят на воздухе. При организации таких площадок необходимо учесть ряд факторов - правильное освещение солнцем, близость к дому и хорошую просмат-риваемость. В жаркое время дня такая площадка должна быть затененной., а в утренние и вечерние часы - освещенной солнцем. Главное на детской площадке - это игровое оборудование, затейливое, удобное, красивое. Здесь, как нигде, можно проявить выдумку, фантазию и вкус.

    Рассмотрим один из вариантов оборудования детской площадки (рис. 7). Самое простое и необходимое игровое оборудование - песочница и столик со скамьями. Они представляют собой как бы единое целое. Барьер песочницы сделан из деревянных кругляков, вертикально вкопанных в землю. Используются для этого и горбыли или обрезки досок. Песочница в данном варианте имеет квадратную форму, но может иметь и какую-либо другую.

    На площадке кроме песочницы и столика со скамьей могут быть установлены лесенки, качели, горки и другое оборудование для игр. Пергола, увитая растениями, создаст ажурную тень и иллюзорно замкнет площадку. После того как оборудование детской площадки будет готово, его нужно покрасить яркими, веселыми красками.



    - Транспортные связи
    13.1. Взаимоувязанная сеть связи РФ - национальная транспортная магистральная сеть

    Для организации информационного обмена между отдельными локальными и глобальными сетями развертывается транспортная сеть (ТС) реализующая сервисы транспортировки информационных потоков между отдельными абонентами, а так же предоставление информационных сервисов (таких как: радио, ТВ, факсимильная связь и др.) потребителям.

    Транспортная сеть связи (backhaul ) - это совокупность ресурсов, выполняющих функции транспортирования в телекоммуникационных сетях. Она включает не только системы передачи, но и относящиеся к ним средства контроля, оперативного переключения, резервирования, управления.

    Рисунок 13.1 - Телекоммуникационная сеть состоящая из магистральной транспортной сети и абонентов, подключенных к ней через сети доступа

    Как правило, транспортные сети разворачиваются в национальном масштабе. В РФ такой транспортной системой является взаимоувязанная сеть связи РФ (ВСС).

    Взаимоувязанная сеть связи России сегодня представляет собой совокупность сетей (рис. 13.2):

    Сети общего пользования,

    Ведомственных сетей и сети связи в интересах управления, обороны, безопасности и охраны правопорядка.

    При этом главная составляющая ВСС - сети связи общего пользования, открытые для всех физических и юридических лиц на территории России.

    Рисунок 13.2 - Структура ВСС РФ

    Организационно ВСС - это совокупность взаимоувязанных сетей электросвязи, находящихся в ведении различных операторов связи как юридических лиц, имеющих право предоставлять услуги электросвязи. Архитектура ВСС РФ приведена на рис. 13.3.

    Взаимоувязанная сеть связи, как система связи, представляет собой иерархическую трехуровневую систему:

    Первый уровень - первичная сеть передачи, представляющая типовые каналы и групповые тракты передачи для вторичных сетей;

    Второй уровень - вторичные сети, т. е. коммутируемые и некоммутируемые сети связи (телефонные, документальной электросвязи и др.),

    Достоверность сообщений (соответствие принятого сообщения переданному);

    Надежность и устойчивость связи, т.е. способность сети выполнить транспортную функцию с заданными эксплуатационными характеристиками в повседневных условиях,

    При воздействии внешних дестабилизирующих факторов.

    Системы связи могут обеспечить защиту информации от ряда угроз ее безопасности (блокирование, несанкционированный доступ на отдельных элементах сети и др.). Ответственность за общее решение вопросов безопасности информации (обеспечение свойств конфиденциальности, целостности и доступности) возлагается на пользователя (собственника информации).

    Устойчивость сети связи - это ее способность сохранять работоспособность в условиях воздействия различных дестабилизирующих факторов. Она определяется надежностью, живучестью и помехоустойчивостью сети.

    Для повышения устойчивости сетей ВСС используются различные меры:

    Оптимизация топологии сетей связи для упрощения их адаптации к условиям, возникающим в результате воздействия различных дестабилизирующих факторов, включая геополитические;

    Рациональное размещение сооружений связи на местности с учетом зон возможных разрушений, наводнений, пожаров;

    Применение специальных мер защиты сетей и их элементов от влияния источников помех различного характера;

    Развитие систем резервирования;

    Внедрение автоматизированных систем управления, организующих работу по перестройке и восстановлению сетей, поддержанию их работоспособности в различных условиях и др.

    13.6. Этапы развития технологий транспортных и телекоммуникационных сетей

    Телекоммуникационные системы в своем развитии прошли несколько этапов (рис. 13.9). На рис. 13.9, чем ниже лежит слой, соответствующей технологии , тем более высокоскоростной она является, а следовательно может обеспечивать передачу видов информации вышележащих технологий. Передача информации между вторичными сетями, построенными на базе различных телекоммуникационных технологий, осуществляется с использованием переходных элементов, называемых шлюзами, которые располагаются на их границах.

    На первом этапе первичная сеть строилась на основе типовых каналов и трактов АСП.

    Второй этап характеризовался созданием цифровых систем передачи на основе иерархии плезиохронных цифровых систем, которые образовывали первичную цифровую сеть. При этом на обоих этапах развития жестко закреплялся соответствующий ресурс первичной сети в виде типовых каналов и трактов за соответствующими вторичными сетями. Такой подход, основанный на жестком закреплении ресурсов первичной сети за вторичными сетями связи, не позволял осуществлять динамическое перераспределение ресурсов первичной сети в условиях нестационарной нагрузи различных видов информации, характеризовался использованием разнотипного каналообразующего и коммутационного оборудования и являлся не эффективным в экономическом плане. Наличие взаимного существования АСП и ЦСП вызвало необходимость решения задачи сопряжения между собой аналоговых каналов и трактов с цифровыми, что также приводило к дополнительному усложнению и повышению стоимости связи (модемы, АЦП-ЦАП, TMUX - трансмультиплексоры).

    Рисунок 13.9 - Этапы развития телекоммуникационных технологий

    Вторичные сети связи на этих этапах использовали, как правило, кроссовую коммутацию, традиционную коммутацию каналов аналоговых и цифровых, в телеграфных сетях связи применялась как коммутация каналов, так и коммутация сообщений, передача данных осуществлялась по некоммутируемым и коммутируемым каналам связи , а также с использованием метода коммутации пакетов. Видео и телевизионная информация передавалась по выделенным для этих целей широкополосных аналоговых или высокоскоростных цифровых трактах передачи АСП и ЦСП соответственно.

    Третий этап развития телекоммуникационных систем связан с появлением новых технологий передачи информации, как при построении первичной сети, так и использовании новых технологий интегрального типа для построения вторичных сетей.

    На этом этапе вторичные сети обеспечивают в едином цифровом виде совместную передачу различных видов информации, осуществляя динамическое перераспределение имеющегося ресурса между сообщениями различных видов информации. При этом в рамках каждой технологии вторичной сети используется однотипное коммутационное оборудование.

    Основу первичной сети третьего этапа составляют цифровые системы передачи плезиохронной и синхронной иерархий, которые обеспечивают функционирование всех вторичных сетей, использующих различные методы оперативной коммутации: быструю коммутацию каналов, быструю коммутацию пакетов, коммутацию кадров, пакетов и ячеек.

    В последнее время при развитии телекоммуникационных систем получила развитие концепция сетей связи следующего/нового поколения NGN (Next/New Generation Network). Концепция NGN предусматривает создание новой мультисервисной сети, при этом с ней осуществляется интеграция существующих служб путем использования распределенной программной коммутации (soft-switches).

    Эволюция корпоративных сетей от аналого-цифрового варианта к NGN-архитектуре иллюстрируется рис. 13.10.

    Рисунок 13.10 - Эволюция архитектуры телекоммуникационных сетей

    Сети следующего поколения (NGN) представляют собой новую концепцию сети, комбинирующую в себе голосовые функции, качество обслуживания (QoS) и коммутируемые сети с преимуществами и эффективностью пакетной сети. Сети NGN означают эволюцию существующих телекоммуникационных сетей, отражающуюся в слиянии сетей и технологий. Благодаря этому обеспечивается широкий набор услуг начиная с классических услуг телефонии и кончая различными услугами передачи данных или их комбинацией.

    Концепция NGN – концепция построения сетей связи следующего/нового поколения (Next/NewGeneration Network ), обеспечивающих предоставление неограниченного набора услуг с гибкими настройками по их:

    - управлению,

    - персонализации,

    - созданию новых услуг за счет унификации сетевых решений,

    Мультисервисная сеть – сеть связи, которая построена в соответствии с концепцией NGN и обеспечивает предоставление неограниченного набора инфокоммуникационных услуг (VoIP, Интернет, VPN, IPTV, VoD и др. ).

    Сеть NGN – сеть с пакетной коммутацией, пригодная для предоставления услуг электросвязи и для использования нескольких широкополосных технологий транспортировки с включенной функцией QoS, в которой связанные с обслуживанием функции не зависят от примененных технологий , обеспечивающих транспортировку .

    Возможности сети NGN:

    - реализация универсальной транспортной сети с распределенной коммутацией,

    - вынесение функций предоставления услуг в оконечные сетевые узлы,

    - интеграция с традиционными сетями связи.

    Сеть NGN должна обладать широким спектром возможностей – предоставлять возможности (инфраструктуру, протоколы) для целей создания, развертывания и управления всеми возможными видами услуг (известными или пока не известными). В данное понятие входят услуги, использующие данные различных типов (например, голосовые, видео, текстовые данные их различные комбинации и сочетания с другими типами данных).

    Передача может осуществляться со всеми типами схем кодирования и технологий передачи данных, например диалоговые передачи, с адресацией конкретному устройству, групповой адресацией и вещанием, услуги передачи сообщений, простой передачи данных в реальном масштабе времени и в автономном режиме, с регулированием задержки и устойчивые к задержке услуги. Услуги, предъявляющие различные требованиями к ширине полосе, с гарантированной полосой или без нее, должны поддерживаться с учетом технических возможностей используемой технологии передачи данных.

    Особое внимание в сетях NGN уделяется гибкости реализации услуг в стремлении к наиболее полному удовлетворению всех требований заказчика. В некоторых случаях возможно также предоставление пользователю возможности настройки используемых им услуг. NGN должна поддерживать открытые интерфейсы программирования приложений, чтобы поддерживать создание, предоставление и управление услугами.

    Обобщая вышеизложенное, можно сказать, что современное развитие телекоммуникационных сетей связи происходит через интеграцию всех функциональных возможностей, заложенных в модели транспортных сетей. Интеграция привела к созданию универсальных мультисервисных транспортных платформ с электрическими и оптическими интерфейсами , с электрической и оптической коммутацией каналов и пакетов (кадров и ячеек), с предоставлением любых видов транспортных услуг, включая услуги автоматически коммутируемых оптических сетей c сигнальными протоколами, основанными на обобщённом протоколе коммутации по меткам GMPLS (Generalized Multi-Protocol Label Switching).

    На рис. 13.11 представлена обобщенная архитектура транспортной платформы, в которой указаны возможные источники информационной нагрузки, протоколы согласования и транспортные технологии по информации из работы .

    Рисунок 13.11 - Обобщенная архитектура оптической мультисервисной транспортной платформы

    Обозначения на рис. 13.11 :

    PDH, Plesiochronous Digital Hierarchy - плезиохронная цифровая иерархия (скорости 2, 8, 34 и 140 Мбит/с);

    N-ISDN, Narrowband Integrated Services Digital Network - узкополосная цифровая сеть с интеграцией служб (У-ЦСИС);

    IP, Internet Protocol - межсетевой протокол;

    IPX, Internet Packet eXchange - межсетевой обмен пакетами;

    MPLS, Multi-Protocol Label Switching - многопротокольная коммутация по меткам;

    GMPLS, Generalised MPLS - протокол обобщенной коммутации по меткам;

    SANs, Storage Area Networks - сети хранения данных (серверы услуг, базы данных);

    ISCSI, internet Small Computer System Interface - протокол для установления взаимодействия и управления системами хранения данных, серверами и клиентами;

    HDTV, High-Definition Television - телевидение высокой четкости;

    ESCON, Enterprise Systems Connection - соединение учрежденческих систем (с базами данных, серверами);

    FICON, Fiber Connection - волоконное соединение для передачи данных;

    PPP, Point-to-Point Protocol - протокол «точка-точка»;

    RPR, Resilient Packet Ring - протокол пакетного кольца с самовосстановлением;

    HDLC, High-level Data Link Control - протокол управления каналом высокого уровня;

    GFP, Generic Framing Procedure - процедура формирования общего кадра.

    Протоколы PPP, RPR, HDLC, GFP в транспортных сетях выполняют функции согласования информационных данных от источников нагрузки с транспортными структурами с целью повышения эффективности использования ресурсов этих структур , например, виртуальных контейнеров высокого и низкого порядков в сети SDH или оптических каналов в сети OTN, или физических ресурсов кадров передачи сети Ethernet .

    Транспортные сети, формирующие проводные каналы связи между удален­ными беспроводными сетями, представляют собой совокупность (рис. 1.5):

    – проводных линий связи (links), по которым передаются цифровые электриче­ские или оптические сигналы;

    – сетевых узлов (network nodes), осуществляющих ретрансляцию сигналов (включая их мультиплексирование/ демультиплексирование) из одних прово­дных линий в другие посредством коммутаторов (на рис. 1.5 показана струк­тура транспортной сети, содержащая 9 коммутаторов, соединенных между собой 15-ю линиями связи).

    Современные транспортные сети представляют собой смежные техниче­ские системы, детальные сведения о которых составляют отдельную область знаний . Краткие сведения о характеристиках этих сетей, связанные с после­дующим изложением сведений о BWN, сводятся к следующему (рис. 1.6).

    1. Иерархический уровень реализации сетей служит основанием для их раз­деления на две разновидности – первичные и наложенные сети.

    Первичные сети (transmission system) обеспечивают физический перенос электрических сигналов от исходного до конечного узла транспортной сети. Одна из важных функций первичных сетей заключается в мультиплексирова­нии/ демультиплексировании сигналов различных источников. Цифровой форме сигнала, которая используется в современных транспортных сетях, соответству­ет мультиплексирование с временным разделением (Time Division Multiplexing –

    TDM). По способу синхронизации мультиплексируемых сигналов различают следующие разновидности первичных сетей:

    – сети с плезиохронной цифровой иерархией (Plesiochronous Digital Hierarchy – PDH), в которых мультиплексируемые сигналы близки к синхронным, но не строго синхронны; такие сети обеспечивают скорость передачи цифровых сигналов до 150 Мбит/с;

    – сети с синхронной цифровой иерархией (Synchronous Digital Hierarchy – SDH) в которых обеспечивается синхронность мультиплексируемых сигналов- та­кие сети обеспечивают скорость передачи цифровых сигналов до 10 Гбит/с.

    Рис. 1.5. Структура транспортной сети

    Очевидно, что скорости передачи информационных потоков в сетях обеих разновидностей позволяют создавать на их основе транспортную инфраструк­туру, удовлетворяющую потребностям развертывания современных BWN.

    Наложенные сети (Overlay Network) на основе первичных сетей обеспе­чивают формирование каналов проводной связи и перенос сообщений между входными и выходными узлами. Наложенные сети дополняют первичные сети всеми ресурсами, необходимыми для обеспечения проводного транспорта сиг­налов. Наиболее распространенные разновидности наложенных сетей: – коммутируемая телефонная сеть общего пользования (Public Switche Telephone Network – PSTN), рассчитанная на предоставление каналов со ско­ростью передачи цифровых потоков до 64 кбит/с; такие каналы называют ба­зовыми цифровыми каналами (Digital Signal 0 – DS0 или Bearer channel – channel);

    – цифровая сеть с интеграцией услуг (Integrated Services Digital Network), рас­считанная на предоставление 23 базовых цифровых каналов в США, и 30 – в Европе (суммарные значения скоростей передачи данных соответственно равны 1.544 Мбит/с и 2.048 Мбит/с);

    коммутируемая сеть передачи данных (Public Switched Data Network – PSDN) предназначенная для реализации пакетной передачи данных; примером такой сети является Internet.

    Рис. 1.6. Критерии классификации транспортных сетей

    2. Способ передачи сообщений. По способу передачи сообщений, все транс­портные сети классифицируются по двум признакам: форма представления со­общений во временной области и способ взаимосвязи абонентов в процессе ин­формационного обмена.

    По форме представления во времени сообщение может быть непрерыв­ным (circuit mode) или пакетным (packet mode). Непрерывная форма харак­теризуется неделимостью сообщения на протяжении сеанса связи, пакетная, напротив, его разделением на части, каждая из которых передается отдельно (с последующим восстановлением целостности сообщения посредством объ­единения всех частей в надлежащем порядке узлом получателя). Непрерыв­ность сообщения эквивалентна установлению между исходным и конечным узлами транспортной сети замкнутой линии электрической связи (circuit),

    что поясняет происхождение англоязычного термина для обозначения непп рывной передачи. Пакетирование сообщения сочетается с двумя способами передачи пакетов – либо по единой электрической линии, неизменной для всех пакетов сообщения, либо посредством независимой передачи транс­портной сетью каждого пакета, которые в этом случае именуются дейта граммами (datagram).

    Форма взаимосвязи абонентов при транспорте сообщений определяется по наличию/отсутствию предварительной договоренности контактирующих сто­рон об обмене сообщениями. Различают две разновидности взаимосвязи або­нентов:

    – связь с установлением соединения (connection oriented), соответствующая транспорту сообщений по пути, неизменному на протяжении сеанса связи- установление пути предшествует передаче сообщения (например, по линиям’, связывающим узлы 1 – 4 – 5 – 9 на рис. 1.5);

    – связь без установления соединения (connectionless oriented), при которой транспорт сообщений сетью осуществляется без предварительного уста­новления маршрута его передачи; подразумевается возможность прохож­дения различных пакетов/частей сообщения различными путями (напри­мер, в сети, показанной на рис. 1.5, при передаче сообщения между узлами 1-9 возможна передача одного пакета через узлы 4-5, другого – через узлы 7-8, третьего – через узлы 2-3).

    Передача без установления соединения может осуществляться только в пакетной (дейтаграммной) форме; непрерывная передача сообщений – только при установлении в транспортной сети соединения; пакетная фор­ма сообщений может подразумевать возможность установления соедине­ния, однако осуществляться без такового. Примером пакетной передачи с установлением соединения является передача IP-пакетов по сетям PSTN и ISDN.

    3. Каналы связи транспортной сети принято классифицировать, исходя из формы реализации соединения между конечными узлами линии и пропускной способности каналов.

    Реализация соединения между узлами может быть как «физической», так и виртуальной.

    Физическое соединение осуществляется путем формирования составной линии, включающей ряд межузловых линий типа «точка-точка» и соединяю­щие их коммутаторы с фиксированным направлением коммутации от входящей к исходящей межузловой линии. Например, физическое соединение узлов 3 и 7 на рис. 1.5 образуется путем создания составной линии, включающей узлы 3, 5, 6, 7 и три межузловых отрезка. Типовым примером транспортных сетей с физической реализацией соединения (circuit mode) могут служить сети PSTN и ISDN.

    Виртуальная реализация соединения заключается в пакетной передаче со­общений при неизменном маршруте их следования в транспортной сети (т.е. при неизменном перечне узлов и соединительных линий). Постоянство марш­рута обеспечивается запоминанием направления передачи пакетов (packet switching) в коммутаторах сети. Запоминание осуществляется либо только на время передачи сообщения, чему соответствуют понятие коммутируемого виртуального канала (switched virtual circuit), либо на длительное время, чему соответствуют понятие постоянного виртуального канала (permanent virtual channel).

    Создание коммутируемых каналов осуществляется по запросу источника сообщения автоматически, создание постоянных каналов – администратором сети. Примерами виртуальных сетей являются сети PSDN.

    Пропускная способность канала, под которой подразумевают возмож­ности последнего по переносу информации за определенный промежуток времени, определяется разновидностью используемых кабельных линий и особенностями мультиплексирования сигналов в коммутаторах. В совре­менных транспортных сетях используют кабели с двумя типами направ­ляющих сред (проводные медные и оптоволоконные) и два упоминавшихся выше способа мультиплексирования – плезиохронный (PDH) и синхрон­ный (SDH). Типовым (но не обязательным) является сочетание использо­вания проводных медных линий с применением PDH и оптоволоконных линий с применением SDH. Первому сочетанию соответствует пропускная способность до 150 Мбит/с, второму – до 10 Гбит/с. Технология синхрон­ного мультиплексирования допускает «надстройку» последнего над пле- зиохронным: таким образом, менее скоростные линии с плезиохронными цифровыми потоками могут подключаться к более скоростным линиям с синхронными потоками.

    Цифровые потоки технологии плезиохронных сетей стандартизированы в трех вариантах стандартов: Европейском (Ех), Американском (Тх) и Японском (Jx). Несмотря на общие принципы, в каждом из них использованы различные коэффициенты мультиплексирования на разных уровнях иерархий. Каждый из стандартов охватывает несколько уровней цифровой иерархии и имеет несколь­ко символьных обозначений, описывающих технические характеристики интер­фейса и соответствующую скорость передачи данных:

    – стандарты Ех, в соответствии со значениями обеспечиваемых скоростей передачи данных, обозначаемые символами Е0, El, Е2, ЕЗ, Е4, Е5;

    – стандарты Тх, обозначаемые Tl, Т2, ТЗ, Т4 и Т5 (приняты в США, Японии и Корее);

    – стандарты Jx, обозначаемые Jl, J2, J3, J4, J5, хотя чаще встречается другое обозначение: DS1, DS2, DS3, DS4, DS5, появившееся в результате согласова­ния японской и американской версий стандартов ввиду близости их характе­ристик (фактическая схожесть имеет место для первых двух иерархических уровней).

    Базовым цифровым потокам обоих стандартов – Е0 и DS0 – соответствуют одинаковые значения скоростей передачи данных – 64 кбит/с. Иерархия скоро­стей цифровых потоков Е- и Т-версий приведена в табл. 1.1. На практике наи­большее распространение получили цифровые линии El, Т1 и ЕЗ, ТЗ,

    Системы SDH, соответствующие международным стандартам синхрс ных первичных транспортных сетей, и системы SONET (Synchronous Opti< Network), отвечающие стандартам США, обеспечивают мультиплексирован цифровых потоков со скоростями порядка сотен и тысяч Мбит/с, что на один-j порядка превышает значения скоростей в плезиохронных системах. Частичн перекрытие стандартизированных значений скорости цифровых потоков дв разновидностей соответствует верхним иерархическим уровням PDH и нижн иерархическим уровням SDH. Базовому значению STM-0 скорости синхроны транспортных систем (Synchronous Transport Mode – STM) соответствует ci рость битового потока 48,96 Мбит/с. Сведения о скоростях передачи данн более высоких уровней (STM-x) представлены в табл. 1.2.

    Оптоволоконные кабели обеспечивают передачу информационных noroi со скоростями до 10 Гбит/с, что соответствует стандарту STM-64 (5-го уроЕ иерархии скоростей). Различия скоростей передачи полезной нагрузки (paylo; и общей скорости потока в линиях (line rate) связана с «накладными расходам] обусловленными необходимостью сопровождения полезной информации разнс рода служебными сообщениями, обеспечивающими синхронную передачу }