• Целевая функция и ее формы. Основные понятия модели

    Действие системы, ее поведение характеризуются не только установлением факта достижения цели, но и степенью ее достижения, определяемой с помощью целевой функции.

    Целевая функция – есть обобщенный показатель системы, который характеризует степень достижения системой ее цели. Составление целевой функции одна из важнейших задач при проектировании системы. Однако нет общей теории построения целевых функций, есть только некоторые рекомендации.

    Целевая функция составляется по указаниям ТЗ о критерии оптимизации путем анализа внешних параметров системы и ограничений на них.

    Целевая функция должна существенно зависеть от внешних параметров или части их. В противном случае оптимизация по данной целевой функции не имеет смысла. Целевая функция представляет вектор в m -мерном пространстве внешних параметров системы

    Обычно целевая функция задается в скалярном виде.

    Используются следующие четыре формы целевой функции.

    1. Наиболее часто используется целевая функция одного внешнего параметра

    В этом случае целевая функция просто равна одному из внешних параметров или его обратной величине

    Все остальные (m – 1) внешних параметров переводятся в систему ограничений.

    Физический смысл целевой функции приведенных видов заключается в том, что чем больше (или меньше) параметр y i , тем лучше при прочих равных условиях данная система, причем равенство прочих условий понимается в смысле ограничений на остальные внешние параметры. Типичные задачи с приведенной формой целевой функции: оптимизация системы по надежности (y = P (t )), помехоустойчивости, стоимости и другим внешним параметрам. Такая целевая функция имеет ясный физический (технический или экономический) смысл, объективно характеризует систему и поэтому часто используется. То есть в этом случае целевой функцией является внешний параметр системы. Он и называется целевой функцией системы. Это могут быть: точность, быстродействие, время, стоимость, надежность, масса, габариты, какой-то технологический показатель и т.п.

    2. Вторая форма целевой функции – это сумма параметров одной размерности или сумма функций от этих параметров

    Такая форма характерна при оптимизации по экономическим критериям, по критериям сложности и т.п.

    Например, при минимизации годовых приведенных затрат на систему целевая функция представляет собой сумму двух внешних параметров: годовых эксплуатационных расходов и капитальных затрат, отнесенных к сроку окупаемости системы. В этом случае каждый из этих внешних параметров системы является сложной функцией ее внутренних (подлежащих нахождению) параметров.

    Целевые функции задач оптимизации по критерию сложности также имеют вторую форму, т.к. они представляются в виде суммы сложностей отдельных подсистем или блоков системы.

    3. Третья форма целевой функции – ранжированная форма – представляет собой упорядоченную совокупность целевых функций первой формы с приоритетами

    Первая целевая функция наиболее важная, последняя целевая функция наименее важная.

    В частном случае целевая функция этого вида записывается так:

    Пример ранжирования – это (например) такая последовательность целевых функций: точность, надежность, стоимость. Смысл целевой функции третьей формы состоит в следующем. Самым главным – первым по рангу – признается некоторый i -й параметр системы – y i (например, точность). Если у некоторой системы этот i -ый параметр больше, чем у всех других систем, то независимо от значений других параметров (если только они удовлетворяют ограничениям) данная система считается лучшей. Затем по второму параметру и т.д.

    Процедура оптимизации в этом случае, как правило, является многошаговой. Такая оптимизация часто неосознанно применяется в технических системах. Сначала выбирают систему лучшую по точности, при одинаковой точности нескольких систем – более надежную, а затем – более дешевую. На каждом шаге при оптимизации используется только один критерий, что не противоречит концепции системного подхода (оптимизация по одному единственному критерию, см. далее).

    4. Четвертая – наиболее общая – форма целевой функции представляет собой произвольную зависимость от всех или части (но не меньше двух) разнородных внешних параметров

    При этом разнородные параметры преобразуются в безразмерные (или одноразмерные) и целевая функция формируется как некоторая композиция (например, среднее арифметическое) полученных безразмерных показателей.

    Единую целевую функцию четвертой формы можно получить из целевых функций третьей формы путем умножения их на весовые коэффициенты и последующего суммирования :

    где F S (y i ) – одна из k целевых функций третьей формы;

    ω S – ее весовой коэффициент.

    Однако, как указывается там же, определение весовых коэффициентов отдельных целевых функций является очень сложным.

    Экстремальное значение полученной суммы будет считаться оптимальным.

    Таким образом, можно указать, что в большинстве случаев (1-я и 3-я формы) показатели качества системы оцениваются численными значениями компонентов векторной целевой функции, которые носят названия функционалов :

    - - - - - - - - - - - - - - - - - -

    Так как системы работают в условиях случайных воздействий, то значения функционалов часто оказываются случайными величинами. Это неудобно при использовании функционалов в виде показателей качества. Поэтому в таких случаях обычно пользуются средними значениями соответствующих функционалов. Например: среднее количество изделий, выпускаемых за смену; средняя стоимость продукции и т.д.

    В некоторых случаях показатели качества представляют собой вероятности некоторых случайных событий. При этом в качестве целевой функции выбирается вероятность
    выполнения системой поставленной цели (задачи)

    Например, вероятность обнаружения цели радиолокатором и т.п.

    Целевая функция представляет собой функцию с некоторыми переменными, от которых непосредственно зависит достижение оптимальности. Также она может выступать в качестве нескольких переменных, которые характеризуют тот или иной объект. Можно сказать, что, по сути, она показывает, как мы продвинулись в достижении поставленной задачи.

    Примером таких функций может выступать расчет прочности и массы конструкции, мощности установки, объема выпуска продукции, стоимости перевозок и другие.

    Целевая функция позволяет ответить на несколько вопросов:

    Выгодно или нет то или иное событие;

    В правильном ли направлении идет движение;

    Насколько верно сделан выбор и т.д.

    Если мы не имеем возможности влиять на параметры функции, то, можно сказать, что и сделать мы ничего не можем, разве что только проанализировать и все. Но чтобы быть в состоянии что-то изменить, обычно существуют изменяемые параметры функции. Главная задача - это изменить значения на те, при которых функция станет оптимальной.

    Целевые функции не всегда могут быть представлены в виде формулы. Это может быть таблица, например. Также условие может быть в виде нескольких целевых функций. Например, если требуется обеспечить максимальную надежность, минимальные затраты и минимальную материалоемкость.

    Задачи на оптимизацию должны иметь важнейшее исходное условие - целевую функцию. Если мы ее то можно считать, что оптимизации не существует. Иными словами, если нет цели, то и нет путей ее достижения, а тем более выгодных условий.

    Задачи на оптимизацию бывают условными и безусловными. Первый вид предполагает ограничения, то есть определенные условия при постановке задачи. Второй вид состоит в том, чтобы отыскать максимум или при существующих параметрах. Зачастую такие задачи предполагают поиск минимума.

    В классическом понимании оптимизации подбираются такие значения параметров, при которых целевая функция удовлетворяет желаемым результатам. Также ее можно обозначить как процесс подбора самого лучшего варианта из возможных. Например, выбрать лучшее распределение ресурсов, вариант конструкции и т.д.

    Существует такое понятие, как неполная оптимизация. Она может образоваться по нескольким причинам. Например:

    Число попавших в максимальную точку систем ограничено (уже установлена монополия или олигополия);

    Нет монополии, но отсутствуют ресурсы (недостаток квалификации на каком-либо конкурсе);

    Отсутствие самой а точнее «незнание» ее (мужчина мечтает о некой красивой женщине, но неизвестно, существует ли такая в природе) и т.д.

    В условиях рыночных отношений управления сбытовой и производственной деятельностью фирм и предприятий основой принятия решений является информация о рынке, а обоснованность этого решения проверяется уже при выходе на рынок с соответствующим товаром или услугой. В таком случае отправной точкой является изучение потребительского спроса. Для нахождения решений устанавливается целевая функция потребления. Она показывает количество потребляемых благ и степень удовлетворения потребностей потребителя, а также зависимость между ними.

    Определение . Любое решение системы ограничений называется допустимым решением ЗЛП.
    Определение . Допустимое решение, в котором целевая функция достигает максимального или минимального значения, называется оптимальным решением.

    В силу этих определений задача ЛП может быть сформулирована следующим образом: среди всех точек выпуклой области, являющейся решением системы ограничений, выбрать такую, координаты которой минимизируют (максимизируют) линейную функцию F = с 1 x + с 2 y .
    Заметим, что переменные x , y в ЗЛП принимают, как правило, неотрицательные значения (x ≥ 0, y ≥ 0), поэтому область расположена в I четверти координатной плоскости.

    Рассмотрим линейную функцию F = с 1 x + с 2 y и зафиксируем какое-нибудь ее значение F . Пусть, к примеру, F = 0, т.е. с 1 x + с 2 y = 0. Графиком этого уравнения будет прямая, проходящая через начало координат (0;0) (рис.).
    Рисунок
    При изменении этого фиксированного значения F = d , прямая с 1 x + с 2 y = d будет смещаться параллельно и «зачертит» всю плоскость. Пусть D – многоугольник – область решения системы ограничений. При изменении d прямая с 1 x + с 2 y = d , при некотором значении d = d 1 достигнет многоугольника D , назовем эту точку А «точкой входа», и затем, пройдя многоугольник, при некотором значении d = d 2 будем иметь с ним последнюю общую точку В , назовем В «точкой выхода».
    Очевидно, что своего наименьшего и наибольшего значения целевая функция F =с 1 x + с 2 y достигнет в точках «входа» А и «выхода» В .
    Учитывая, что оптимальное значение на множестве допустимых решений целевая функция принимает в вершинах области D , можно предложить следующий план решения ЗЛП:

    1. построить область решений системы ограничений;
    2. построить прямую, соответствующую целевой функции, и параллельным переносом этой прямой найти точку «входа» или «выхода» (в зависимости от требования минимизировать или максимизировать целевую функцию);
    3. определить координаты этой точки, вычислить в них значение целевой функции.
    Заметим, что вектор (с 1 , с 2), перпендикулярный прямой, показывает направление роста целевой функции.

    При графическом решении ЗЛП возможны два случая, которые требуют особого обсуждения.

    Случай 1
    Рисунок 6
    При перемещении прямой с 1 x + с 2 y = d «вход» или «выход» (как на рисунке) произойдет по стороне многоугольника. Это случится, если в многоугольнике есть стороны, параллельные прямой с 1 х + с 2 у = d .
    В этом случае точек «выхода» (« входа») бесчисленное множество, а именно – любая точка отрезка АВ . Это означает, что целевая функция принимает максимальное(минимальное) значение не в одной точке, а во всех точках, лежащих на соответствующей стороне многоугольника D .

    Случай 2
    Рассмотрим случай, когда область допустимых значений неограниченна.
    В случае неограниченной области целевая функция может быть задана таким образом, что соответствующая ей прямая не имеет точки «выхода» (или «входа»). Тогда максимальное значение функции (минимальное) не достигается никогда – говорят, что функция не ограничена.
    Рисунок
    Необходимо найти максимальное значение целевой функции F = 4x + 6y → max , при системе ограничений
    Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами.
    x + y = 18


    x

    12

    9

    y

    6

    9

    0,5x + y = 12


    x

    12

    18

    y

    6

    3

    x = 12 – параллельна оси OY ;
    y = 9 – параллельна оси OX ;
    x = 0 – ось OY ;
    y = 0 – ось OX ;
    x ≥ 0 – полуплоскость правее оси OY ;
    y ≥ 0 – полуплоскость выше оси OX ;
    y ≤ 9 – полуплоскость ниже y = 9;
    x ≤ 12 – полуплоскость левее x = 12;
    0,5x + y ≤ 12 – полуплоскость ниже прямой 0,5x + y = 12;
    x + y ≤ 18 – полуплоскость ниже прямой x + y = 18.
    Рисунок
    Пересечением всех этих полуплоскостей является очевидно, пятиугольник ОАВСД , с вершинами в точках О (0; 0), А (0; 9), В (6; 9), С (12; 6), Д (12; 0). Этот пятиугольник и образует область допустимых решений задачи.

    Рассмотрим целевую функцию задачи F = 4x + 6y → max.


    x

    3

    0

    y

    –2

    0

    Построим прямую, отвечающую значению функции F = 0: 4x + 6y = 0. Будем двигать эту прямую параллельным образом. Из всего семейства прямых 4x + 6y = const последней вершиной, через которую пройдет прямая при выходе за границу многоугольника, будет вершина С (12; 6). Именно в ней F = 4x + 6y достигнет своего максимального значения.
    Значит, при x = 12, y = 6 функция F достигает своего максимального значения F = 4 ∙ 12 + 6 ∙ 6 = 84, равного 84. Точка с координатами (12; 6) удовлетворяет всем неравенствам системы ограничений, и в ней значение целевой функции оптимально F * = 84 (оптимальное значение будем обозначать «*»).
    Задача решена. Итак, необходимо выпустить 12 изделий I вида и 6 изделий II вида, при этом прибыль составит 84 тыс. руб.

    Графический метод применяется для решения задач, которые имели в системе ограничений только две переменные. Этот метод может применяться и для систем неравенств, имеющих три переменных. Геометрически ситуация будет иная, роль прямых будут играть плоскости в трехмерном пространстве, а решением неравенства от трех переменных будет являться полупространство, находящееся по одну сторону от плоскости. Роль областей будут играть многогранники, являющиеся пересечением полупространств.

    Целевая функция - вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации (минимизации или максимизации) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.

    Примеры

    Гладкие функции и системы уравнений

    Задача решения любой системы уравнений

    { F 1 (x 1 , x 2 , … , x M) = 0 F 2 (x 1 , x 2 , … , x M) = 0 … F N (x 1 , x 2 , … , x M) = 0 {\displaystyle \left\{{\begin{matrix}F_{1}(x_{1},x_{2},\ldots ,x_{M})=0\\F_{2}(x_{1},x_{2},\ldots ,x_{M})=0\\\ldots \\F_{N}(x_{1},x_{2},\ldots ,x_{M})=0\end{matrix}}\right.}

    может быть сформулирована как задача минимизации целевой функции

    S = ∑ j = 1 N F j 2 (x 1 , x 2 , … , x M) (1) {\displaystyle S=\sum _{j=1}^{N}F_{j}^{2}(x_{1},x_{2},\ldots ,x_{M})\qquad (1)}

    Если функции гладкие, то задачу минимизации можно решать градиентными методами.

    Для всякой гладкой целевой функции можно приравнять к 0 {\displaystyle 0} частные производные по всем переменным. Оптимум целевой функции будет одним из решений такой системы уравнений. В случае функции (1) {\displaystyle (1)} это будет система уравнений метода наименьших квадратов (МНК). Всякое решение исходной системы является решением системы МНК. Если исходная система несовместна, то всегда имеющая решение система МНК позволяет получить приближённое решение исходной системы. Число уравнений системы МНК совпадает с числом неизвестных, что иногда облегчает и решение совместных исходных систем.

    Линейное программирование

    Другим известным примером целевой функции является линейная функция, которая возникает в задачах линейного программирования. В отличие от квадратичной целевой функции оптимизация линейной функции возможна только при наличии ограничений в виде системы линейных равенств или неравенств.

    Комбинаторная оптимизация

    Типичным примером комбинаторной целевой функции является целевая функция задачи коммивояжёра. Эта функция равна длине гамильтонова цикла на графе. Она задана на множестве перестановок n − 1 {\displaystyle n-1} вершины графа и определяется матрицей длин рёбер графа. Точное решение подобных задач часто сводится к перебору вариантов.

    Глава 1. Постановка основной задачи линейного программирования

    1. Линейное программирование

    Линейное программирование – это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием. Такие задачи находят обширные приложения в различных сферах человеческой деятельности. Систематическое изучение задач такого типа началось в 1939 – 1940 гг. в работах Л.В. Канторовича.

    К математическим задачам линейного программирования относят исследования конкретных производственно-хозяйственных ситуаций, которые в том или ином виде интерпретируются как задачи об оптимальном использовании ограниченных ресурсов.

    Круг задач, решаемых при помощи методов линейного программирования достаточно широк.Это, например:

      задача об оптимальном использовании ресурсов при производственном планировании;

      задача о смесях (планирование состава продукции);

      задача о нахождении оптимальной комбинации различных видов продукции для хранения на складах (управление товарно-материальными запасами или);

      транспортные задачи (анализ размещения предприятия, перемещение грузов).

    Линейное программирование – наиболее разработанный и широко применяемый раздел математического программирования (кроме того, сюда относят: целочисленное, динамическое, нелинейное, параметрическое программирование). Это объясняется следующим:

      математические модели большого числа экономических задач линейны относительно искомых переменных;

      данный тип задач в настоящее время наиболее изучен. Для него разработаны специальные методы, с помощью которых эти задачи решаются, и соответствующие программы для ЭВМ;

      многие задачи линейного программирования, будучи решенными, нашли широкое применение;

      некоторые задачи, которые в первоначальной формулировке не являются линейными, после ряда дополнительных ограничений и допущений могут стать линейными или могут быть приведены к такой форме, что их можно решать методами линейного программирования.

    Экономико-математическая модель любой задачи линейного программирования включает: целевую функцию, оптимальное значение которой (максимум или минимум) требуется отыскать; ограничения в виде системы линейных уравнений или неравенств; требование неотрицательности переменных.

    В общем виде модель записывается следующим образом:

    целевая функция

    (1.1) при ограничениях

    (1.2) требования неотрицательности

    (1.3) где x j – переменные (неизвестные);

    - коэффициенты задачи линейного программирования.

    Задача состоит в нахождении оптимального значения функции (1.1) при соблюдении ограничений (1.2) и (1.3).

    Систему ограничений (1.2) называют функциональными ограничениями задачи, а ограничения (1.3) - прямыми.

    Вектор, удовлетворяющий ограничениям (1.2) и (1.3), называется допустимым решением (планом) задачи линейного программирования. План, при котором функция (1.1) достигает своего максимального (минимального) значения, называется оптимальным.

    1.2. Симплекс метод решения задач линейного программирования

    Симплекс-метод был разработан и впервые применен для решения задач в 1947 г. американским математиком Дж. Данцигом.

    Двумерные задачи линейного программирования решаются графически. Для случая N=3 можно рассмотреть трехмерное пространство и целевая функция будет достигать своё оптимальное значение в одной из вершин многогранника.

    Допустимым решением (допустимым планом) задачи ЛП, данной в стандартной форме, называется упорядоченное множество чисел (х1, х2, …, хn), удовлетворяющих ограничениям; это точка в n-мерном пространстве.

    Множество допустимых решений образует область допустимых решений (ОДР) задачи ЛП. ОДР представляет собой выпуклый многогранник (многоугольник).

    В общем виде, когда в задаче участвуют N-неизвестных, можно сказать, что область допустимых решений, задаваемая системой ограничивающих условий, представляется выпуклым многогранником в n-мерном пространстве и оптимальное значение целевой функции достигается в одной или нескольких вершинах.

    Базисным называется решение, при котором все свободные переменные равны нулю.

    Опорное решение - это базисное неотрицательное решение. Опорное решение может быть невырожденным и вырожденным. Опорное решение называется невырожденным, если число его ненулевых координат равно рангу системы, в противном случае оно является вырожденным.

    Допустимое решение, при котором целевая функция достигает своего экстремального значения, называется оптимальным и обозначается .

    Решить данные задачи графически, когда количество переменных более 3 весьма затруднительно. Существует универсальный способ решения задач линейного программирования, называемый симплекс-методом.

    Симплекс-метод - это универсальный метод решения задач ЛП, представляющий собой итерационный процесс, который начинается с одного решения и в поисках лучшего варианта движется по угловым точкам области допустимых решений до тех пор, пока не достигнет оптимального значения.

    С его помощью можно решить любую задачу линейного программирования.

    В основу симплексного метода положена идея последовательного улучшения получаемого решения.

    Геометрический смысл симплексного метода состоит в последовательном переходе от одной вершины многогранника ограничений к соседней, в которой целевая функция принимает лучшее (или, по крайней мере, не худшее) значение до тех пор, пока не будет найдено оптимальное решение - вершина, где достигается оптимальное значение функции цели (если задача имеет конечный оптимум).

    Таким образом, имея систему ограничений, приведенную к канонической форме (все функциональные ограничения имеют вид равенств), находят любое базисное решение этой системы, заботясь только о том, чтобы найти его как можно проще. Если первое же найденное базисное решение оказалось допустимым, то проверяют его на оптимальность. Если оно не оптимально, то осуществляется переход к другому, обязательно допустимому базисному решению. Симплексный метод гарантирует, что при этом новом решении целевая функция, если и не достигнет оптимума, то приблизится к нему (или, по крайней мере, не удалится от него). С новым допустимым базисным решением поступают так же, пока не отыщется решение, которое является оптимальным.

    Процесс применения симплексного метода предполагает реализацию трех его основных элементов:

      способ определения какого-либо первоначального допустимого базисного решения задачи;

      правило перехода к лучшему (точнее, не худшему) решению;

      критерий проверки оптимальности найденного решения.

    Симплексный метод включает в себя ряд этапов и может быть сформулирован в виде четкого алгоритма (четкого предписания о выполнении последовательных операций). Это позволяет успешно программировать и реализовывать его на ЭВМ. Задачи с небольшим числом переменных и ограничений могут быть решены симплексным методом вручную.

    6.1.Введение

    Оптимизация. Часть 1

    Методы оптимизации позволяют выбрать наилучший вариант конструкции из всех возможных вариантов. В последние годы этим методам уделялось большое внимание, и в результате был разработан целый ряд высокоэффективных алгоритмов, позволяющих найти оптимальный вариант конструкции при помощи ЭЦВМ. В данной главе излагаются основы теории оптимизации, рассмат-риваются принципы, лежащие в основе построения алгоритмов оптимальных решений, описываются наиболее известные алгоритмы, анализируются их достоинства и недостатки.

    6.2.Основы теории оптимизации

    Термином «оптимизация» в литературе обозначают процесс или последовательность операций, позволяющих получить уточненное решение. Хотя конечной целью оптимизации является отыскание наилучшего, или «оптимального», решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. Поэтому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.

    Рассматривая некоторую произвольную систему, описываемую m уравнениями с n неизвестными, можно выделить три основных типа задач. Если m=n , задачу называют алгебраической. Такая задача обычно имеет одно решение. Если m>n, то задача переопределена и, как правило, не имеет решения. Наконец, при m

    Прежде чем приступить к обсуждению вопросов оптимизации, введем ряд определений.

    Проектные параметры

    Этим термином обозначают независимые переменные параметры, которые полностью и однозначно определяют решаемую задачу проектирования. Проектные параметры - неизвестные величины, значения которых вычисляются в процессе оптимизации. В качестве проектных параметров могут служить любые основные или произ-водные величины, служащие для количественного описания системы. Так, это могут быть неизвестные значения длины, массы, време-ни, температуры. Число проектных параметров характеризует сте-пень сложности данной задачи проектирования. Обычно число проектных параметров обозначают через n, а сами проектные пара-метры через х с соответствующими индексами. Таким образом n проектных параметров данной задачи будем обозначать через

    X1, x2, x3,...,xn.

    Целевая функция

    Это - выражение, значение которого инженер стремится сделать максимальным или минимальным. Целевая функция позволяет количественно сравнить два альтернативных решения. С мате-матической точки зрения целевая функция описывает некоторую (n+1) - мерную поверхность. Ее значение определяется проектными параметрами

    M=M(x 1 , x 2 ,...,x n).

    Примерами целевой функции, часто встречающимися в инженерной практике, являются стоимость, вес, прочность, габариты, КПД. Если имеется только один проектный параметр, то целевую функцию можно представить кривой на плоскости (рис.6.1). Если проектных параметров два, то целевая функция будет изображаться поверх-ностью в пространстве трех измерений (рис.6.2). При трех и более проектных параметрах поверхности, задаваемые целевой функцией, называются гиперповерхностями и не поддаются изобра-

    жению обычными средствами. Топологические свойства поверхности целевой функции играют большую роль в процессе оптимизации, так как от них зависит выбор наиболее эффективного алгоритма.

    Целевая функция в ряде случаев может принимать самые неожиданные формы. Например, ее не всегда удается выразить в

    Рис.1.Одномерная целевая функция.

    Рис.6.2.Двумерная целевая функция.

    замкнутой математической форме, в других случаях она может

    представлять собой кусочно-гладкую функцию. Для задания целевой функции иногда может потребоваться таблица технических данных (например, таблица состояния водяного пара) или может понадобиться провести эксперимент. В ряде случаев проектные параметры принимают только целые значения. Примером может служить число зубьев в зубчатой передаче или число болтов во фланце. Иногда проектные параметры имеют только два значения - да или нет. Качественные параметры, такие как удовлетворение, которое испытывает приобретший изделие покупатель, надежность, эстетичность, трудно учитывать в процессе оптимизации, так как их практически невозможно охарактеризовать количественно. Однако в каком бы виде ни была представлена целевая функция, она должна быть однозначной функцией проектных параметров.

    В ряде задач оптимизации требуется введение более одной целевой функции. Иногда одна из них может оказаться несов-местимой с другой. Примером служит проектирование самолетов, когда одновременно требуется обеспечить максимальную прочность, минимальный вес и минимальную стоимость. В таких случаях конструктор должен ввести систему приоритетов и поставить в соответствие каждой целевой функции некоторый безразмерный мно-житель. В результате появляется «функция компромисса», позво-ляющая в процессе оптимизации пользоваться одной составной целевой функцией.

    Поиск минимума и максимума

    Одни алгоритмы оптимизации приспособлены для поиска максимума, другие - для поиска минимума. Однако независимо от типа решаемой задачи на экстремум можно пользоваться одним т тем же алгоритмом, так как задачу минимизации можно легко превратить в задачу на поиск максимума, поменяв знак целевой функции на обратный. Этот прием иллюстрируется рис.6.3.

    Пространство проектирования

    Так называется область, определяемая всеми n проектными параметрами. Пространство проектирования не столь велико, как может показаться, поскольку оно обычно ограничено рядом

    условий, связанных с физической сущностью задачи. Ограничения могут быть столь сильными, что задача не будет иметь ни одного

    Рис.6.3.Изменением знака целевой функции на противоположный

    задача на максимум превращается в задачу на минимум.

    удовлетворительного решения. Ограничения делятся на две группы: ограничения - равенства и ограничения - неравенства.

    Ограничения - равенства

    Ограничения - равенства - это зависимость между проектными параметрами, которые должны учитываться при отыскании решения. Они отражают законы природы, экономики, права, господствующие вкусы и наличие необходимых материалов. Число ограничений - равенств может быть любым. Они имеют вид

    C 1 (x 1 , x 2 ,...,x n)=0,

    C 2 (x 1 , x 2 ,...,x n)=0,

    ..................

    C j (x 1 , x 2 ,...,x n)=0.

    Если какое-либо из этих соотношений можно разрешить отно-сительно одного из проектных параметров, то это позволяет исключить данный параметр из процесса оптимизации. Тем самым уменьшается число измерений пространства проектирования и упрощается решение задачи.

    Ограничения - неравенства

    Это особый вид ограничений, выраженных неравенствами. В общем случае их может быть сколько угодно, причем все они имееют вид

    z 1 r 1 (x 1 , x 2 ,...,x n) Z 1

    z 2 r 2 (x 1 , x 2 ,...,x n) Z 2

    .......................

    z k r k (x 1 , x 2 ,...,x n) Z k

    Следует отметить, что очень часто в связи с ограничениями оптимальное значение целевой функции достигается не тем, где ее поверхность имеет нулевой градиент. Нередко лучшее решение соответствует одной из границ области проектирования.

    Локальный оптимум

    Так называется точка пространства проектирования, в которой целевая функция имеет наибольшее значение по сравнению с ее значениями во всех других точках ее ближайшей окрестности.

    Рис.6.4.Произвольная целевая функция может иметь несколько

    локальных оптимумов.

    На рис. 6.4 показана одномерная целевая функция, имеющая два локальных оптимума. Часто пространство проектирования содержит много локальных оптимумов и следует соблюдать осторожность, чтобы не принять первый из них за оптимальное решение задачи.

    Глобальный оптимум

    Глобальный оптимум - это оптимальное решение для всего пространства проектирования. Оно лучше всех других решений, соответствующих локальным оптимумам, и именно его ищет конструктор. Возможен случай нескольких равных глобальных оптимумов, расположенных в разных частях пространства проектирования. Как ставится задача оптимизации, лучше всего показать на примере.

    Пример 6.1

    Пусть требуется спроектировать прямоугольный контейнер объемом 1м , предназначенный для перевозки неупакованного волокна. Желательно, чтобы на изготовление таких контейнеров затрачивалось как можно меньше материала (при условии посто-янства толщины стенок это означает, что площадь поверхности должна быть минимальной), так как при этом он будет дешевле. Чтобы контейнер удобно было брать автопогрузчиком, его ширина должна быть не менее 1,5м.

    Сформулируем эту задачу в виде, удобном для применения алгоритма оптимизации.

    Проектные параметры: x 1 , x 2 , x 3 .

    Целевая функция (которую требуется минимизировать) - площадь боковой поверхности контейнера:

    A=2(x 1 x 2 +x 2 x 3 +x 1 x 3), м2.

    Ограничение - равенство:

    Объем = x 1 x 2 x 3 =1м3.

    Ограничение - неравенство:

    Задачи линейного программирования

    Линейное программирование (ЛП) является одним из разделов математического программирования – дисциплины, изучающей экстремальные (оптимизационные) задачи и разработкой методов их решения.

    Оптимизационная задача – это математическая задача, заключающаяся в нахождении оптимального (т.е. максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений (ОДЗ).

    В общем виде постановка экстремальной задачи математического программирования состоит в определении наибольшего или наименьшего значения функции , называемой целевой функцией , при условиях (ограничениях) , где и – заданные функции, а – заданные постоянные величины. При этом ограничения в виде равенств и неравенств определяют множество (область) допустимых решений (ОДР), а – называют проектными параметрами .

    В зависимости от вида функций и задачи математического программирования делятся на ряд классов (линейной, нелинейное, выпуклое, целочисленное, стохастическое, динамическое программирование и др.).

    В общем виде задача ЛП имеет следующий вид:

    , (5.1)

    , , (5.2)

    , , (5.3)

    где , , – заданные постоянные величины.

    Функцию (5.1) называют целевой функцией; системы (5.2), (5.3) – системой ограничений; условие (5.4) – условием неотрицательности проектных параметров.

    Совокупность проектных параметров , удовлетворяющих ограничениям (5.2), (5.3) и (5.4), называют допустимым решением или планом .

    Оптимальным решением или оптимальным планом задачи ЛП называется допустимое решение , при котором целевая функция (5.1) принимает оптимальное (максимальное или минимальное) значение.

    Стандартной задачей ЛП называют задачу нахождения максимального (минимального) значения целевой функции (5.1) при условии (5.2) и (5.4), где , , т.е. т.е. ограничения только в виде неравенств (5.2) и все проектные параметры удовлетворяют условию неотрицательности, а условия в виде равенств отсутствуют:

    ,

    , , (5.5)

    .

    Канонической (основной) задачей ЛП называют задачу нахождения максимального (минимального) значения целевой функции (5.1) при условии (5.3) и (5.4), где , , т.е. т.е. ограничения только в виде равенств (5.3) и все проектные параметры удовлетворяют условию неотрицательности, а условия в виде неравенств отсутствуют:

    ,

    .

    Каноническую задачу ЛП можно также записать в матричной и векторной форме.

    Матричная форма канонической задачи ЛП имеет следующий вид:

    Векторная форма канонической задачи ЛП.

    ) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций , линейном программировании , теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи . Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.

    Примеры

    Гладкие функции и системы уравнений

    \left\{ \begin{matrix} F_1(x_1, x_2, \ldots, x_M) = 0 \\ F_2(x_1, x_2, \ldots, x_M) = 0 \\ \ldots \\ F_N(x_1, x_2, \ldots, x_M) = 0 \end{matrix} \right.

    может быть сформулирована как задача минимизации целевой функции

    S = \sum_{j=1}^N F_j^2(x_1, x_2, \ldots, x_M) \qquad (1)

    Если функции гладкие, то задачу минимизации можно решать градиентными методами .

    Для всякой гладкой целевой функции можно приравнять к 0 частные производные по всем переменным. Оптимум целевой функции будет одним из решений такой системы уравнений. В случае функции (1) это будет система уравнений метода наименьших квадратов (МНК). Всякое решение исходной системы является решением системы МНК. Если исходная система несовместна, то всегда имеющая решение система МНК позволяет получить приближённое решение исходной системы. Число уравнений системы МНК совпадает с числом неизвестных, что иногда облегчает и решение совместных исходных систем.

    Линейное программирование

    Другим известным примером целевой функции является линейная функция, которая возникает в задачах линейного программирования. В отличие от квадратичной целевой функции оптимизация линейной функции возможна только при наличии ограничений в виде системы линейных равенств или неравенств.

    Комбинаторная оптимизация

    Типичным примером комбинаторной целевой функции является целевая функция задачи коммивояжёра . Эта функция равна длине гамильтонова цикла на графе . Она задана на множестве перестановок n-1 вершины графа и определяется матрицей длин рёбер графа. Точное решение подобных задач часто сводится к перебору вариантов.

    Напишите отзыв о статье "Целевая функция"

    Примечания

    См. также

    Литература

    • Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля. - 1977. - Вып. 5. - С.26-30

    Отрывок, характеризующий Целевая функция

    Бедный муж мой переносит труды и голод в жидовских корчмах; но новости, которые я имею, еще более воодушевляют меня.
    Вы слышали, верно, о героическом подвиге Раевского, обнявшего двух сыновей и сказавшего: «Погибну с ними, но не поколеблемся!И действительно, хотя неприятель был вдвое сильнее нас, мы не колебнулись. Мы проводим время, как можем; но на войне, как на войне. Княжна Алина и Sophie сидят со мною целые дни, и мы, несчастные вдовы живых мужей, за корпией делаем прекрасные разговоры; только вас, мой друг, недостает… и т. д.
    Преимущественно не понимала княжна Марья всего значения этой войны потому, что старый князь никогда не говорил про нее, не признавал ее и смеялся за обедом над Десалем, говорившим об этой войне. Тон князя был так спокоен и уверен, что княжна Марья, не рассуждая, верила ему.
    Весь июль месяц старый князь был чрезвычайно деятелен и даже оживлен. Он заложил еще новый сад и новый корпус, строение для дворовых. Одно, что беспокоило княжну Марью, было то, что он мало спал и, изменив свою привычку спать в кабинете, каждый день менял место своих ночлегов. То он приказывал разбить свою походную кровать в галерее, то он оставался на диване или в вольтеровском кресле в гостиной и дремал не раздеваясь, между тем как не m lle Bourienne, a мальчик Петруша читал ему; то он ночевал в столовой.
    Первого августа было получено второе письмо от кня зя Андрея. В первом письме, полученном вскоре после его отъезда, князь Андрей просил с покорностью прощения у своего отца за то, что он позволил себе сказать ему, и просил его возвратить ему свою милость. На это письмо старый князь отвечал ласковым письмом и после этого письма отдалил от себя француженку. Второе письмо князя Андрея, писанное из под Витебска, после того как французы заняли его, состояло из краткого описания всей кампании с планом, нарисованным в письме, и из соображений о дальнейшем ходе кампании. В письме этом князь Андрей представлял отцу неудобства его положения вблизи от театра войны, на самой линии движения войск, и советовал ехать в Москву.
    За обедом в этот день на слова Десаля, говорившего о том, что, как слышно, французы уже вступили в Витебск, старый князь вспомнил о письме князя Андрея.
    – Получил от князя Андрея нынче, – сказал он княжне Марье, – не читала?
    – Нет, mon pere, [батюшка] – испуганно отвечала княжна. Она не могла читать письма, про получение которого она даже и не слышала.
    – Он пишет про войну про эту, – сказал князь с той сделавшейся ему привычной, презрительной улыбкой, с которой он говорил всегда про настоящую войну.
    – Должно быть, очень интересно, – сказал Десаль. – Князь в состоянии знать…
    – Ах, очень интересно! – сказала m llе Bourienne.
    – Подите принесите мне, – обратился старый князь к m llе Bourienne. – Вы знаете, на маленьком столе под пресс папье.
    M lle Bourienne радостно вскочила.
    – Ах нет, – нахмурившись, крикнул он. – Поди ты, Михаил Иваныч.
    Михаил Иваныч встал и пошел в кабинет. Но только что он вышел, старый князь, беспокойно оглядывавшийся, бросил салфетку и пошел сам.
    – Ничего то не умеют, все перепутают.
    Пока он ходил, княжна Марья, Десаль, m lle Bourienne и даже Николушка молча переглядывались. Старый князь вернулся поспешным шагом, сопутствуемый Михаилом Иванычем, с письмом и планом, которые он, не давая никому читать во время обеда, положил подле себя.