• Искажение сигналов в усилителе. В- Частотные искажения и частотная характеристика. Диапазон частот

    • Tutorial

    На аудиофильских сайтах принято пугать посетителей интермодуляционными искажениями, однако поскольку большинство публикаций на эту тему широко использую технологию копипаста, понять почему эти искажения возникают и чем так страшны очень сложно. Сегодня я постараюсь в меру своих способностей и объёма статьи отразить именно природу этих стрРрашных ИМИ.

    Тема искажений сигнала в УМЗЧ была поднята в моей предыдущей статье , но в прошлый раз мы лишь слегка коснулись линейных и нелинейных искажений. Сегодня попробуем разобраться в наиболее неприятных на слух, трудноуловимых для анализа и сложноустранимых для проектировщиков УНЧ интермодуляционных искажениях. Причинах их возникновения и взаимосвязи с обратной связью сорри за каламбур.

    Операционный усилитель как белый треугольник

    Прежде чем говорить об обратной связи, сделаем небольшой экскурс в операционные усилители ОУ , поскольку сегодня транзисторные усилительные тракты без них практически не обходятся. Они могут присутствовать как в виде отдельных микросхем, так и входить в состав более сложных чипов - например интегральных усилителей низкой частоты - УНЧ .

    Рассмотрим усилитель в виде чёрного ящика вернее белого треугольника, как их принято обозначать в схемотехнике, пока не вдаваясь в подробности его устройства.

    Назначение выводов операционного усилителя

    Неинвертирующий вход:

    Инвертирующий вход:


    Плюс источника питания:


    Минус источника питания:

    Если увеличить входное напряжение на неинвертирующем входе, то напряжение на выходе вырастет, если на инвертирующем, то наоборот уменьшится.

    Обычно входное напряжение, которое необходимо усилить, подают между двумя входами и тогда выходное напряжение можно выразить следующим образом:


    Где - коэффициент усиления с разомкнутой петлёй обратной связи


    Поскольку наша цель не усиление постоянных напряжений, а звуковых колебаний давайте для примера рассмотрим зависимость недорогого ОУ LM324 от частоты входных синусоидальных колебаний.


    На данном графике по вертикали отложено усиление, а по горизонтали частота в логарифмическом масштабе. Результаты работы инженеров не слишком впечатляют и применить подобный усилитель в реальности вряд ли получится. Во первых, он показывает хорошую линейность лишь за пределами частотного диапазона воспринимаемого ухом - ниже 10 Гц, во вторых, его коэффициент усиления слишком большой - 10 000 раз на постоянном токе!

    Так что же делать, должен же быть выход! Да, он есть. Взять часть выходного сигнала и подать его на инвертирующий вход - ввести обратную связь.

    Обратная связь - просто и сердито! Панацея от всех бед?

    В данной статье не будем касаться основ теории операционных усилителей, при желании в интернете можно найти много информации на эту тему, например в цикле статей Игоря Петрова KriegeR

    Ввести обратную связь в схему усилителя не просто, а очень просто. Давайте чтобы далеко не ходить рассмотрим как это можно сделать на примере из моей прошлой статьи про маленькие хитрости трассировки схем на Операционных усилителях .

    Обратная связь в данной схеме подаётся на инвертирующий вход ОУ через резистор R2, точнее делитель напряжения из R2 и R1.


    Нетрудно доказать что в данная схема будет иметь коэффициент усиления по напряжению равный двум, причём он будет неизменен при усилении гармонических сигналов в очень широком частотном диапазоне. С увеличением частоты сигнала коэффициент усиления ОУ без ОС падает но остаётся многократно больше двух и это падение компенсируется автоматическим уменьшением уровня сигнала обратной связи. В результате коэффициент усиления схемы в целом остаётся неизменным. Но и это ещё не всё. Данная схема имеет очень высокое входное сопротивление, а значит практически не оказывает влияние на источник сигнала. Она также имеет весьма низкое выходное сопротивление, а значит по идее, должна сохранять форму сигнала даже при работе на достаточно низкоомную нагрузку, причём с комплексным сопротивлением - индуктивную и ёмкостную.

    Неужели мы вот так просто получили ИДЕАЛЬНЫЙ УСИЛИТЕЛЬ?

    К сожалению нет, как любая монета имеет орла и решку, так и обратная связь свою тёмную сторону.

    Что русскому хорошо, то немцу - смерть или немного радиотехники


    В радиотехнике хорошо известен эффект взаимодействия сигналов двух различных частот, поданных на нелинейный элемент, называемый интермодуляцией . В результате получается сложный сигнал с комбинациями частот (гармоник), зависящих от частоты исходных сигналов f1 и f2 согласно следующей формуле:
    Полученные частоты по амплитуде меньше родительских гармоник и как правило их уровень быстро убывает с увеличением целочисленных коэффициентов m и n.

    Наибольшую амплитуду будут иметь гармоники, называемые гармониками второго порядка с частотами:


    и частотами гармоник третьего порядка :
    В радиотехнике этот эффект широко используют для преобразования частот. Благодаря ему работают современные приёмники. Преобразование частоты происходит в смесителях, построенных на основе нелинейных элементов в качестве которых часто используют p-n переход диода, ну или транзистора. На смеситель одновременно поступает принимаемый полезный сигнал и сигнал от генератора - гетеродина.


    На выходе мы получаем широкий спектр сигналов:


    Но благодаря узкополосному фильтру ФПЧ выделяем нужный нам сигнал с промежуточной частотой f пр =f г -f с и усиливаем его в усилителе ПЧ. Затем происходит детектирование с помощью следующего нелинейного элемента, обычно диода и на выходе после фильтра низких частот на рисунке не изображён мы получаем сигнал звуковой частоты.

    ИМИ (IMD) - интермодуляционные искажения

    Однако, если для приёмников эффект интермодуляции жизненно необходим, в усилителях низкой частоты он вызывает возникновение нелинейных искажений, которые так и называют интермодуляционными. Ведь звуковой сигнал одновременно содержит гармоники большого количества частот, сильно отличающихся по амплитуде, а транзисторы, из которых состоит усилитель, как и диоды являются нелинейными элементами. Искажения, которые появляются благодаря описанному выше механизму, в англоязычных источниках именуют intermodulation distortion сокращённо IMD , кстати российское сокращение для них ИМИ .

    Данный тип искажений гораздо неприятнее на слух, чем банальное амплитудное ограничение сигнала, источник их появления в каждом конкретном случае гораздо сложнее обнаружить, а главное устранить.

    Пора нам наконец заняться исследованием тёмной стороны обратной связи

    Тёмная сторона обратной связи

    Для того, чтобы её обнаружить соберём усилитель по на ОУ LM324, но с немного другими номиналами резисторов обратной связи так, чтобы получить единичное усиление.

    А теперь подадим на его вход прямоугольный импульс малой амплитуды, каких нибудь 100 милливольт.


    Tо, что мы получили на выходе выглядит совсем не похоже на входной сигнал. Что же случилось и почему нам не помогла обратная связь? Как всегда виновата физика, её мир гораздо сложнее чем наши математические модели, основанные на грубых приближениях. Дело в том, что наш усилитель - весьма сложное устройство.

    Экскурсия в реальный мир. Общая отрицательная обратная связь в усилителе мощности звуковой частоты

    Нелинейность, присущая транзисторным каскадам, вынуждает разработчиков использовать сильную отрицательную обратную связь как простейшее решение для подгонки параметров усилителя под соответствия требованиям по низкому уровню гармонических и интермодуляционных искажений разумеется измеренных по стандартным методикам. В результате промышленные усилители мощности, имеющие глубину ООС в 60 и даже 100 дБ, на сегодняшний день не являются редкостью.
    Изобразим реальную схему несложного транзисторного усилителя мощности. Можно сказать что он является трёхкаскадным. Первый усилительный каскад на ОУ А1, второй на транзисторах T1-T2 и третий также транзисторный Т3 -Т4. При этом усилитель охвачен цепью общей обратной связи она выделена красным контуром, которая подаётся через резистор R6 на неинвертирующий вход ОУ. Ключевое слово здесь общей - обратная связь тут подаётся не с выхода ОУ на его вход, а с выхода всего усилителя.


    В результате ОУ благодаря своему огромному усилению должен помогать справляться с разными родами нелинейностями и помехами транзисторным усилительным каскадам. Перечислим ниже основные из них:

    • транзисторы в подобном включении могут работают в весьма нелинейном режиме при переходе сигнала через ноль и для слабых сигналов;
    • на выходе усилитель нагружен на комплексную нагрузку - акустическую систему. На схеме показан её эквивалент - сопротивление R15 и индуктивность L1;
    • Транзисторы работают в тяжёлом тепловом режиме и температура их корпуса существенно зависит от выходной мощности, а от температуры сильно зависят их параметры;
    • Ёмкости монтажа и различного рода наводки могут иметь приличное значение и ошибки трассировки легко могут привести к возникновению положительной обратной связи и самовозбуждению усилителя;
    • Значительно возрастает роль помех, наводимых по питанию;
    И ОУ помогает, но как дурак молящейся богу из известного афоризма порой уж слишком усердно. Появляются проблемы с перегрузочной способностью отдельных каскадов, транзисторы которых попадают в режим ограничения сигнала. Они выходят из линейного разумеется сравнительно линейного режима в режимы отсечки или насыщения. Выходят очень быстро, а возвращаются в него гораздо медленней, что обусловлено неторопливым процессом рассасывания неосновных источников заряда в полупроводниковых переходах. Рассмотрим подробнее данный процесс и его последствия.

    Динамические интермодуляционные искажения TIM. Перегрузочная способность и эффект “клиппирования” усилителя

    Перегрузочная способность усилителя это параметр, который описывает на сколько децибел номинальное выходное напряжение или мощность отличается от максимальной, когда начинаются ограничения выходного сигнала по питанию - clipping

    У транзисторных усилителей перегрузочная способность невелика, особенно у оконечных и предоконечных каскадов. Номинальная мощность от максимальной часто отличается всего процентов на 40, это меньше чем 3 дБ.

    Представим что наш усилитель состоит из идеального предусилителя корректора и УМЗЧ охваченного обратной связью с коэффициентом B. Важно отметить, что сигнал V 1 может содержать составляющие очень высокой частоты. Предусилитель C действует как фильтр НЧ, выдавая входной сигнал V 2 для усилителя A, содержащий только составляющие, попадающие в звуковую полосу частот.

    Напряжение на входе усилителя мощности V 2 имеет время нарастания, определяемое предусилителем, на графике видно что оно сглажено. Тем не менее, в напряжении V 3 , действующем на выходе сумматора, присутствует выброс, вызванный стремлением обратной связи компенсировать малое быстродействие усилителя мощности A с амплитудой V max


    Выброс в сигнале V 3 может в сотни и даже тысячи раз превосходить по амплитуде номинальный уровень входного сигнала. Он может в значительной степени превысить динамический диапазон усилителя. Во время такой перегрузки усиление других сигналов, присутствующих на входе уменьшается, вызывая мгновенный всплеск интермодуляционных искажений. Этот всплеск называется динамическими интермодуляционными искажениями TID , потому что приводит к влиянию одного сигнала на амплитуду другого интермодуляция, и зависит от временной и амплитудной характеристик входного сигнала сильнее, чем просто от амплитудной характеристики, как в случае простых интермодуляционных искажений.


    Выше показан график крайне неприятного эффекта, который называют “клиппированием” усилителя и он является порождением обратной связи. На выходе А1 мы получаем в результате эффект ограничения по амплитуде, а на выходе усилителя искажённый сигнал.

    Методики измерения интермодуляционных искажений и методы борьбы с ними

    Согласно стандартной методике для измерения интермодуляционных искажений на вход изме­ряемого объекта одновременно подаются два сигнала: низкой f 1 и высокой f 2 частот. К сожалению, в различных странах пользу­ются различными измерительными частотами. Разные стандарты предусматривают разные частоты - 100 и 5000 Гц, 50 и 1000 Гц…

    Наиболее употребительным является использование частот 400 и 4000 Гц, утвержденных в стандарте DIN 45403, ГОСТ 16122-88 и МЭК 60268-5. Амплитуда сигнала частотой f 1 на 12 дБ в 4 раза больше, чем амплитуда сигнала частотой f 2 . В зависимости от нелинейности характеристики, в рабочей точке симметрично относительно частоты f 2 образуются разностные и сум­марные комбинационные колебания f 2 ± f 1 , и f 2 ± 2f 1 более высоких порядков. Возникающие комбинационные колебания второго поряд­ка с частотами f 2 ± f 1 характеризуют квадратичные, а третьего по­рядка с частотами f 2 ± 2f 1 - кубические искажения объекта изме­рения.

    Также широко используется пара частот 19 и 20 КГц c равным уровнем сигнала, удобная прежде всего тем, что основной гармоникой, которая попадает в звуковой диапазон, в данном случае является сигнал с частотой 1КГц, уровень которого легко измерить.

    Для подачи измерительных сигналов применяют не только генераторы, но и специально записанные в студии измерительные CD диски и даже виниловые пластинки.


    Лет 30 назад для измерения коэффициента интермодуляцнонных искажений требовались сложные и дорогие приборы, доступные только в лабораториях и студиях, вот например состав измерительного стенда для усилителя звукоснимателя:
    1. Проигрыватель виниловых пластинок;
    2. Измерительная пластинка;
    3. Звукосниматель;
    4. Корректирующий усилитель;
    5. Полосовой фильтр;
    6. Линейный детектор;
    7. Фильтр низких частот.
    8. Ну и конечно V - вольтметр, умеющий измерять действующее значение синусоидальных колебаний!
    Сегодня гораздо лучшее качество измерений может обеспечить даже простенькая 16 битная компьютерная музыкальная карта с ценой до 30 долларов в комплекте со специальной измерительной программой и несложными цепями согласования.

    Описанные стандарты очень удобны для производителей звуковоспроизводящей аппаратуры без особого труда можно получить красивые маленькие цифры в паспортных данных, но не слишком хорошо отражают реальное качество усилительного тракта. Результатом конечно является развитие субьективизма - когда два усилителя или даже недешёвых аудиокарты, имеющих формально практически одинаковые параметры, на сложном музыкальном сигнале «звучат» совершенно по разному - без прослушивания перед покупкой не обойтись.

    Любители энтузиасты качественного звука и отдельные фирмы производители аппаратуры высокого класса пытаются продвигать свои методики измерений, основанные на менее оторванных от реальности приближениях. Существуют мультичастотные методики, методики исследующие взаимодействие гармонической частоты и единичного импульса, на основе шумовых сигналов и другие. Однако в этот раз обсудить их подробно мы уже не успеем.
    ООС Добавить метки

    Знаете, очень хочется слушать музыку в хорошем качестве. «Балалайки» с фанерным звуком могут устраивать только в младшем школьном возрасте, хотя медведь ходит по ушам вне зависимости от возрастной категории. Думаю, большинство из тех, кто откроет эту статью, в свое время интересовались колонками и усилителями, не минула чаша сия и меня. К сожалению, я не являюсь профессионалом в этой области, поэтому суждения в статье могут быть не слишком удачными и значительная их часть является лично моими наблюдениями, и потому не стоит рассматривать сказанное здесь как истину в последней инстанции.

    Лампы, бескислородная медь и прочее

    Любители акустики делятся на две (скорее три) категории – техники и «слухачи». Первые понимают только цифры, вторые цифирные упражнения не приемлют и воспаряют на облаках субъективного мнения… Я ничего не имею против первых и вторых, просто это глупо. У проблем воспроизведения звука есть вполне конкретные технические объяснения, и только неспособность их понять порождает слухи и суеверия. Впрочем, дабы не нервировать ярых представителей второй категории, прошу их сразу закрыть данную статью – она вам только испортит нервы. Грешен, не стоит вмешиваться в божественное провидение.

    Для остальных продолжим. Ах да, я пропустил третью категорию. Увы, статей по качественному воспроизведению как не было, так и нет, а пропаганда «лампового звучания» не прекращается, что и приводит к постоянному пополнению специалистов третьей категории. Господа, почаще стряхивайте лапшу с ушей, это давно уже бизнес, на котором «забивают бабки», в терминологии подобных бизнесменов. Принимайте свои решения самостоятельно. И никому не верьте, особенно мне.

    Факторы, влияющие на качество звучания

    Попробуем разобраться, что оказывает влияние на качество звучания. Точнее, на то, что его портит. В статье пойдет речь об усилителе, поэтому эфемерные факторы учитывать не будем.

    Хотите естественного звучания? Есть только один способ - сходите на акустический концерт. Хороший зал, прекрасные исполнители – только это и может сформировать слух. Послышав правильное звучание можно понять, насколько нас дурят с этим «балалайками». Впрочем… а нет, извините, повторюсь – сходите на нормальный концерт. Без этого нельзя научиться понимать звук, мозгу просто не с чем сравнить.

    Но певец из меня никакой, поэтому перейдем сразу к технике. Существует множество способов испортить звук и игнорирование любой мелочи приведет к фиаско. Именно потому нельзя просто сесть и спаять нормальный усилитель (даже если это действительно качественное устройство) – проблемы решаются по очереди, и дорога к качественному звуку весьма длинна и извилиста. Попробуем разобраться с основными заблуждениями и атавизмами, с технической точки зрения

    Условно, «неприятности» можно разделить на следующие группы:
    1. Искажение сигнала в усилителе.
    2. Соединение с нагрузкой.
    3. Влияние нагрузки.
    4. Импеданс усилителя и работа динамика.

    В группах есть типы, а они – со своими нюансами, так что разговор будет долгим, располагайтесь поудобнее, начнем.

    Искажение сигнала в усилителе

    Искажения бывают линейные и нелинейные. Первое – просто изменение частотного спектра сигнала без искажения его формы, то есть банальный подъем или уменьшение некоторых полос частот. Вообще-то, даже изменение спектра меняет форму сигнала, поэтому определение не совсем корректно. Нелинейные искажения – это внесение в сигнал того, чего там не было изначально, расширение его спектра. Про линейные искажения можно не беспокоиться, в усилителе с этим особых проблем нет, а вот нелинейные порождают трудности и отчетливо портят восприятие звуковой картинки.

    Виды искажений:
    1. Нелинейные искажения.
    2. Ограничение уровня.
    3. Интермодуляционные.
    4. Коммутационные.
    5. Динамические.
    6. Самовозбуждение.

    Нелинейные искажения

    Звуковой сигнал проходит через усилитель, увеличивается по амплитуде и искажается. Ничего идеального не бывает, в полезный сигнал обязательно будут внесено то, что в нем не содержалось – шумы, искажения, помехи от блока питания и другие вредные субстанции, мешающие качественному восприятию звука. Однако - пока о частном.

    Нелинейные искажения - увеличение спектра исходного сигнала путем добавления гармоник. Если взять чистый синусоидальный сигнал частотой F, то после прохождения усилителя в спектре сигнала, кроме основной гармоники F, будут присутствовать составляющие K*F, где К = 2, 3, 4, 5…

    Асимметрия

    По виду, гармоники делятся на чётные и нечетные. Первые возникают при асимметрии сигнала. Ходят упорные слухи, что они менее заметны, чем нечетные … вот только руководящие материалы прошлого столетия дают весьма однозначные указания – вначале бороться с четными гармониками, даже в ущерб некоторому росту нечетных. Асимметрия присуща всем элементам схемотехники усилителя, разве что в выходном каскаде это не столь актуально, поэтому проблема четных гармоник существует и по сей день, весьма остро.

    В статье будет использоваться симуляция с помощью программы PSPICE , которая доказала достоверность выполняемых расчетов. Бывали случаи, когда расчеты в этой программе давали «странные» результаты и возникало желание свалить на ее внутренние ошибки, но после обнаружения тех же «странных» результатов в спаянной схеме невольно проникаешься доверием и уважением к разработчикам этого симулятора. Так что, простите, но я верю этой программе. Если у вас иное мнение, извините.

    Если не оговорено специально, во всех схемах источником будет синусоидальный сигнал 1 КГц, амплитудой 1 вольт (пиковое).

    Итак, нелинейные искажения. При появлении асимметрии сигнала появляются четные гармоники.

    Схема симуляции:

    Асимметрия в схеме достигается установкой диода Шоттки. Контрольная тока «A» получена делителем R3, R4 c приведением уровня сигнала к амплитуде, близкой к исследуемому выходу «B».

    На всех графиках этого раздела , зеленый – симулированный сигнал; красный – образцовый, с слегка пониженной амплитудой.

    Форма сигнала:

    Если в нижней части красная и зеленая линии почти совпадают, то в верхней начинает сказываться влияние диода и искаженный сигнал сильно обгоняет образцовый. То есть, положительная (выше уровня 0 V) и отрицательная полуволны не одинаковы, налицо явные признаки асимметрии.

    У спектра образцового сигнала (красного) есть только один пик на частоте 1 кГц, что до симулированной схемы (зеленый), то налицо четкая гребенка с максимумами на частотах 1 кГц, 2 кГц, 3 кГц, 4 кГц…

    Остановимся чуть подробнее. Первый пик на 1 кГц примерно такой же, что и для образцового сигнала – основная гармоника в обоих случаях с примерно равной амплитудой. Ну, это видно и визуально, они внешне похожи… если опустить тонкости, которые приводят к большому спектру гармоник. В образцовом сигнале есть только первая гармоника, а в симулированной цепи - с первой по десятую (вообще-то, спектр распространяется дальше 10 кГц), что означает наличие в цепи нелинейного элемента, который порождает большой спектр гармоник. А ведь так и есть, в схеме присутствует полупроводниковый диод.

    Возможно, вас смутил способ представления информации в программе. Обычно, когда представляют спектр, то рисуют «столбики» переменной высоты. Программа PSPICE рассчитывает напряжения и токи во всех узлах схемы для всего времени выполнения теста, зачастую с переменной дискретностью по времени. После этого производится преобразование временной последовательности в частотную методом FFT (Быстрое преобразование Фурье). Чем меньше дискретность вычисления точек по времени, тем выше точность перевода во временную область и корректнее анализ. Плата за это – время работы симулятора.

    Со момента выхода программы компьютеры стали быстрее, но и аппетиты растут, поэтому симуляцию стоит проводить в два этапа – вначале не особо точно, но быстро, потом дискретность времени нужно уменьшить для получения более адекватных результатов. Для примера, повторим тест для обычной точности (синий график) и с ограничением максимального шага по оси времени (зеленый график):

    Оба графика несут один и тот же смысл, но более долгий по времени обсчета (зеленый) график очевидно точнее.

    Теперь схема для симметричной и нелинейной цепи:

    Для симулирования нелинейной, но строго симметричной цепи, в схеме использованы два диода Шоттки – по одному для положительной и отрицательной полуволн.

    Форма сигнала:

    Форма напряжения в симулируемой цепи симметрична и почти совпадает с образцовым сигналом.

    Посмотрите на предыдущий тест – если там были пики на частотах 1, 2, 3… 10 кГц, то сейчас четные гармоники отсутствуют.

    Ограничение уровня

    Такой вид нелинейности вызывается нарушением монотонности сигнала. К ним относятся два случая:

    • Ступенька.
    • Насыщение.

    Искажение типа «ступенька» свойственно усилителям класса В (или АВ) – при уменьшении уровня сигнала падает коэффициент передачи и сигнал просто исчезает. Подробнее механизм его возникновения будет рассмотрен во второй половине статьи.

    Насыщение – может быть вызвано или ограничением, при очень большом уровне сигнала, либо срабатыванием защиты в усилителе по току или мощности.

    Ступенька

    Подобный вид искажений свойственен схемам с недостаточным уровнем смещения на базе регулирующего транзистора, поэтому для симуляции можно применить пару кремниевых диодов, вполне подойдут 1N4148.

    Форма сигнала:

    Обратите внимание, при переходе зеленого графика через 0 вольт, некоторое время прохождение сигнала отсутствует. Если на красном графике (образцовом) идет монотонное смена уровня, то на симулированной цепи напряжение становится равным нулю. Чем меньше уровень сигнала, тем больше проявляется этот тип искажений, вплоть до полного исчезновения полезного сигнала на выходе. Поэтому усилители надо исследовать не только на номинальном уровне сигнала, но и на сильно пониженном. А иначе легко попасть в ловушку подобного типа искажений – при снижении уровня сигнала коэффициент гармоник будет катастрофически расти.

    Искажения симметричные, поэтому четные гармоники в спектре отсутствуют.

    Насыщение

    Ограничение уровня типа «насыщение». Довольно типичный случай, захотели погромче и получили «хрипы». Если схемы контроля обеспечивают «мягкое» ограничение уровня, то вид искажений будет отличаться от усилителей без подобной защиты. Но пока пройдемся по самой проблеме, без влезания в нюансы. Для симуляции подойдет всё та же пара диодов 1N4148, но в ином включении.

    Форма сигнала:

    Если при малом уровне сигнала оба графика совпадают, то достижение напряжения 0.5 вольт характеризуется остановкой роста зеленого графика, то есть следует ограничение по уровню.

    Картина похожа на случай с «ступенькой». При обоих вариантах появляются гармоники, меняется только характер их появления:

    • Для «ступеньки» степень искажения сигнала возрастает при уменьшении уровня сигнала.
    • У «насыщения» обратная закономерность – при низком или нормальном уровне сигнала схема не вносит искажений и только при большом начинают сказываться негативные явления.

    Дефект насыщения присущ всем усилителям и с ним борются или режимом «мягкого ограничения» или дополнительным узлом регулировки усиления, который уменьшает громкость при обнаружении проблем с чрезмерным уровнем сигнала.

    • Tutorial

    На аудиофильских сайтах принято пугать посетителей интермодуляционными искажениями, однако поскольку большинство публикаций на эту тему широко использую технологию копипаста, понять почему эти искажения возникают и чем так страшны очень сложно. Сегодня я постараюсь в меру своих способностей и объёма статьи отразить именно природу этих стрРрашных ИМИ.

    Тема искажений сигнала в УМЗЧ была поднята в моей , но в прошлый раз мы лишь слегка коснулись линейных и нелинейных искажений. Сегодня попробуем разобраться в наиболее неприятных на слух, трудноуловимых для анализа и сложноустранимых для проектировщиков УНЧ интермодуляционных искажениях. Причинах их возникновения и взаимосвязи с обратной связью сорри за каламбур.

    Операционный усилитель как белый треугольник

    Прежде чем говорить об обратной связи, сделаем небольшой экскурс в операционные усилители ОУ , поскольку сегодня транзисторные усилительные тракты без них практически не обходятся. Они могут присутствовать как в виде отдельных микросхем, так и входить в состав более сложных чипов - например интегральных усилителей низкой частоты - УНЧ .

    Рассмотрим усилитель в виде чёрного ящика вернее белого треугольника, как их принято обозначать в схемотехнике, пока не вдаваясь в подробности его устройства.

    Назначение выводов операционного усилителя

    Неинвертирующий вход:

    Инвертирующий вход:


    Плюс источника питания:


    Минус источника питания:

    Если увеличить входное напряжение на неинвертирующем входе, то напряжение на выходе вырастет, если на инвертирующем, то наоборот уменьшится.

    Обычно входное напряжение, которое необходимо усилить, подают между двумя входами и тогда выходное напряжение можно выразить следующим образом:


    Где - коэффициент усиления с разомкнутой петлёй обратной связи


    Поскольку наша цель не усиление постоянных напряжений, а звуковых колебаний давайте для примера рассмотрим зависимость недорогого ОУ LM324 от частоты входных синусоидальных колебаний.


    На данном графике по вертикали отложено усиление, а по горизонтали частота в логарифмическом масштабе. Результаты работы инженеров не слишком впечатляют и применить подобный усилитель в реальности вряд ли получится. Во первых, он показывает хорошую линейность лишь за пределами частотного диапазона воспринимаемого ухом - ниже 10 Гц, во вторых, его коэффициент усиления слишком большой - 10 000 раз на постоянном токе!

    Так что же делать, должен же быть выход! Да, он есть. Взять часть выходного сигнала и подать его на инвертирующий вход - ввести обратную связь.

    Обратная связь - просто и сердито! Панацея от всех бед?

    В данной статье не будем касаться основ теории операционных усилителей, при желании в интернете можно найти много информации на эту тему, Игоря Петрова

    Ввести обратную связь в схему усилителя не просто, а очень просто. Давайте чтобы далеко не ходить рассмотрим как это можно сделать на примере из моей .

    Обратная связь в данной схеме подаётся на инвертирующий вход ОУ через резистор R2, точнее делитель напряжения из R2 и R1.


    Нетрудно доказать что в данная схема будет иметь коэффициент усиления по напряжению равный двум, причём он будет неизменен при усилении гармонических сигналов в очень широком частотном диапазоне. С увеличением частоты сигнала коэффициент усиления ОУ без ОС падает но остаётся многократно больше двух и это падение компенсируется автоматическим уменьшением уровня сигнала обратной связи. В результате коэффициент усиления схемы в целом остаётся неизменным. Но и это ещё не всё. Данная схема имеет очень высокое входное сопротивление, а значит практически не оказывает влияние на источник сигнала. Она также имеет весьма низкое выходное сопротивление, а значит по идее, должна сохранять форму сигнала даже при работе на достаточно низкоомную нагрузку, причём с комплексным сопротивлением - индуктивную и ёмкостную.

    Неужели мы вот так просто получили ИДЕАЛЬНЫЙ УСИЛИТЕЛЬ?

    К сожалению нет, как любая монета имеет орла и решку, так и обратная связь свою тёмную сторону.

    Что русскому хорошо, то немцу - смерть или немного радиотехники


    В радиотехнике хорошо известен эффект взаимодействия сигналов двух различных частот, поданных на нелинейный элемент, называемый интермодуляцией . В результате получается сложный сигнал с комбинациями частот (гармоник), зависящих от частоты исходных сигналов f1 и f2 согласно следующей формуле:
    Полученные частоты по амплитуде меньше родительских гармоник и как правило их уровень быстро убывает с увеличением целочисленных коэффициентов m и n.

    Наибольшую амплитуду будут иметь гармоники, называемые гармониками второго порядка с частотами:


    и частотами гармоник третьего порядка :
    В радиотехнике этот эффект широко используют для преобразования частот. Благодаря ему работают современные приёмники. Преобразование частоты происходит в смесителях, построенных на основе нелинейных элементов в качестве которых часто используют p-n переход диода, ну или транзистора. На смеситель одновременно поступает принимаемый полезный сигнал и сигнал от генератора - гетеродина.


    На выходе мы получаем широкий спектр сигналов:


    Но благодаря узкополосному фильтру ФПЧ выделяем нужный нам сигнал с промежуточной частотой f пр =f г -f с и усиливаем его в усилителе ПЧ. Затем происходит детектирование с помощью следующего нелинейного элемента, обычно диода и на выходе после фильтра низких частот на рисунке не изображён мы получаем сигнал звуковой частоты.

    ИМИ (IMD) - интермодуляционные искажения

    Однако, если для приёмников эффект интермодуляции жизненно необходим, в усилителях низкой частоты он вызывает возникновение нелинейных искажений, которые так и называют интермодуляционными. Ведь звуковой сигнал одновременно содержит гармоники большого количества частот, сильно отличающихся по амплитуде, а транзисторы, из которых состоит усилитель, как и диоды являются нелинейными элементами. Искажения, которые появляются благодаря описанному выше механизму, в англоязычных источниках именуют intermodulation distortion сокращённо IMD , кстати российское сокращение для них ИМИ .

    Данный тип искажений гораздо неприятнее на слух, чем банальное амплитудное ограничение сигнала, источник их появления в каждом конкретном случае гораздо сложнее обнаружить, а главное устранить.

    Пора нам наконец заняться исследованием тёмной стороны обратной связи

    Тёмная сторона обратной связи

    Для того, чтобы её обнаружить соберём усилитель по на ОУ LM324, но с немного другими номиналами резисторов обратной связи так, чтобы получить единичное усиление.

    А теперь подадим на его вход прямоугольный импульс малой амплитуды, каких нибудь 100 милливольт.


    Tо, что мы получили на выходе выглядит совсем не похоже на входной сигнал. Что же случилось и почему нам не помогла обратная связь? Как всегда виновата физика, её мир гораздо сложнее чем наши математические модели, основанные на грубых приближениях. Дело в том, что наш усилитель - весьма сложное устройство.

    Экскурсия в реальный мир. Общая отрицательная обратная связь в усилителе мощности звуковой частоты

    Нелинейность, присущая транзисторным каскадам, вынуждает разработчиков использовать сильную отрицательную обратную связь как простейшее решение для подгонки параметров усилителя под соответствия требованиям по низкому уровню гармонических и интермодуляционных искажений разумеется измеренных по стандартным методикам. В результате промышленные усилители мощности, имеющие глубину ООС в 60 и даже 100 дБ, на сегодняшний день не являются редкостью.
    Изобразим реальную схему несложного транзисторного усилителя мощности. Можно сказать что он является трёхкаскадным. Первый усилительный каскад на ОУ А1, второй на транзисторах T1-T2 и третий также транзисторный Т3 -Т4. При этом усилитель охвачен цепью общей обратной связи она выделена красным контуром, которая подаётся через резистор R6 на неинвертирующий вход ОУ. Ключевое слово здесь общей - обратная связь тут подаётся не с выхода ОУ на его вход, а с выхода всего усилителя.


    В результате ОУ благодаря своему огромному усилению должен помогать справляться с разными родами нелинейностями и помехами транзисторным усилительным каскадам. Перечислим ниже основные из них:

    • транзисторы в подобном включении могут работают в весьма нелинейном режиме при переходе сигнала через ноль и для слабых сигналов;
    • на выходе усилитель нагружен на комплексную нагрузку - акустическую систему. На схеме показан её эквивалент - сопротивление R15 и индуктивность L1;
    • Транзисторы работают в тяжёлом тепловом режиме и температура их корпуса существенно зависит от выходной мощности, а от температуры сильно зависят их параметры;
    • Ёмкости монтажа и различного рода наводки могут иметь приличное значение и ошибки трассировки легко могут привести к возникновению положительной обратной связи и самовозбуждению усилителя;
    • Значительно возрастает роль помех, наводимых по питанию;
    И ОУ помогает, но как дурак молящейся богу из известного афоризма порой уж слишком усердно. Появляются проблемы с перегрузочной способностью отдельных каскадов, транзисторы которых попадают в режим ограничения сигнала. Они выходят из линейного разумеется сравнительно линейного режима в режимы отсечки или насыщения. Выходят очень быстро, а возвращаются в него гораздо медленней, что обусловлено неторопливым процессом рассасывания неосновных источников заряда в полупроводниковых переходах. Рассмотрим подробнее данный процесс и его последствия.

    Динамические интермодуляционные искажения TIM. Перегрузочная способность и эффект “клиппирования” усилителя

    Перегрузочная способность усилителя это параметр, который описывает на сколько децибел номинальное выходное напряжение или мощность отличается от максимальной, когда начинаются ограничения выходного сигнала по питанию - clipping

    У транзисторных усилителей перегрузочная способность невелика, особенно у оконечных и предоконечных каскадов. Номинальная мощность от максимальной часто отличается всего процентов на 40, это меньше чем 3 дБ.

    Представим что наш усилитель состоит из идеального предусилителя корректора и УМЗЧ охваченного обратной связью с коэффициентом B. Важно отметить, что сигнал V 1 может содержать составляющие очень высокой частоты. Предусилитель C действует как фильтр НЧ, выдавая входной сигнал V 2 для усилителя A, содержащий только составляющие, попадающие в звуковую полосу частот.

    Напряжение на входе усилителя мощности V 2 имеет время нарастания, определяемое предусилителем, на графике видно что оно сглажено. Тем не менее, в напряжении V 3 , действующем на выходе сумматора, присутствует выброс, вызванный стремлением обратной связи компенсировать малое быстродействие усилителя мощности A с амплитудой V max


    Выброс в сигнале V 3 может в сотни и даже тысячи раз превосходить по амплитуде номинальный уровень входного сигнала. Он может в значительной степени превысить динамический диапазон усилителя. Во время такой перегрузки усиление других сигналов, присутствующих на входе уменьшается, вызывая мгновенный всплеск интермодуляционных искажений. Этот всплеск называется динамическими интермодуляционными искажениями TID , потому что приводит к влиянию одного сигнала на амплитуду другого интермодуляция, и зависит от временной и амплитудной характеристик входного сигнала сильнее, чем просто от амплитудной характеристики, как в случае простых интермодуляционных искажений.


    Выше показан график крайне неприятного эффекта, который называют “клиппированием” усилителя и он является порождением обратной связи. На выходе А1 мы получаем в результате эффект ограничения по амплитуде, а на выходе усилителя искажённый сигнал.

    Методики измерения интермодуляционных искажений и методы борьбы с ними

    Согласно стандартной методике для измерения интермодуляционных искажений на вход изме­ряемого объекта одновременно подаются два сигнала: низкой f 1 и высокой f 2 частот. К сожалению, в различных странах пользу­ются различными измерительными частотами. Разные стандарты предусматривают разные частоты - 100 и 5000 Гц, 50 и 1000 Гц…

    Наиболее употребительным является использование частот 400 и 4000 Гц, утвержденных в стандарте DIN 45403, ГОСТ 16122-88 и МЭК 60268-5. Амплитуда сигнала частотой f 1 на 12 дБ в 4 раза больше, чем амплитуда сигнала частотой f 2 . В зависимости от нелинейности характеристики, в рабочей точке симметрично относительно частоты f 2 образуются разностные и сум­марные комбинационные колебания f 2 ± f 1 , и f 2 ± 2f 1 более высоких порядков. Возникающие комбинационные колебания второго поряд­ка с частотами f 2 ± f 1 характеризуют квадратичные, а третьего по­рядка с частотами f 2 ± 2f 1 - кубические искажения объекта изме­рения.

    Также широко используется пара частот 19 и 20 КГц c равным уровнем сигнала, удобная прежде всего тем, что основной гармоникой, которая попадает в звуковой диапазон, в данном случае является сигнал с частотой 1КГц, уровень которого легко измерить.

    Для подачи измерительных сигналов применяют не только генераторы, но и специально записанные в студии измерительные CD диски и даже виниловые пластинки.


    Лет 30 назад для измерения коэффициента интермодуляцнонных искажений требовались сложные и дорогие приборы, доступные только в лабораториях и студиях, вот например состав измерительного стенда для усилителя звукоснимателя:
    1. Проигрыватель виниловых пластинок;
    2. Измерительная пластинка;
    3. Звукосниматель;
    4. Корректирующий усилитель;
    5. Полосовой фильтр;
    6. Линейный детектор;
    7. Фильтр низких частот.
    8. Ну и конечно V - вольтметр, умеющий измерять действующее значение синусоидальных колебаний!
    Сегодня гораздо лучшее качество измерений может обеспечить даже простенькая 16 битная компьютерная музыкальная карта с ценой до 30 долларов в комплекте со специальной измерительной программой и несложными цепями согласования.

    Описанные стандарты очень удобны для производителей звуковоспроизводящей аппаратуры без особого труда можно получить красивые маленькие цифры в паспортных данных, но не слишком хорошо отражают реальное качество усилительного тракта. Результатом конечно является развитие субьективизма - когда два усилителя или даже недешёвых аудиокарты, имеющих формально практически одинаковые параметры, на сложном музыкальном сигнале «звучат» совершенно по разному - без прослушивания перед покупкой не обойтись.

    Любители энтузиасты качественного звука и отдельные фирмы производители аппаратуры высокого класса пытаются продвигать свои методики измерений, основанные на менее оторванных от реальности приближениях. Существуют мультичастотные методики, методики исследующие взаимодействие гармонической частоты и единичного импульса, на основе шумовых сигналов и другие. Однако в этот раз обсудить их подробно мы уже не успеем.
    ООС

  • эффект клиппирования УНЧ
  • Добавить метки

    Под нелинейными искажениями понимают изменение формы выходного сигнала относительно формы входного сигнала. Изменения формы сигнала обусловлены нелинейностью входных и выходных характеристик транзистора. Степень искажения оценивают коэффициентом нелинейных искажений g . Для его определения используют сквозную характеристику каскада , которая представляет собой зависимость выходного тока от входной Э.Д.С., включающую нелинейность входных и выходных характеристик:

    Характерный вид сквозной характеристики (5.2) представлен на рис. 5.11. При синусоидальной Э.Д.С. Е Вх ток коллектора изменяется по несинусоидальному закону и характеризуется заостренной верхней и уплощенной нижней полуволнами (см. рис.5.11).

    Рисунок 5.11 - Сквозная характеристика каскада

    Несинусоидальный ток коллектора, являющийся выходным током I Вых , можно разложить в ряд Фурье:

    В спектре выходного тока полезной является только первая гармоника, совпадающая с частотой Е Вх , остальные гармоники представляют нелинейные искажения, так как их нет во входном сигнале. Коэффициенты искажений по гармоникам определяются из выражений:

    , , . (5.3)

    Для инженерных расчетов достаточной считают погрешность порядка 10%, что позволяет ограничить ряд Фурье при разложении четырьмя гармониками. Тогда общий коэффициент нелинейных искажений определяется в виде:

    . (5.4)

    При проектировании усилительного каскада задаётся g Общ и требуется обеспечить, чтобы искажения в усилителе не превышали заданные.

    Нелинейные искажения определяются следующими основными причинами и факторами:

    – заданным значением входного напряжения (или Э.Д.С. Е Вх );

    – нелинейностью входных ВАХ транзистора;

    – отношением внутреннего сопротивления источника входного сигнала ко входному сопротивлению усилителя ;

    – нелинейностью выходных характеристик транзистора;

    – схемой включения транзистора.

    Рассмотрим приведенные в зависимости коэффициента искажений g Общ от аргумента , для различных схем включения транзистора. Эти зависимости приведены на рис. 5.12.

    Рисунок 5.12 - Зависимости g Общ от отношения

    (а - для схемы с ОБ, б - для схемы с ОЭ)

    Как видно из рис. 5.12, при увеличении отношения , уменьшается коэффициент искажений, что обусловлено линеаризацией входных характеристик транзистора R Вн . Для схемы с ОЭ отношение не должно превышать 1.5, так как дальнейшее его увеличение увеличивает искажения. Для схемы с ОБ такого ограничения нет, однако при >2 искажения уменьшаются незначительно, увеличение этого отношения приводит к уменьшению U Вх относительно Е Вх , поэтому его обычно принимают равным 1¸1.5.



    Анализ основных причин искажений позволяет сделать следующие выводы:

    – нелинейные искажения существенно растут с увеличением входной Е.Д.С.;

    – схема усилителя с ОБ обеспечивает меньшие искажения в сравнении со схемой с ОЭ;

    – нелинейность выходных ВАХ транзисторов не существенно влияет на исакажения;

    – увеличение соотношения расширяет линейность входных ВАХ транзистора и уменьшает нелинейные искажения.

    5.4 Входные динамические характеристики транзисторов.
    Сквозная характеристика каскада

    Нагрузкой транзистора по постоянному току является сопротивление R К , которое определяет наклон нагрузочной линии по постоянному току. При работе по переменному току транзистор оказывается нагружен на меньшее эквивалентное сопротивление R Экв =R К ½½R Н . Так как R Экв <R К то наклон нагрузочной линии по переменному току более крутой. Положения нагрузочных линий на выходных характеристиках транзистора показаны на рис. 5.13.

    Рисунок 5.13 - Нагрузочные линии по переменному и постоянному токам
    на выходных ВАХ транзистора, включенного по схеме с ОБ

    Здесь (1) - нагрузочная линия по постоянному току, (2) - определяет угол наклона нагрузочной линии по переменному току. Поскольку транзистор работает в линейном режиме с учетом принципа суперпозиции, нагрузочную линию по переменному току необходимо перенести в точку покоя (линия (2")) (см. рис. 5.13).

    Связи между входными и выходными параметрами (I Э с I К, U КБ ) осуществляют по нагрузочной линии 2". В связи с этим нужно строить динамические входные характеристики, которые учитывают изменение выходного напряжения от изменения входного тока. Результаты построения динамической входной характеристики для схемы с ОБ приведены на рис. 5.14. Они осуществлены путём переноса соответствующих точек нагрузочной линии по переменному току, с выходных ВАХ транзистора на входные. Как видно из рис. 5.14 динамическая входная характеристика для схемы с ОБ более линейна, чем статические характеристики, поэтому схема с ОБ обладает минимальными искажениями.

    Рисунок 5.14 - Динамическая входная характеристика для схемы с ОБ

    Аналогично построим динамическую входную характеристику для схемы с ОЭ (см. рис. 5.15). Из рисунка следует, что динамическая входная характеристика для схемы с ОЭ более нелинейна, чем статические, это означает, что схема с ОЭ имеет большие нелинейные искажения, чем схема с ОБ.

    Рассмотрим методику построения сквозной характеристики каскада, учитывающую нелинейность входных и выходных ВАХ. Усилитель может работать с источником Э.Д.С. и источником тока. Для установления связей между входными током и Э.Д.С. с выходным током I К выполним построения, приведенные на рис. 5.16.

    В первом квадранте расположены выходные характеристики транзистора с нагрузочной линией по переменному току (2") проходящей через рабочую точку по постоянному току "О". Во втором квадранте строят переходную характеристику (1) каскада, связывающую входной ток (I Э ) с выходным током (I К ) через точки пересечения нагрузочной линии с выходными характеристиками транзистора.

    Рисунок 5.15 - Динамическая входная характеристика для схемы с ОЭ
    и фрагменты ее построения

    Рисунок 5.16 - Оценка нелинейных искажений усилителя при работе
    с источником ЭДС и источником тока

    Динамическую выходную характеристику строят в третьем квадранте (2). На ней однозначно определяется рабочая точка "О".

    Если на вход поступает синусоида от источника тока DI Э (wt) , то нелинейность входной динамической характеристики не влияет на форму выходного тока. При этом имеет место нелинейность переходной (1) характеристики и ток коллектора почти синусоидален.

    В случае работы с источником Э.Д.С. DЕ Вх (wt) , получим существенно большие искажения, так как при переходе от DЕ Вх к DI Э сказывается нелинейность входной динамической характеристики, и осциллограмма DI К получается более несинусоидальная. При работе с источником ЭДС (R Вн.Ист ®0 , следовательно, нагрузочная линия на входных ВАХ параллельна оси I Э ), из-за нелинейности динамической входной характеристики происходит искажения формы входного тока, а следовательно резкие искажения выходного тока (см. рис.5.16).

    В случае работы с источником тока (R Вн.Ист ®¥) , входной ток не искажается, а следовательно обеспечиваются минимальные искажения выходного тока.

    В реальных усилителях имеет место промежуточный вариант (R Вн.Ист ¹0 конечная величина), угол наклона нагрузочной линии на входных ВАХ определяется R Вн . (см. рис. 5.17). При изменении DЕ Вх (wt) нагрузочная линия перемещается параллельно самой себе, обуславливая осциллограмму выходного тока I К . Нелинейные искажения имеют место и по величине находятся между двумя рассмотренными ранее случаями.

    В реальных схемах всегда имеет место R Вх ¹0 , т.е. последний рассмотренный вариант. Увязывая Е Вх и I К , получают сквозную характеристику транзисторного каскада, при этом нужно брать абсолютные значения Е Вх и I К . Вид этой характеристики приведен на рис. 5.17 (б).

    По заданному входному сигналу относительно точки "О" по методу 5 И ординат (см. раздел 5.5) определяют искажения.