• Цп автоматизированные системы управления и промышленная безопасность. Основные понятия систем базы данных

    Урок " Основные понятия БД "

    Любой из нас, начиная с раннего детства, многократно сталкивался с «базами данных». Это - всевозможные спра­вочники (например, телефонный), энциклопедии и т. п. За­писная книжка - это тоже «база данных», которая есть у каждого из нас.

    Базы данных представляют собой информационные модели, содержащие данные об объектах и их свойствах. Базы данных хранят информацию о группах объектов с одинаковым набором свойств.

    Например, база данных «Записная книжка» хранит информацию о людях, каждый из которых имеет фамилию, имя, телефон и так далее. Библиотечный каталог хранит информацию о книгах, каждая из которых имеет название, автора, год издания и так далее.

    Информация в базах данных хранится в упорядоченном виде. Так, в записной книжке все записи упорядочены по - алфавиту, а в библиотечном каталоге - либо по алфавиту – алфавитный каталог), либо по области знания (предметный каталог).

    Существует несколько различных структур информационных моделей и соответственно различных типов баз данных: табличная, сетевая, иерархическая (см. модели).

    Иерархические базы данных

    Иерархические базы данных графически могут быть представлены как перевернутое дерево, состоящее из объектов различных уровней. Верхний уровень (корень дерева ) занимает один объект, второй - объекты второго уровня и так далее.

    Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка (объ­ект, более близкий к корню) к потомку (объект более низкого уровня), при этом объект-предок может не иметь потомков или иметь их несколько, тогда как объект-потомок обязательно имеет только одного предка. Объекты, имеющие общего предка, называются близнецами .

    Например: иерархической базой данных является Каталог папок Windows , с которым можно работать, запустив Проводник. Верхний уровень занимает папка Рабочий стол. На втором уровне находятся папки Мой компьютер, Мои документы, Сетевое окружение и Корзина, которые являются потомками папки Рабочий стол, а между собой является близнецами. В свою очередь, папка Мой компьютер является предком по отношению к папкам третьего уровня - папкам дисков (Диск 3,5(А:), (С:), ( D :), (E :), (F :)) и системным папкам (Принтеры, Панель управления и др.)

    Сетевые базы данных

    Сетевая база данных является обобщением иерархической за счет допущения объектов, имеющих более одного предка. Вообще, на связи между объектами в сетевых моделях не накладывается никаких ограничений.

    Сетевой базой данных фактически является Всемирная пау mu н a глобальной компьютерной сети Интернет. Гиперссылки связывают между собой сотни миллионов документов в единую распределенную сетевую базу данных.

    Табличные базы данных

    Табличная база данных содержит перечень объектов одного типа, то есть объектов, имеющих одинаковый набор свойств. Такую базу данных удобно представлять в виде двумерной таблицы: в каждой ее строке последовательно размещаются значения свойств одного из объектов; каждое значение свойства - в своем столбце, озаглавленном именем свойства.

    Рассмотрим, например, базу данных: Телефонный справочник

    Фамилия

    Адрес

    Телефон

    Иванов В.В.

    Серова, 5 12

    4325345

    Петров И.И.

    Седова, 3-21

    3454365

    Сидоров С.С.

    Мира, 33-17

    3454354

    Столбцы такой таблицы называют полями; каждое поле характеризуется своим именем (именем соответствующего свойства) и типом данных, представляющих значения данного свойства.

    Строки таблицы являются записями об объекте; эти записи разбиты на поля столбцами таблицы, поэтому каждая запись представляет собой набор значений, содержащихся в полях .

    Каждая таблица должна содержать, по крайней мере, одно ключевое поле, содержимое которого уникально для каждой записи в этой таблице. Ключевое поле позволяет однозначно идентифицировать каждую запись в таблице.

    В качестве ключевого моля чаще всего используют поле, содержащее тип данных счетчик . Однако иногда удобнее в качестве ключевого поля таблицы использовать другие поля: код товара, инвентарный номер и т. п.

    Телефонный справочник

    Имена полей

    Фамилия

    Адрес

    Телефон

    Запись

    Иванов В.В.

    Серова, 5 12

    4325345

    Запись

    Петров И.И.

    Седова, 3-21

    3454365

    Запись

    Сидоров С.С.

    Мира, 33-17

    3454354

    Ключевое

    поле

    Поле

    Поле

    Поле

    Тип поля определяется типом данных, которые оно содер жит. Поля могут содержать данные следующих основных типов:

      счетчик - целые числа, которые задаются автоматиче ски при вводе записей. Эти числа не могут быть изменены пользователем;

      текстовый - тексты, содержащие до 255 символов;

      числовой - числа;

      дата/время - дата или время;

      денежный - числа в денежном формате;

      логический - значения Истина (Да) или Ложь (Нет);

      поле объекта OLE - изображение или рисунок

    Поле каждого типа имеет свой набор свойств. Наиболее в ажными свойствами полей являются:

      размер поля - определяет максимальную длину тексто вого или числового поля;

      формат поля - устанавливает формат данных;

      обязательное поле - указывает на то, что данное поле обязательно надо заполнить

    Система управления базами данных Access (СУБД)

    Назначение и основные функции

    Развитие информационных технологий привело к созданию компьютерных баз данных. Создание баз данных, а также операции поиска и сортировки данных выполняются специальными программами - системами управления базами данных (СУБД).

    Таким образом, необходимо различать собственно базы данных (БД), которые являются упорядоченными наборами данных, и системы управления базами данных - программы, управляющие хранением и обработкой данных.

    Системой управления базами данных является приложение Access , входящее в Microsoft Office .

    Интерфейс программы Access

    В Access используется стандартный для среды Windows & Office многооконный интерфейс, но в отличие от других приложений, не многодокументный. Единовременно может быть открыта только одна база данных , содержащая обязательное окно базы данных и окна для работы с объектами базы данных. В каждый момент времени одно из окон является активным и в нем курсором отмечается активный объект.

    Окно базы данных - один из главных элементов интерфейса Access . Здесь систематизированы все объекты БД: таблицы, запросы, формы, отчеты, макросы и модули.

    Перемещение между записями можно осуществлять с помощью мыши, клавиш управления курсором или полосы прокрутки. Для быстрого перемещения между записями в базе данных можно использовать кнопки перемещения на панели Запись, которая находится в нижней части окна таблицы.

    Объект ы в СУБД Access :

    · Таблица. В базах данных вся информация хранится в двумерных таблицах. Это базовый объект БД, все остальные объекты создаются на основе существующих таблиц (производные объекты).

    · Запросы. Запросы предназначены для отбора данных на основании заданных условий. С помощью запроса из базы данных можно выбрать информацию, удовлетворяющую определенным условиям.

    · Формы. Формы позволяют отображать данные, содержащиеся в таблицах или запросах, в более удобном для восприятия виде. При помощи форм можно добавлять в таблицы новые данные, а также редактировать или удалять существующие. Форма может содержать рисунки, графики и другие внедренные объекты.

    · Отчеты. Отчеты предназначены для печати данных, содержащихся в таблицах и запросах, в красиво оформленном виде.

    · Макросы. Макросы служат для автоматизации повторяющихся операций. Запись макроса производится так же, как в других приложениях, например как в приложении Word .

    · Модули. Модули также служат для автоматизации работы с БД. Модули еще называют процедурами обработки событий и пишутся на языке VBA .

    Одно из самых популярных направлений использования компьютеров – работа с информацией. Информация – это любые сведения о каком-либо событии, сущности, процессе и т.п., являющиеся объектом некоторых операций: восприятия, передачи, преобразования, хранения или использования. Компьютер может хранить большие объемы информации, мгновенно обрабатывать ее и выдавать в необходимом виде.

    Рассмотрим предприятие, которое располагает большим количеством данных, хранимых в течение длительных периодов времени в ЭВМ, например, авиалинию. Эти данные могут, в частности, содержать сведения о пассажирах, рейсах, самолетах и о персонале и представлять типичные для конкретной предметной области отношения. Такими отношениями являются, например, продажа билетов (каким пассажирам, на какие рейсы и места проданы билеты), формирование экипажей (кто должен быть командиром корабля, вторым пилотом и т.д., на каком рейсе) и регистрация технического обслуживания (когда и кем обслуживается каждый самолет в последний раз и т.д.). Можете себе представить, сколько сил и времени понадобилось бы, чтобы человек смог найти в случае необходимости какие-то данные (например, был ли продан, и кому, билет такой-то серии, на такой-то рейс)! А если эти данные хранятся вместе с другими, подобными им, в одном большом центре, в который поступает информация из аэропортов всей страны?

    Тогда, пожалуй, такая задача потребовала бы годы напряженной работы. Но мы живем в тот век, когда человек старается найти способы для облегчения своей работы. И одним из верных помощников в этом стала ЭВМ, что ни для кого не является сейчас секретом. Вы уже догадались, что дальше пойдет речь о том, как разрешить проблемы, описанные выше. Действительно, человек нашел великолепный выход – разработал систему управления базами данных (СУБД). Эта система и предназначена для того, чтобы человек мог, не особо утруждая себя утомительной работой, работать с большими объемами данных, организованными специальным образом (об этом чуть позже). Но, кроме того что СУБД предоставляет возможность пользователю осуществлять поиск определенной информации, она обеспечивает возможность составлять отчеты по определенным данным (например, в случае с аэропортом, насчитывать зарплату и составлять ведомости о ней для различных работников аэропорта: пилотов, администрации, стюардесс, механиков и т.д.), изменять имеющиеся данные (например, в случае выхода из строя самолета, переоформления билета, увольнения человека и т.д.), поиск информации по нескольким условиям (например, пилотов, стаж работы которых более 7 лет, возраст не менее 30 лет и образование не ниже высшего) и т.д. Подробнее о функциях СУБД будет рассказано ниже, а пока введем определение.

    База данных (БД) – именованная совокупность данных, отражающая состояние объектов и их отношений в рассматриваемой предметной области.

    В случае аэрофлота, БД – это данные о рейсах, пилотах, билетах и т.д. Об этих данных вы уже читали. Следует обратить внимание на то, что данные в БД собираются не обо всем на свете, а такие, которые относятся к определенной области деятельности человека и каким-то образом взаимосвязаны друг с другом. Нет смысла работникам бухгалтерии иметь сведения в БД о тематике книг в библиотеках города, ей просто, вероятнее всего, никогда не воспользуются. Кроме этого пользователь ЭВМ, как известно, хранит большие объемы информации, а БД к таковым и относится, во внешней памяти. Мало того, что информацией не воспользуются, для нее еще нужно предоставить определенный объем внешней памяти, что связано с определенными материальными затратами, а ни один разумный хозяин не выбросит деньги на ветер.

    2.2.Уровни представления баз данных

    Очевидно, что существует множество уровней абстракции между ЭВМ, имеющей дело с битами, и конечными пользователями, имеющими дело с такими абстракциями, как рейсы или закрепление экипажа за самолетом. Уровни абстракции и связи между ними представлены на Рис. 1.

    Введение

    Системы баз данных сегодня являются основой построения большинства информационных систем и используются при автоматизации практически всех сфер человеческой деятельности. Например, доступ к базе данных необходим при работе с библиотечной информационной системой, содержащей сведения обо всех книгах, имеющихся в библиотеке, ее читателях, заявках на бронирование книг и т.д. В ней обычно содержатся средства, позволяющие читателям находить нужную им книгу по названию, фамилиям авторов или указанной тематике. С помощью такого рода систем организуется учет движения книг, другие операции, необходимые в библиотечной деятельности.

    В ВУЗе могут существовать базы данных с информацией о студентах, профессорско-преподавательском составе, факультетах и кафедрах, др. данные, необходимые для функционирования так называемых комплексных информационно-аналитических систем и их подсистем (учета кадров, бухгалтерской, документооборота, информационного обеспечения учебной деятельности и т.п.).

    Базы данных по народонаселению содержат сведения о жителях города, региона и т.п., необходимые для функционирования систем налогообложения, здравоохранения, образования, социальной защиты, др.

    1. Основные понятия баз данных

    Банк данных - это автоматизированная система, пред­ставляющая совокупность информационных, программных, техниче­ских средств и персонала, обеспечивающих хранение, накопление, об­новление, поиск и выдачу данных. Главными составляющими банка данных являются база данных и программный продукт, называе­мый системой управления базой данных (СУБД).

    База данных - это специальным образом организованное хра­нение информационных ресурсов в виде интегрированной совокупности файлов, обеспечивающей удобное взаимодействие между ними и быст­рый доступ к данным.

    База данных - это динамичный объект, меняющий значения при изменении состояния отражаемой предметной области (внешних условий по отношению к базе). Под предметной обла­стью понимается часть реального мира (объектов, процессов), ко­торая должна быть адекватно, в полном информационном объеме представлена в базе данных. Данные в базе организуются в единую целостную систему что обеспечивает более производительную ра­боту пользователей с большими объемами данных.

    Система управления базой данных (СУБД) – это программное обеспечение, с помощью которого пользователи могут определять, создавать и поддерживать базу данных, а также осуществлять к ней контролируемый доступ. СУБД взаимодействует с прикладными программами пользователя и базой данных и обладает приведенными ниже возможностями:

    · Позволяет определять базу данных, что обычно осуществляется с помощью языка определения данных (DDL - Data Definition Language). Язык DDL предоставляет пользователям средства указания типа данных и их структуры, а также средства задания ограничений для информации, хранимой в базе данных.

    · Позволяет вставлять, обновлять, удалять и извлекать информацию из базы данных, что обычно осуществляется с помощью языка управления данными (DML - Data Manipulation Language). Наличие централизованного хранилища всех данных и их описаний позволяет использовать язык DML как общий инструмент организации запросов, который иногда называют языком запросов.

    · Предоставляет контролируемый доступ к базе данных с помощью: системы обеспечения безопасности, предотвращающей несанкционированный доступ к базе данных со стороны пользователей; системы поддержки целостности данных, обеспечивающей непротиворечивое состояние хранимых данных; системы управления параллельной работой приложений, контролирующей процессы их совместного доступа к базе данных; системы восстановления, позволяющей восстановить базу данных до предыдущего непротиворечивого состояния, нарушенного в результате сбоя аппаратного или программного обеспечения; доступного пользователям каталога, содержащего описание хранимой в базе данных информации.

    Кроме важнейших составляющих базы данных и СУБД, банк данных включает и ряд других составляющих. Остановимся на их рассмотрении.

    Языковые средства включают языки программирования, языки запросов и ответов, языки описания данных.

    Методические средства - это инструкции и рекомендации по созданию и функционированию банка данных, выбору СУБД.

    Технической основой банка данных является ЭВМ, удовлетворяющая оп­ределенным требованиям по своим техническим характеристикам.

    Обслуживающий персонал включает программистов, инженеров по техническому обслуживанию ЭВМ, административный аппарат, в том числе администратора базы данных. Их задача - контроль за работой банка данных, обеспечение совместимости и взаимодействия всех состав­ляющих, а также управление функционированием банка данных, контроль за качеством информации и удовлетворение информационных по­требностей. В минимальном варианте все эти функции для пользо­вателя могут обеспечиваться одним лицом или выполняться орга­низацией, поставляющей программные средства и выполняющей их поддержку и сопровождение.

    Особую роль играет администратор базы или банка данных. Администратор управляет данными, персоналом, обслужи­вающим банк данных. Важной задачей администратора базы данных является защита данных от разрушения, несанкционированного и некомпетентного доступа. Администратор предоставляет пользователям большие или меньшие полномочия на доступ ко всей или части базы. Для вы­полнения функций администратора в СУБД предусмотрены раз­личные служебные программы. Администрирование базой данных предусматривает выполнение функций обеспечения надежной и эффективной работы базы данных, удовлетворение информационных по­требностей пользователей, отображение в базе данных динамики предметной области.

    Главными пользователями баз и банков данных являются ко­нечные пользователи , т.е. специалисты, ведущие различные участки экономической работы. Их состав неоднороден, они различаются по квалификации, степени профессионализма, уровню в системе управления: главный бухгалтер, бухгалтер, операционист, началь­ник кредитного отдела и т.д. Удовлетворение их информационных потребностей - это решение большого числа проблем в организа­ции внутримашинного информационного обеспечения.

    Специальную группу пользователей банка данных образуют прикладные программисты. Обычно они играют роль посредников между базой данных и конечными пользователями, так как создают удобные пользовательские программы на языках СУБД. Централизованный характер управления данными вызывает необходимость администрирования такой сложной системы, как банк данных.

    Преимущества работы с банком данных для пользователя окупают затраты и издержки на его создание, так как:

    Повышается производительность работы пользователей, дос­тигается эффективное удовлетворение их информационных потребностей;

    Централизованное управление данными освобождает при­кладных программистов от организации данных, обеспечива­ет независимость прикладных программ от данных;

    Развитая организация базы данных позволяет выполнять разнообраз­ные нерегламентированные запросы, новые приложения;

    Снижаются затраты не только на создание и хранение дан­ных, но и на их поддержание в актуальном и динамичном со­стоянии; уменьшаются потоки данных, циркулирующих в системе, сокращается их избыточность и дублирование.

    Как банк данных, так и база данных могут быть сосредоточены на одном компьютере или распределены между несколькими ком­пьютерами. Для того чтобы данные одного исполнителя были дос­тупны другим и наоборот, эти компьютеры должны быть соедине­ны в единую вычислительную систему с помощью вычислительных сетей.

    Банк и база данных, расположенные на одном компьютере, на­зываются локальными, а на нескольких соединенных сетями ПЭВМ называются распределенными. Распределенные банки и базы данных более гибки и адаптивны, менее чувствительны к выходу из строя оборудования.

    Назначение локальных баз и банков данных организации бо­лее простого и дешевого способа информационного обслуживания пользователей при работе с небольшими объемами данных и ре­шении несложных задач.

    Локальные базы данных эффективны при работе одного или нескольких пользователей, когда имеется возможность согласова­ния их деятельности административным путем. Такие системы просты и надежны за счет своей локальности и организационной независимости.

    Назначение распределенных баз и банков данных состоит в предоставлении более гибких форм обслуживания множеству удаленных пользователей при работе со значительными объемами ин­формации в условиях географической или структурной разобщен­ности. Распределенные системы баз и банков данных обеспечивают широкие возможности по управлению сложных многоуровне­вых и многозвенных объектов и процессов.

    Распределенная обработка данных позволяет разместить базу данных (или несколько баз) в различных узлах компьютерной сети. Таким образом, каждый компонент базы данных располагается по месту наличия техники и ее обработки. Например, при организа­ции сети филиалов какой-либо организационной структуры удобно обрабатывать данные в месте расположения филиала. Распределе­ние данных осуществляется по разным компьютерам в условиях реализации вертикальных и горизонтальных связей для организа­ций со сложной структурой.

    Объективная необходимость распределенной формы организа­ции данных обусловлена требованиями, предъявляемыми конеч­ными пользователями:

    Централизованное управление рассредоточенными информа­ционными ресурсами;

    Повышение эффективности управления базами и банками данных и уменьшение времени доступа к информации;

    Поддержка целостности, непротиворечивости и защиты дан­ных;

    Обеспечение приемлемого уровня в соотношении «цена - производительность - надежность».

    Распределенная система баз данных (или частей базы) позволя­ет в широких возможностях варьировать и поддерживать инфор­мационные ресурсы, избегая узких мест, сдерживающих произво­дительность пользователя, и добиваться максимальной эффектив­ности использования информационных ресурсов.

    2. Функции СУБД

    В этом разделе мы рассмотрим типы функций и служб (сервисов), которые должна обеспечивать типичная СУБД.

    Хранение, извлечение и обновление данных. СУБД должна предоставлять пользователям возможность сохранять, извлекать и обновлять данные в базе данных. Это самая фундаментальная функция СУБД. Из предыдущего ясно, что способ реализации этой функции в СУБД должен позволять скрывать от конечного пользователя внутренние детали физической реализации системы (например, файловую организацию или используемые структуры хранения).

    Каталог, доступный конечным пользователям. СУБД должна иметь доступный конечным пользователям каталог, в котором хранится описание элементов данных. Ключевой особенностью архитектуры ANSI-SPARC является наличие интегрированного системного каталога с данными о схемах, пользователях, приложениях и т.д. Предполагается, что каталог доступен как пользователям, так и функциям СУБД. Системный каталог, или словарь данных, является хранилищем информации, описывающей данные в базе данных (по сути, это - метаданные). В зависимости от типа используемой СУБД количество информации и способ ее применения могут варьироваться. Обычно в системном каталоге хранятся следующие сведения:

    · имена, типы и размеры элементов данных;

    · имена связей;

    · накладываемые на данные ограничения поддержки целостности;

    · имена санкционированных пользователей, которым предоставлено право доступа к данным;

    · внешняя, концептуальная и внутренняя схемы и отображения между ними;

    · статистические данные, например частота транзакций и счетчики обращений к объектам базы данных.

    Системный каталог позволяет достичь определенных преимуществ, перечисленных ниже.

    · Информация о данных может быть централизованно собрана и сохранена, что позволит контролировать доступ к этим данным, как и к любому другому ресурсу.

    · Можно определить смысл данных, что поможет другим пользователям понять их предназначение.

    · Упрощается сообщение, так как сохраняются точные определения смысла данных. В системном каталоге также могут быть указаны один или несколько пользователей, которые являются владельцами данных или обладают правом доступа к ним.

    · Благодаря централизованному хранению избыточность и противоречивость описания отдельных элементов данных могут быть легко обнаружены.

    · Внесенные в базу данных изменения могут быть запротоколированы.

    · Последствия любых изменений могут быть определены еще до их внесения, поскольку в системном каталоге зафиксированы все существующие элементы данных, установленные между ними связи, а также все их пользователи.

    · Меры обеспечения безопасности могут быть дополнительно усилены.

    · Появляются новые возможности организации поддержки целостности данных.

    · Может выполняться аудит сохраняемой информации.

    Поддержка транзакций. СУБД должна иметь механизм, который гарантирует выполнение либо всех операций обновления данной транзакции, либо ни одной из них. Транзакция представляет собой набор действий, выполняемых отдельным пользователем или прикладной программой с целью доступа или изменения содержимого базы данных. Примерами простых транзакций может служить добавление в базу данных, удаление из нее или обновление сведений о том или ином объекте. Если во время выполнения транзакции произойдет сбой, база данных попадает в противоречивое состояние, поскольку некоторые изменения уже будут внесены, а остальные - еще нет. Поэтому все частичные изменения должны быть отменены для возвращения базы данных в прежнее, непротиворечивое состояние.

    Сервисы управления параллельностью. СУБД должна иметь механизм, который гарантирует корректное обновление базы данных при параллельном выполнении операций обновления многими пользователями. При этом параллельный доступ сравнительно просто организовать, если все пользователи выполняют только чтение данных, поскольку в этом случае они не могут помешать друг другу. Однако, когда несколько пользователей одновременно получают доступ к БД, конфликт с нежелательными последствиями легко может возникнуть, например, если хотя бы один из них попытается обновить данные.

    СУБД должна гарантировать, что при одновременном доступе к базе данных многих пользователей подобных конфликтов не произойдет.

    Сервисы восстановления. При обсуждении поддержки транзакций упоминалось, что при сбое транзакции база данных должна быть возвращена в непротиворечивое состояние, что должно гарантироваться возможностями СУБД.

    Сервисы контроля доступа к данным. СУБД должна иметь механизм, гарантирующий возможность доступа к базе данных только санкционированных пользователей. Термин "безопасность" относится к защите базы данных от преднамеренного или случайного несанкционированного доступа. Предполагается, что СУБД обеспечивает механизмы подобной защиты данных.

    Поддержка обмена данными. СУБД должна обладать способностью к интеграции с коммуникационным программным обеспечением с целью организации доступа удаленных пользователей к централизованной БД (в рамках системы распределенной обработки).

    Службы поддержки целостности данных. СУБД должна обладать инструментами контроля за тем, чтобы данные и их изменения соответствовали заданным правилам.

    Целостность базы данных означает корректность и непротиворечивость хранимых данных и выражается в виде ограничений или правил сохранения непротиворечивости данных, которые не должны нарушаться в базе.

    Службы поддержки независимости от данных. СУБД должна обладать инструментами поддержки независимости программ от структуры базы данных.

    Понятие независимости от данных уже рассматривалось выше. Обычно она достигается за счет реализации механизма поддержки представлений или подсхем. Физическая независимость от данных достигается довольно просто, так как обычно имеется несколько типов допустимых изменений физических характеристик базы данных, которые никак не влияют на представления. Однако добиться полной логической независимости от данных сложнее. Как правило, система легко адаптируется к добавлению нового объекта, атрибута или связи, но не к их удалению. В некоторых системах вообще запрещается вносить любые изменения в уже существующие компоненты логической схемы.

    Вспомогательные службы. СУБД должна предоставлять некоторый набор различных вспомогательных служб. Вспомогательные утилиты обычно предназначены для оказания помощи АБД в эффективном администрировании базы данных. Одни утилиты работают на внешнем уровне, а потому они, в принципе, могут быть созданы самим АБД, тогда как другие функционируют на внутреннем уровне системы и потому должны быть предоставлены самим разработчиком СУБД. Ниже приводятся некоторые примеры подобных утилит.

    · Утилиты импортирования, предназначенные для загрузки базы данных из плоских файлов, а также утилиты экспортирования, которые служат для выгрузки базы данных в плоские файлы.

    · Средства мониторинга, предназначенные для отслеживания характеристик функционирования и использования базы данных.

    · Программы статистического анализа, позволяющие оценить производительность или степень использования базы данных.

    · Инструменты реорганизации индексов, предназначенные для перестройки индексов и обработки случаев их переполнения.

    · Инструменты сборки мусора и перераспределения памяти для физического устранения удаленных записей с запоминающих устройств, объединения освобожденного пространства и перераспределения памяти в случае необходимости.

    3. Архитектура СУБД

    В данном разделе рассмотрим различные типовые архитектурные решения, используемые при реализации многопользовательских СУБД, а именно: с телеобработкой, файл-серверными и клиент-серверными системами.

    Телеобработка. Традиционной архитектурой многопользовательских систем раньше считалась схема, получившая название "телеобработки", при которой один компьютер был соединен с несколькими "неинтеллектуальными" терминалами так, как показано на рис. 1. С терминалов посылались сообщения пользовательским приложениям, в свою очередь, приложения обращались к необходимым службам СУБД. Таким же образом сообщения возвращались назад на пользовательский терминал. При такой архитектуре вся нагрузка возлагалась на центральный компьютер, который должен был выполнять не только действия прикладных программ и СУБД, но и значительную работу по обслуживанию терминалов (например, форматирование данных, выводимых на экраны терминалов).

    В настоящее время в связи с развитием информационно-вычислительных сетей получили широкое распространение файл-серверные и клиент-серверные СУБД.

    Рис 1. Топология архитектуры телеобработки

    Файл - серверные системы. Системы данного типа функционируют в рамках локальных вычислительных сетей (ЛВС), управляемых ОС соответствующего типа. При этом файловый сервер содержит файлы, необходимые для работы приложений и самой СУБД. Однако пользовательские приложения и сама СУБД размещены и функционируют на отдельных рабочих станциях, и обращаются к файловому серверу только по мере необходимости получения доступа к нужным им файлами - как показано на рис. 2. Таким образом, файловый сервер функционирует просто как совместно используемый жесткий диск.

    Рис 2. Архитектура с использованием файлового сервера

    Очевидно, что архитектура с использованием файлового сервера обладает следующими основными недостатками:

    · Большой объем сетевого трафика.

    · На каждой рабочей станции должна находиться полная копия СУБД.

    · Управление параллельностью, восстановлением и целостностью усложняется, поскольку доступ к одним и тем же файлам могут осуществлять сразу несколько экземпляров СУБД.

    Клиент-серверные системы. При данном подходе предполагается существование клиентского процесса, требующего определенных ресурсов, а также серверного процесса, который эти ресурсы предоставляет. При этом совсем необязательно, чтобы они находились на одном и том же компьютере. На практике системы данного типа реализуются в рамках информационно-вычислительных сетей (не обязательно ЛВС) под управлением клиент-серверных ОС (см. рис. 3).

    В контексте базы данных клиентская часть управляет пользовательским интерфейсом и логикой приложения, действуя как интеллектуальная рабочая станция, на которой выполняются приложения баз данных. Клиент принимает от пользователя запрос, проверяет синтаксис и генерирует запрос к базе данных на SQL или другом языке БД, который соответствует логике приложения. Затем он передает сообщение серверу, ожидает поступления ответа и форматирует полученные данные для представления их пользователю. Сервер принимает и обрабатывает запросы к базе данных, а затем передает полученные результаты обратно клиенту. Такая обработка включает проверку полномочий клиента, обеспечение требований целостности, поддержку системного каталога, а также выполнение запроса и обновление данных. Помимо этого, поддерживается управление параллельностью и восстановлением. Выполняемые клиентом и сервером операции приведены ниже.

    Рис 3. Общая схема построения систем с архитектурой "клиент/сервер"

    Клиент:

    · Управляет пользовательским интерфейсом;

    · Принимает и проверяет синтаксис введенного пользователем запроса;

    · Выполняет приложение;

    · Генерирует запрос к базе данных и передает его серверу;

    · Отображает полученные данные пользователю.

    Сервер:

    · Принимает и обрабатывает запросы к базе данных со стороны клиентов;

    · Проверяет полномочия пользователей;

    · Гарантирует соблюдение ограничений целостности;

    · Выполняет запросы/обновления и возвращает результаты клиенту;

    · Поддерживает системный каталог;

    · Обеспечивает параллельный доступ к базе данных;

    · Обеспечивает управление восстановлением.

    Этот тип архитектуры обладает приведенными ниже преимуществами.

    · Обеспечивается более широкий доступ к существующим базам данных.

    · Повышается общая производительность системы. Поскольку клиенты и сервер находятся на разных компьютерах, их процессоры способны выполнять приложения параллельно.

    · Стоимость аппаратного обеспечения снижается. Достаточно мощный компьютер с большим устройством хранения нужен только серверу - для хранения и управления базой данных.

    · Сокращаются коммуникационные расходы. Приложения выполняют часть операций на клиентских компьютерах и посылают через сеть только запросы к базе данных, что позволяет существенно сократить объем пересылаемых по сети данных.

    · Повышается уровень непротиворечивости данных. Сервер может самостоятельно управлять проверкой целостности данных, поскольку все ограничения определяются и проверяются только в одном месте.

    · Эта архитектура хорошо согласуется с архитектурой открытых систем.

    · Данная архитектура может быть использована для организации средств работы с распределенными базами данных, т.е. с набором нескольких баз данных, логически связанных и распределенных в компьютерной сети.

    Необходимо заметить, что в настоящее время данная архитектура рассматривается обычно в трехуровневом варианте, при котором функциональная часть прежнего, толстого (интеллектуального) клиента разделяется на две части. В трехуровневой архитектуре тонкий (неинтеллектуальный) клиент на рабочей станции управляет только пользовательским интерфейсом, тогда как средний уровень обработки данных управляет всей остальной логикой приложения. Третьим уровнем здесь является сepвep базы данных. Эта трехуровневая архитектура оказалась более подходящей для некоторых сред - например, для сетей Internet и intranet, где в качестве клиента может использоваться обычный Web-броузер.

    Заключение

    Таким образом, база данных – организованная структура, предназначенная для хранения информации. С понятием базы данных тесно связано понятие системы управления базой данных. Это комплекс программных средств, предназначенных для создания структуры новой базы, наполнения ее содержимым, редактирования содержимого и визуализации информации. Банк данных является разновидностью информационной системы, в которой реализованы функции централизованного хранения и накопления обрабатываемой информации. Главными составляющими банка данных являются база данных и системы управления базами данных.

    Основными пользователями баз и банков данных являются специалисты, ведущие различные участки экономической работы. Их состав неоднороден, они различаются по квалификации, степени профессионализма, уровню в системе управления: главный бухгалтер, бухгалтер, операционист, началь­ник кредитного отдела и т.д. Удовлетворение их информационных потребностей - это решение большого числа проблем в организа­ции внутримашинного информационного обеспечения.

    В данной работе рассмотрены функции, которые должна обеспечивать типичная СУБД, а также различные типовые архитектурные решения, используемые при реализации многопользовательских СУБД, а именно: с телеобработкой, файл-серверными и клиент-серверными системами.

    Список литературы

    1. http://cit.vvsu.ru/portal/cifr/1/lek19.htm

    2. http://do.bti.secna.ru/lib/book_it/istor_razv.html

    3. http://do.bti.secna.ru/lib/book_it/ogr_file.html

    4. http://www.lib.csu.ru/dl/bases/prg/kompress/articles/2000_05_dbms3/

    5. Microsoft Access 2000: справочник /под ред. Ю. Колесникова. – СПб.: Питер, 2001.

    6. Автоматизированные информационные технологии в экономике /под ред. проф. Г.А. Титоренко. – М.: ЮНИТИ, 2005. – 399с.

    7. Информатика для юристов и экономистов /под ред. С.В. Симоновича. – СПб.: Питер, 2005. – 688с.

    9. Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2005. – М.:ОЛМА-ПРЕСС Образование, 2005. – 800с.

    10. Хомоненко А.Д., Цыганков В.М., Мальцев М.Г. Базы данных/ под ред. проф. А.Д. Хомоненко. – СПб.: КОРОНА, 2000. – 416с.

    11. Экономическая информатика и вычислительная техника./ Под ред. В.П. Косарева. М.: Финансы и статистика, 2005. –592с.

    Развития вычислительной техники осуществлялось по двум основным направлениям:

    · применение вычислительной техники для выполнения численных расчетов;

    · использование средств вычислительной техники в информационных системах.

    Информационная система – это совокупность программно-аппаратных средств, способов и людей, которые обеспечивают сбор, хранение, обработку и выдачу информации для решения поставленных задач. На ранних стадиях использования информационных систем применялась файловая модель обработки. В дальнейшем в информационных системах стали применяться базы данных. Базы данных являются современной формой организации, хранения и доступа к информации. Примерами крупных информационных систем являются банковские системы, системы заказов железнодорожных билетов и т.д.

    База данных – это интегрированная совокупность структурированных и взаимосвязанных данных, организованная по определенным правилам, которые предусматривают общие принципы описания, хранения и обработки данных. Обычно база данных создается для предметной области.

    Предметная область – это часть реального мира, подлежащая изучению с целью создания базы данных для автоматизации процесса управления.
    Наборы принципов, которые определяют организацию логической структуры хранения данных в базе, называются моделями данных .

    Существуют 4 основные модели данных – списки (плоские таблицы), реляционные базы данных, иерархические и сетевые структуры.

    В течение многих лет преимущественно использовались плоские таблицы (плоские БД) типа списков в Excel. В настоящее время наибольшее распространение при разработке БД получили реляционные модели данных. Реляционная модель данных является совокупностью простейших двумерных таблиц – отношений (англ. relation),т.е. простейшая двумерная таблица определяется как отношение (множество однотипных записей объединенных одной темой) .

    От термина relation (отношение) происходит название реляционная модель данных. В реляционных БД используется несколько двумерных таблиц, в которых строки называются записями, а столбцы полями, между записями которых устанавливаются связи. Этот способ организации данных позволяет данные (записи) в одной таблице связывать с данными (записями) в других таблицах через уникальные идентификаторы (ключи) или ключевые поля.

    Основные понятия реляционных БД: нормализация, связи и ключи

    1. Принципы нормализации :

    · В каждой таблице БД не должно быть повторяющихся полей;

    · В каждой таблице должен быть уникальный идентификатор (первичный ключ);

    · Каждому значению первичного ключа должна соответствовать достаточная информация о типе сущности или об объекте таблицы (например, информация об успеваемости, о группе или студентах);


    · Изменение значений в полях таблицы не должно влиять на информацию в других полях (кроме изменений в полях ключа).

    2. Виды логической связи .

    Связь устанавливается между двумя общими полями (столбцами) двух таблиц. Существуют связи с отношением «один-к-одному», «один-ко-многим» и «многие-ко-многим».

    Отношения, которые могут существовать между записями двух таблиц:

    · один – к - одному, каждой записи из одной таблицы соответствует одна запись в другой таблице;

    · один – ко - многим, каждой записи из одной таблицы соответствует несколько записей другой таблице;

    · многие – к - одному, множеству записей из одной таблице соответствует одна запись в другой таблице;

    · многие – ко - многим, множеству записей из одной таблицы соответствует несколько записей в другой таблице.

    Тип отношения в создаваемой связи зависит от способа определения связываемых полей:

    · Отношение «один-ко-многим» создается в том случае, когда только одно из полей является полем первичного ключа или уникального индекса.

    · Отношение «один-к-одному» создается в том случае, когда оба связываемых поля являются ключевыми или имеют уникальные индексы.

    · Отношение «многие-ко-многим» фактически является двумя отношениями «один-ко-многим» с третьей таблицей, первичный ключ которой состоит из полей внешнего ключа двух других таблиц

    3. Ключи. Ключ – это столбец (может быть несколько столбцов), добавляемый к таблице и позволяющий установить связь с записями в другой таблице. Существуют ключи двух типов: первичные и вторичные или внешние.

    Первичный ключ – это одно или несколько полей (столбцов), комбинация значений которых однозначно определяет каждую запись в таблице. Первичный ключ не допускает значений Null и всегда должен иметь уникальный индекс. Первичный ключ используется для связывания таблицы с внешними ключами в других таблицах.

    Внешний (вторичный) ключ - это одно или несколько полей (столбцов) в таблице, содержащих ссылку на поле или поля первичного ключа в другой таблице. Внешний ключ определяет способ объединения таблиц.
    Из двух логически связанных таблиц одну называют таблицей первичного ключа или главной таблицей, а другую таблицей вторичного (внешнего) ключа или подчиненной таблицей. СУБД позволяют сопоставить родственные записи из обеих таблиц и совместно вывести их в форме, отчете или запросе.

    Существует три типа первичных ключей : ключевые поля счетчика (счетчик), простой ключ и составной ключ.

    Поле счетчика (Тип данных «Счетчик»). Тип данных поля в базе данных, в котором для каждой добавляемой в таблицу записи в поле автоматически заносится уникальное числовое значение.

    Простой ключ . Если поле содержит уникальные значения, такие как коды или инвентарные номера, то это поле можно определить как первичный ключ. В качестве ключа можно определить любое поле, содержащее данные, если это поле не содержит повторяющиеся значения или значения Null .

    Составной ключ . В случаях, когда невозможно гарантировать уникальность значений каждого поля, существует возможность создать ключ, состоящий из нескольких полей. Чаще всего такая ситуация возникает для таблицы, используемой для связывания двух таблиц многие - ко - многим.

    Необходимо еще раз отметить, что в поле первичного ключа должны быть только уникальные значения в каждой строке таблицы, т.е. совпадение не допускается, а в поле вторичного или внешнего ключа совпадение значений в строках таблицы допускается.

    Если возникают затруднения с выбором подходящего типа первичного ключа, то в качеcтве ключа целесообразно выбрать поле счетчика.

    Программы, которые предназначены для структурирования информации, размещения ее в таблицах и манипулирования данными называются системами управления базами данных (СУБД ). Другими словами СУБД предназначены как для создания и ведения базы данных, так и для доступа к данным. В настоящее время насчитывается более 50 типов СУБД для персональных компьютеров. К наиболее распространенным типам СУБД относятся: MS SQL Server, Oracle, Informix, Sybase, DB2, MS Access и т. д.

    Работа с СУБД Access

    Лабораторная работа №1. Знакомство с СУБД Access

    Цель работы: освоение приемов работы в процессе создания базы данных в MS Access (анализ предметной области, анализ данных, построение модели данных, создание структуры и заполнение таблиц БД).

    Основные понятия баз данных

    Основой многих информационных систем (прежде всего, информационно-справочных систем) являются базы дан­ных.

    База данных - совокупность связанных данных, организованных по определенным правилам, предусматривающим общие принципы описания, хранения и манипулирования, независимая от прикладных программ, предназначенная для длительного хранения во внешней памяти ЭВМ, постоянного обновления и ис­пользовании.

    В большинстве случаев базу данных можно рассматри­вать как информационную модель некоторой реальной сис­темы, например книжного фонда библиотеки, кадрового со­става предприятия, учебного процесса в школе и так далее. Такую систему называют предметной областью базы дан­ных и информационной системы, в которую она входит.

    Классификация по способу хранения данных делит БД на централизованные и распределенные.

    Вся информация и централизованной БД хранится на одном компьютере. Это может быть автономный ПК или сервер сети, к которому имеют доступ пользователи-клиенты. Распределенные БД используются в локальных и глобальных компьютерных се­тях. В последнем случае разные части базы данных хранят­ся на разных компьютерах.

    Известны три разновидности структуры данных: иерар­хическая, сетевая и табличная. Соответственно по признаку структуры базы данных делятся на иерархические БД, се­тевые БД и реляционные (табличные) БД.

    Слово "реляционная" происходит от английского relation - отношение. Отношение - ма­тематическое понятие, но в терминологии моделей данных отношения удобно изображать в виде таблицы.

    В последнее время наиболее распространенным типом баз данных стали реляционные БД. Известно, что любую структуру данных можно свести к табличной форме.

    Структурированное представление данных называется моделью данных. Основной информационной единицей ре­ляционной БД является таблица . Реляционные БД исполь­зуют табличную модель данных. База данных может со­стоять из одной таблицы - однотабличная БД, или из множества взаимосвязанных таблиц - многотабличная БД.

    Структурными составляющими таблицы являются запи­си и поля.

    Каждая запись содержит информацию об отдельном объекте системы: одной книге в библиотеке, одном сотруднике предприятия и т. п. А каждое поле - это определенная характеристика (свойство, атрибут) объектов: название книги, автор книги, фамилия сотрудника, год рождения и т. п. Поля таблицы должны иметь несовпадающие имена.

    При этом строки таблицы соответствуют кортежам отношения , а столбцы - атрибутам . Ключом называют любую функцию от атрибутов кортежа, которая может быть использована для идентификации кортежа. Такая функция может быть значением одного из атрибутов (простой ключ ), задаваться алгебраическим выражением, включающим значе­ния нескольких атрибутов (составной ключ). Это означает, что данные в строках каждого из столбцов составного ключа могут повторяться, но комбинация данных каждой строки этих столбцов является уникальной.

    Для каждой таблицы реляционной БД должен быть опре­делен главный ключ - имя поля или нескольких полей, сово­купность значений которых однозначно определяют запись. Иначе говоря, значение главного ключа не должно повторя­ться в разных записях.

    Для строчного представления структуры таблицы приме­няется следующая форма:

    Имя_таблицы (ИМЯ_ПОЛЯ_1, ИМЯ_П0ЛЯ_2, ....)

    Подчеркиваются имена полей, составляющие главный ключ.

    Каждое поле таблицы имеет определенный тип.

    Тип - это множество значений, которые поле может принимать, и множество операций, которые можно выполнять над этими значениями. Существуют четыре основных типа для полей БД: символьный, числовой, логический и дата.

    Программное обеспечение, предназначенное для работы с балами данных, называется системой управления ба­зами данных - СУБД .

    Наибольшее распространение на персональных компью­терах получили реляционные БД, использующие табличное представление данных.

    Основные действия, которые пользо­ватель может выполнять с помощью СУБД:

    Создание структуры БД;

    Заполнение БД информацией;

    Изменение (редактирование) структуры и содержания БД;

    Поиск информации в БД;

    Сортировка данных;

    Защита БД;

    Проверка целостности БД.

    Вывод

    База данных - организованная совокупность данных, предназначенная для длительного хранения но внешней па­мяти ЭВМ, регулярного обновления и использования.

    База данных представляет собой информационную мо­дель определенной предметной области.

    Классификация баз данных возможна по характеру ин­формации: фактографические и документальные БД; по структуре данных: иерархические, сетевые, реляционные БД; по способу хранения данных: централизованные и рас­пределенные БД.

    Реляционные БД (РБД) - наиболее распространенный тип БД, использующий табличное представление данных.

    Реляционная база данных - база данных, основанная на реляционной модели.

    Основные понятия организации данных в РБД: таблица, запись, поле, тип поля, главный ключ таблицы.

    СУБД (система управления базами данных) - програм­мное обеспечение для работы с базами данных.