• Известные носители информации. Материальные носители информации и их развитие

    Электронные носители информации

    Технология записи информации на магнитные носители появилась сравнительно недавно - примерно в середине 20-го века (40-ые - 50-ые годы). Но уже несколько десятилетий спустя - в 60-ые - 70-ые годы - это технология стала очень распространённой во всём мире.

    Магнитная лента состоит из полоски плотного вещества, на которую напыляется слой ферромагнетиков. Именно на этот слой "запоминается" информация. Процесс записи также похож на процесс записи на виниловые пластинки - при помощи магнитной индукционной катушки вместо специального аппарата на головку подаётся ток, который приводит в действие магнит. Запись звука на плёнку происходит благодаря действию электромагнита на плёнку. Магнитное поле магнита меняется в такт со звуковыми колебаниями, и благодаря этому маленькие магнитные частички (домены) начинают менять своё местоположение на поверхности плёнки в определённом порядке, в зависимости от воздействия на них магнитного поля, создаваемого электромагнитом. А при воспроизведении записи наблюдается процесс обратный записи: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают дальше в динамик.

    Компамкт-кассемта (аудиокассемта или просто кассемта) -- носитель информации на магнитной ленте, во второй половине XX века -- распространённый медианоситель для звукозаписи. Применялся для записи цифровой и аудиоинформации. Впервые компакт-кассета была представлена в 1964 году компанией Philips. По причине своей относительной дешевизны долгое время (с начала 1970-х по 1990-е годы) компакт-кассета была самым популярным записываемым аудионосителем, однако, начиная с 1990-х годов,

    была вытеснена компакт-дисками.

    Сейчас в мире присутствует множество различных типов магнитных носителей: дискеты для компьютеров, аудио- и видеокассеты, бобинные ленты и.т.д. Но постепенно открываются новые законы физики, и вместе с ними - новые возможности записи информации. Всего пару десятков лет назад появилось множество носителей информации, базирующихся на новой технологии - считывания информации при помощи линз и лазерного луча.

    Развитие материальных носителей документированной информации в целом идёт по пути непрерывного поиска объектов с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя. Начиная с 1980-х годов, всё более широкое распространение получают оптические (лазерные) диски. Это пластиковые или алюминиевые диски, предназначенные для записи и воспроизведения информации при помощи лазерного луча.

    По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

    1. Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write-Once, Read-Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ.

    2. Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW, CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения.

    3. Цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

    Название оптических дисков определяется методом записи и считывания информации. Информация на дорожке создается мощным лазерным лучом, выжигающим на зеркальной поверхности диска впадины, и представляет собой чередование впадин и отражающих участков. При считывании информации зеркальные островки отражают свет лазерного луча и воспринимаются как единица (1), впадины не отражают луч и соответственно воспринимаются как ноль (0). Этот принцип позволяет достичь высокой плотности записи информации, а следовательно и большой емкости при минимальных размерах. Компакт-диск является идеальным средством хранения информации - дешев до смешного, практически не подвержен каким-либо влияниям среды, информация записанная на нем не исказится и не сотрется, пока диск не будет уничтожен физически, имеет ёмкость 700 Мбайт.

    Магнитооптический диск -- носитель информации, сочетающий свойства оптических и магнитных накопителей. Диск изготовлен с использованием ферромагнетиков. Магнитооптические диски при всех своих достоинствах имеют серьёзные недостатки: относительно низкую скорость записи, вызванную необходимостью перед записью стирать содержимое диска, а после записи--проверкой на чтение; высокое энергопотребление - для разогрева поверхности требуются лазеры значительной мощности, а следовательно и высокого энергопотребления. Это затрудняет использование пишущих МО приводов в мобильных устройствах.

    DVD (ди-ви-дим, англ. Digital Versatile Disc -- цифровой многоцелевой диск) -- носитель информации в виде диска, внешне схожий с компакт-диском, однако имеющий возможность хранить бомльший объём информации за счёт использования лазера с меньшей длиной волны, чем для обычных компакт дисков. Первые диски и проигрыватели DVD появились в ноябре 1996 в Японии и в марте 1997 в США. Они предназначались для записи и хранения видеоизображений. Интересно, что первые DVD-"болванки" объёмом 3,95 Гб стоили тогда 50$ за штуку. В настоящее время существует шесть разновидностей подобных дисков ёмкостью от 4,7 до 17,1 Гб. Они используются для записи и хранения любой информации: видео, аудио, данных.

    Работа с информацией в наше время не мыслима без компьютера, так как он изначально создавался как средство обработки информации и только теперь он стал выполнять множество других функций: хранение, преобразование, создание и обмен информацией. Но прежде чем принять привычную сейчас форму компьютер претерпел три революции.

    Первая компьютерная революция свершилась в конце

    50-х годов; ее суть можно описать двумя словами: компьютеры появились.

    Изобретены они были не менее чем за десять лет до этого, но именно в то время начали выпускаться серийные машины, эти машины перестали быть объектом исследований для ученых и диковинкой для всех остальных. Через полтора десятилетия после этого ни одна крупная организация не могла себе позволить обходиться без вычислительного центра. Если тогда заходила речь о компьютере, сразу же представлялись заполненные стойками машинные залы, в которых напряженно думают люди в белых халатах. И тут свершилась вторая революция. Практически одновременно несколько фирм обнаружили, что развитие техники достигло такого уровня, когда вокруг компьютера не обязательно воздвигать вычислительный центр, а сам он стал небольшим. Это были первые мини-ЭВМ. Но прошло еще десять с небольшим лет, и наступила третья революция - в конце 70-х возникли персональные компьютеры. За короткое время, пройдя путь от настольного калькулятора до полноценной небольшой машины, ПК заняли свои места на рабочих столах индивидуальных пользователей.

    В тот самый момент, когда первый компьютер впервые обработал несколько байт данных моментально встал вопрос: где и как хранить полученные результаты? Как сохранять результаты вычислений, текстовые и графические образы, произвольные наборы данных?

    Прежде всего, должно быть устройство с помощью которого компьютер будет запоминать информацию, затем требуется носитель информации, на котором ее можно будет переносить с места на место, причем другой компьютер должен также легко прочитать эту информацию. Рассмотрим некоторые из этих устройств.

    1. Устройство чтения перфокарт: предназначено для хранения программ и наборов данных с помощью перфокарт - картонных карточек с пробитыми в определенной последовательности отверстиями. Перфокарты были изобретены задолго до появления компьютера, с их помощью на ткацких станках получали очень сложные и красивые ткани, потому что они управляли работой механизма. Изменишь набор перфокарт и рисунок ткани будет совсем другим - это зависит от расположения отверстий на карте. Применительно к компьютерам был использован тот же принцип, только вместо рисунка ткани отверстия задавали команды компьютеру или наборы данных. Такой способ хранения информации не лишен недостатков: - очень низкая скорость доступа к информации; - большой объем перфокарт для хранения небольшого количества информации; - низкая надежность хранения информации; - к тому же от перфоратора постоянно летели маленькие кружочки картона, которые попадали на руки, в карманы, застревали в волосах и уборщицы были страшно недовольны. Перфокартами люди были вынуждены пользоваться не потому что этот способ как-то особенно нравился им, или он имел какие-то неоспоримые достоинства, вовсе нет, он вообще не имел достоинств, просто в то время ничего другого еще не было, выбирать было не из чего, приходилось выкручиваться.

    2. Накопитель на магнитной ленте (стриммер): основан на использовании устройства магнитофонного типа, и кассет с магнитной пленкой. Этот способ накопления информации известен давно и успешно применяется и сегодня. Это объясняется тем, что на небольшой кассете помещается довольно большой объем информации, информация может храниться продолжительное время и скорость доступа к ней гораздо выше, чем у устройства чтения перфокарт. С другой стороны стриммер пригоден только для накопления, хранения больших массивов информации, резервирования данных. Обрабатывать информацию с помощью стриммера практически невозможно: стример - устройство последовательного доступа к данным: чтобы получить 5-й файл мы должны промотать четыре. А если нужен 7529-й?

    3. Накопитель на гибких магнитных дисках (НГМД - дисковод). Это устройство использует в качестве носителя информации гибкие магнитные диски - дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета - это магнитный диск вроде пластинки, помещенный в картонный конверт. В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5"25 дюйма помещается до 720 Кбайт информации, то на дискету 3"5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод - устройство параллельного доступа, поэтому все файлы одинаково легко доступны. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет.

    4. Накопитель на жестком магнитном диске (НЖМД - винчестер): является логическим продолжением развития технологии магнитного хранения информации. Имеют очень важные достоинства: - чрезвычайно большая емкость; - простота и надежность использования; - возможность обращаться к тысячам файлов одновременно; - высокая скорость доступа к данным.

    5. Уже рассмотренные нами CD и DVD-диски.

    Но так как потоки информации только увеличиваются то для ее создания, обработки, хранения и передачи необходимо разрабатывать все новые и новые средства и приспособления.

    Мы уже рассматривали выше хранение данных на CD и DVD-дисках. Несмотря на их удобство, в связи с необходимостью использования максимально большого объема информации, уже начинается процесс их вытеснения. В ближайшие годы в таких устройствах персональной вычислительной техники, как компьютер, флэш-память будет грозным соперником жёстких дисков.

    6. Флеш-память (англ. Flash-Memory) -- разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

    Благодаря своей компактности, дешевизне и низкой потребности в электроэнергии флеш-память уже широко используется в портативных устройствах, работающих на батарейках и аккумуляторах -- цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах. Кроме того, она используется для хранения встроенного программного обеспечения в различных периферийных устройствах (маршрутизаторах, мини-АТС, коммуникаторах, принтерах, сканерах). Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.

    Основное слабое место флеш-памяти -- количество циклов перезаписи. Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи -- это намного больше, чем способна выдержать дискета или компакт-диск. Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive). Благодаря большой скорости, объёму и компактным размерам USB флеш-носители уже вытесняют с рынка компакт-диски.

    Цели и задачи:

    • Поиск информации.

    • Выяснить принцип работы и объем информации дискеты, диска, винчестера.

    • Выявить достоинства и недостатки.


    Виды носителей.

    • Носитель – это материальный объект, способный хранить информацию.

    • Носителями информации во внешней памяти современных компьютеров являются магнитные или оптические (лазерные) диски, магнитные ленты и некоторые другие.


    Гибкие магнитные диски (дискеты).

      Накопитель на гибких дисках принципиально похож на накопитель на жестких дисках. Скорость вращения гибкого диска примерно в 10 раз медленнее, а головки касаются поверхности диска. В основном структура информации на дискете, как физическая так и логическая, такая же как на жестком диске. С точки зрения логической структуры на дискете отсутствует таблица разбиения диска.


    Принцип работы дискеты.

      В приводе флоппи-диска (гибкого диска, или просто дискеты) имеются два двигателя: один обеспечивает стабильную скорость вращения вставленной в накопитель дискеты, а второй перемещает головки записи-чтения. Скорость вращения первого двигателя зависит от типа дискеты и составляет от 300 до 360 об/мин. Двигатель для перемещения головок в этих приводах всегда шаговый. С его помощью головки перемещаются по радиусу от края диска к его центру дискретными интервалами. В отличие от привода винчестера головки в данном устройстве не «парят» над поверхностью флоппи-диска, а касаются ее.


    Оптический (лазерный) диск.

      Первые оптические лазерные диски появились в 1972 году и продемонстрировали большие возможности по хранению информации. Объемы хранимой на них информации позволяли использовать их для хранения огромных массивов данных (таких как базы данных, энциклопедии, коллекции видео и аудио данных). Легкая замена этих дисков позволяла, «носить с собой» все материалы требуемые для работы, в любом объеме. Оптические диски имели очень высокую надежность и долговечность, что позволяло использовать их для архивного хранения информации.


    Принцип работы диска.

      Принцип работы дисковода напоминает принцип работы обычных дисководов для гибких дисков. Поверхность оптического диска (CD-ROM) перемещается относительно лазерной головки постоянной линейной скоростью, а угловая скорость меняется в зависимости от радиального положения головки. Луч лазера направляется на дорожку, фокусируясь при этом с помощью катушки. Луч проникает сквозь защитный слой пластика и попадает на отражающий слой алюминия на поверхности диска. При попадании его на выступ, он отражается на детектор и проходит через призму, отклоняющую его на светочувствительный диод. Если луч попадает в ямку он рассеивается и лишь малая часть излучения отражается обратно и доходит до светочувствительного диода. На диоде световые импульсы преобразуются в электрические, яркое излучение преобразуется в нули слабое - в единицы. Таким образом ямки воспринимаются дисководом как логические нули, а гладкая поверхность как логические единицы


    Жесткий магнитный диск (винчестер).

    • Накопитель на жёстких магнитных дисках или винчестерский накопитель - это наиболее массовое запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины - плоттеры, обе поверхности которых покрыты слоем магнитного материала. Используется для постоянного хранения информации - программ и данных.


    Принцип работы винчестера.

    • Поверхность плоттера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении плоттера над ним образуется воздушный слой , который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска.

    • Винчестерские накопители имеют очень большую ёмкость : от сотен Мегабайт до десятков Гбайт. У современных моделей скорость вращения шпинделя достигает 7200 оборотов в минуту, среднее время поиска данных - 10 мс, максимальная скорость передачи данных до 40 Мбайт/ с.

    • В отличие от дискеты, винчестерский диск вращается непрерывно .

    • Винчестерский накопитель связан с процессором через контроллер жесткого диска.

    • Все современные накопители снабжаются встроенным кэшем (64 Кбайт и более), который существенно повышает их производительность.


    Достоинства и недостатки.


    Вывод.

    • Рассмотрев все основные виды внешних носителей, мы пришли к выводу, что все они хороши в применении. Однако, в повседневной жизни я выбрала бы диск, т. к. он более распространен, легок в использовании, долговечнее других видов носителей.


    Электронный носитель информации - это устройство для хранения, накапливания и передачи информации. В персональном компьютере для этой цели используется внутренний накопитель информации, который называется жёсткий диск или винчестер . Название "винчестер" появилось исторически для первого созданного жёсткого диска, некоторые величины параметров которого получились аналогичными величинам калибра охотничьего ружья.
    В некоторых случаях пользователь компьютера применяет дополнительные внешние устройства для хранения информации.

    Распространёнными внешними носителями информации являются компакт-диски . Они подразделятся на устройства, предназначенные только для чтения уже изначально записанной на них информации, устройства, предназначенные для однократной записи информации и дальнейшего чтения и устройства, предназначенные для многократного записывания, стирания информации и чтения. Информация записывается на компакт-диск в виде файлов. Компакт-диск для записи вставляется в оптический дисковод компьютера. Информация на компакт-дисках записывается с помощью лазера.

    Компакт-диски, предназначенные только для чтения, часто представляют собой какие-либо обучающие программы, записанные продавцом этих программ.

    фильмы, в том числе обучающие, аудиозаписи.

    Компакт-диски, предназначенные только для чтения обозначаются так: CD-ROM (в переводе - память только для чтения)

    Вот, например, на этот компакт-диск я записала архив моего сайта "Пенсионерка" за два года на всякий случай. При этом с компьютера эти файлы я удалила, так как сайт развивался, многое изменялось, и уже нет смысла хранить все файлы в текущей рабочей папке компьютера, занимая место. Этот компакт-диск можно только читать, нельзя перезаписать или добавить другие файлы. В то же время можно при необходимости скопировать файлы с диска обратно на компьютер.
    Данный диск имеет специальный слой, позволивший напечатать на струйном принтере обложку, этикетку диска с надписями и картинками. Эта технология с тех пор уже устарела. Сейчас разработаны технологии, с помощью которых обложку, этикетку с надписями и картинками можно нанести на диск, просто перевернув его в дисководе другой стороной. Для этого нужно купить чистый компакт-диск "с поддержкой LightScribe", если вам известно, что ваш дисковод поддерживает эту технологию.

    Проще всего вместо изготовления этикеток делать на диске надпись специальным фломастером, который можно купить в компьютерном магазине.

    Компакт-диски, предназначенные для однократной записи информации и для чтения имеют в обозначении букву "R",
    CD-R или DVD+R или DVD-R
    а для многократной записи буквы "RW":
    DVD+RW
    Компакт-диски DVD имеют больший объём, чем CD, и являются более универсальными. На такой универсальный диск можно записать любые файлы, в том числе, аудио и видео. Существуют аудио-диски - Audio-CD, предназначенные только для прослушивания в аудио-плеере. Эту аудио-запись можно также воспроизвести в компьютере при наличии в нём установленной программы воспроизведения.

    Покупая компакт-диски для записи информации , нужно иметь в виду, что они отличаются скоростью записи и объёмом. Выглядит это так:

    DVD + R - диск только для однократной записи (в том числе, видео) и для чтения.
    16х - скорость записи - средняя
    Объём диска - 4, 7 GB гигабайт
    В коробке - 25 пустых дисков (болванок)

    CD-R - диск только для однократной записи (в том числе, видео) и для чтения.
    Объём диска - 700 MB меньше, но зато скорость больше - 52х, количество дисков в коробке - 10 шт.

    DVD + RW - диск для многократной записи, стирания, перезаписи и чтения.
    Скорость записи от 1 до 4x
    Объём диска - 4, 7 GB гигабайт

    Для записи или считывания файлов на компакт-диск его вставляют в дисковод стационарного компьютера или ноутбука. Нажатием кнопки выдвигается панель дисковода, куда аккуратно укладывается диск зеркальной стороной вниз.

    Повторным нажатием кнопки панель с диском вдвигается обратно.

    В случае если необходимо перенести на внешний носитель большой объём информации, создавая, например, музыкальную коллекцию, видеотеку или коллекцию картин, используют внешние жёсткие диски . Они обычно имеют небольшие размеры и вес, большой объём для хранения информации, высокую скорость записи и считывания, а также долговечны. Сохранение коллекции файлов на жёстком диске не требует физического места в квартире.

    В то время как для хранения коллекции на компакт-дисках требуются специальные стойки и место для них.

    Кроме того, компакт-диски легко поцарапать, в результате чего нельзя будет прочитать записанные файлы. Надёжность хранения файлов на жёстком диске значительно выше. Информацию на внешнем жёстком диске можно многократно перетирать и перезаписывать и, разумеется, считывать.

    Жёсткие диски существуют различного внешнего вида и с различными параметрами.

    Они подключаются к компьютеру при помощи кабеля с разъёмом USB.

    Существуют также внешние миниатюрные устройства для записи и хранения информации, которые называются "флеш-память" или "флеш-накопитель" или просто "флешка" . В основе этого устройства находится микросхема, которая умеет сохранять информацию даже при отключении питания. Флеш допускает многократную перезапись информации. Современные флешки последних моделей по объёму памяти даже превосходят компакт-диски.

    Флеш-накопители удобны по причине малых размеров и простоты подключения не только к компьютеру, но, например, даже к телевизору. Современные цифровые телевизоры позволяют воспроизводить кинофильмы, записанные на флеш-накопителе в некоторых определённых форматах. Флешка вставляется в имеющееся на корпусе телевизора гнездо "USB".

    Внешние носители информации

    В этом разделе я расскажу о внешних носителях информации. Напомню, что в иерархии памяти они стоят последними. На них можно записать больше всего данных. Подобные накопители не так удобны (например, зачастую пользователю лень поменять компакт-диск), зато стоят совсем дешево.

    Внешние носители – это не только диски или дискеты. К ним также относятся внешние жесткие диски, оптические приводы, USB-flash-карты и т. д.

    Внешний жесткий диск

    Внешние жесткие диски существуют достаточно давно. По строению они почти не отличаются от внутренних. Можно сказать, что это самые обычные винчестеры, но поставляемые не вместе с компьютером (в частности, с ноутбуком), а в специальном пластиковом корпусе.

    Кроме жесткого диска, там размещена специальная микросхема, преобразующая сигналы для передачи по одному из разъемов, выведенных на ноутбуке или настольном ПК). Вы подключаете небольшую коробочку с помощью кабеля к компьютеру, и через несколько секунд операционная система определяет новый жесткий диск (рис. 4.11). Ее даже не придется перезагружать.

    Рис. 4.11. Внешний жесткий диск формата 2,5”

    Сегодня используется два способа подключения жесткого диска: через USB и FireWire. О первом типе говорилось уже не раз. Его назначение универсально, поэтому с ним совместимы не только мышь, клавиатура, принтер, сканер, но и некоторые внешние носители.

    Какое-то время назад FireWire (он также известен как IEEE 1394 и i.Link) был доступен только для владельцев профессиональных и дорогих компьютеров, но сейчас он есть почти в каждом ноутбуке. Формально FireWire предпочтителен для подключения внешнего жесткого диска. Из-за лучшей защищенности он сможет обеспечить большую надежность и скорость передачи данных. Однако внешних жестких дисков, поддерживающих формат IEEE 1394, на рынке совсем немного. Чаще всего они совместимы и с USB 2.0.

    Существует способ превратить обычный внутренний жесткий диск во внешний. В компьютерных магазинах есть неплохой выбор внешних кейсов для жестких дисков. Вам необходимо приобрести кейс и жесткий диск к нему. После чего по инструкции вставить винчестер внутрь – и все готово.

    Важно соблюсти несколько правил. В предыдущей главе я говорил, что бывает несколько размеров винчестеров, самые распространенные – 3,5 и 2,5”. Первые используются в настольных компьютерах, вторые – в мобильных. Помните, что кейс может быть совместим только с одним из них.

    Следует обратить внимание на интерфейс подключения. Это может быть Serial ATA (или SATA) и IDE (или UDMA, Ultra ATA). Необходимо, чтобы и жесткий диск, и кейс поддерживали один и тот же способ подключения. В противном случае ничего не будет работать.

    Внешний оптический привод

    Сегодня производители ноутбуков стараются оснастить каждую модель оптическим приводом для работы с компакт-дисками. В случае миниатюрных субноутбуков это сделать нельзя по вполне понятным причинам. Однако если вам необходимо работать с дисками, то выходом из ситуации станет приобретение внешнего оптического привода.

    Как в случае с винчестерами, внешние приводы чаще всего являются внутренними версиями, заключенными в кейс. Они бывают разных размеров. Самые большие и тяжелые – аналоги приводов, устанавливаемых в настольные компьютеры. Наверное, их приобретать не следует. Во-первых, эти приводы довольно громоздкие, во-вторых, для работы может понадобиться дополнительная розетка, что говорит не в пользу мобильности.

    При желании можно найти и «ноутбучный» внешний привод. Он будет намного компактнее и, конечно, дороже. Если вам нужна специальная версия для транспортировки, то именно такой вариант станет одним из лучших. «Одним из» потому, что есть модели, разработанные специально для переноса вместе с ноутбуком (рис. 4.12).

    Рис. 4.12. Специальный привод, предназначенный для переноса с ноутбуком

    Подобные оптические приводы базируются не на внутренних аналогах, что отрицательным образом сказывается на их стоимости. Зато удобство транспортировки на высоте.

    Что касается способа подключения, то почти всегда это USB 2.0. Иногда к нему добавляется FireWire, но таких моделей не много.

    Есть еще один вид внешних носителей – USB-flash-приводы (рис. 4.13), о которых мы уже не раз говорили. Этот тип носителей может оказаться для вас наиболее удобным.

    Рис. 4.13. USB-накопитель на основе flash-памяти

    Из книги Запись CD и DVD: профессиональный подход автора Бахур Виктор

    Глава 1 Оптические носители информации Строение CD. Строение DVD. Правила эксплуатации компакт-дисков. Привод CD/DVD.В конце 1970-х годов компании Sony и Philips начали совместную разработку единого стандарта оптических носителей информации. Philips создала лазерный

    Из книги Продвижение бизнеса в Интернет. Все о PR и рекламе в сети автора Гуров Филипп

    Из книги Windows Vista без напряга автора Жвалевский Андрей Валентинович

    3.4. Если принесли носители В наше время развелось довольно много типов так называемых внешних носителей данных – компакт-дисков, DVD, «флэшек» и т. д. Кое-кто еще использует старые добрые дискеты. С этими внешними носителями тоже надо уметь

    Из книги Эффективное делопроизводство автора Пташинский Владимир Сергеевич

    Внешние документы Для осуществления оперативных связей с организациями и гражданами в случае невозможности бездокументного обмена (личного или по телефону) составляются письма. При необходимости срочной передачи информации составляются телефонограммы или факсы, реже

    Из книги Основы информатики: Учебник для вузов автора Малинина Лариса Александровна

    1.2. Понятие информации. Общая характеристика процессов сбора, передачи, обработки и накопления информации Вся жизнь человека так или иначе связана с накоплением и обработкой информации, которую он получает из окружающего мира, используя пять органов чувств – зрение,

    Из книги Новейший самоучитель работы на компьютере автора Белунцов Валерий

    Глава 7 Сменные носители информации? Компакт-диски и DVD.? Flash-устройства.? Гибкие диски и LS-120.? Другие виды

    Из книги TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) автора Фейт Сидни М

    4.11.1 Носители для DIX Ethernet Традиционным магистральным носителем для данной технологии является узкополосный коаксиальный кабель. Первоначально применялся жесткий полудюймовый кабель с сопротивлением 50 Ом. Позднее стал использоваться тонкий и более гибкий коаксиальный

    Из книги Информатика: аппаратные средства персонального компьютера автора Яшин Владимир Николаевич

    4.15.1 Конфигурация и носители для Token-Ring Локальные сети Token-Ring были представлены компанией IBM, а позднее IEEE стандартизировал их как протокол 802.5. Станции в сети Token-Ring образуют физическое

    Из книги Цифровой журнал «Компьютерра» № 179 автора Журнал «Компьютерра»

    6.7.2.2. Внешние накопители информации на жестких магнитных дисках Внешние (переносные) накопители информации на жестких магнитных дисках, также как и внутренние НЖМД, предназначены для долговременного хранения больших объемов информации (десятки и сотни гигабайт) и

    Из книги Linux глазами хакера автора Флёнов Михаил Евгеньевич

    Анализ поправок, принятых Госдумой, к закону «Об информации, информационных технологиях и о защите информации» Сергей Голубицкий Опубликовано 26 июня 2013 21 июня Государственная Дума РФ приняла сразу во втором и третьем чтении Федеральный Закон «О

    Из книги Интернет-маркетинг. Полный сборник практических инструментов автора Вирин Федор Юрьевич

    11.3. Внешние DNS-серверы Если в локальном файле /etc/hosts не найдено записи о нужном имени, то компьютер должен запросить эту информацию у DNS-сервера. Для этого нужно знать IP-адрес этого самого сервера. Как система его узнает? Из файла /etc/resolv.conf, который должен выглядеть примерно

    Из книги Восстановление данных на 100% автора Ташков Петр Андреевич

    13.4.6. Носители Теперь рассмотрим, сколько носителей нам понадобится для хранения всех резервных копий. Для каждого типа данных нужны свои носители, потому что их копирование происходит с разной периодичностью и рассматривать их надо отдельно:? конфигурационные файлы. Мы

    Из книги iOS. Приемы программирования автора Нахавандипур Вандад

    Из книги Ноутбук [секреты эффективного использования] автора Пташинский Владимир

    Носители и накопители Информация, о восстановлении которой пойдет речь в этой книге, существует в двоичном виде на различных устройствах хранения, или носителях. С точки зрения обычного пользователя, носитель – это устройство, способное хранить информацию и выдавать ее

    Из книги автора

    12.2. Запись информации в файлы и считывание информации из файлов Постановка задачи Требуется сохранить на диске информацию (например, текст, данные, изображения и

    Из книги автора

    Внешние повреждения Внешние повреждения – то, на что необходимо обратить внимание еще до того, как вы заплатите деньги. В первую очередь осмотрите корпус ноутбука на наличие трещин. По большому счету о подобных дефектах вам должны будут сказать сразу. Кроме того, если они

    ВНИМАНИЕ!
    Здесь приводится очень сокращённый текст реферата. Полную версию реферат по информатике можно скачать бесплатно по указанной выше ссылке.

    Виды носителей информации

    Носитель информации – физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

    Носитель информации - строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

    Основа современных информационных технологий – это ЭВМ. Когда речь идет об ЭВМ, то можно говорить о носителях информации, как о внешних запоминающих устройствах (внешней памяти). Эти носители информации можно классифицировать по различным признакам, например, по типу исполнения, материалу, из которого изготовлен носитель и т.п. Один из вариантов классификация носителей информации представлен на рис. 1.1.

    Список носителей информации на рис. 1.1 не является исчерпывающим. Некоторые носители информации мы рассмотрим более подробно в следующих разделах.

    Ленточные носители информации

    Магнитная лента - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (у-Fе2О3), двуокиси хрома (СrО2) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

    Дисковые носители информации

    Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию .

    Накопители на дисках наиболее разнообразны:

    • Накопители на гибких магнитных дисках (НГМД), они же флоппи-диски, они же дискеты
    • Накопители на жестких магнитных дисках (НЖМД), они же винчестеры (в народе просто «винты»)
    • Накопители на оптических компакт-дисках:
      • CD-ROM (Compact Disk ROM)
      • DVD-ROM
    Имеются и другие разновидности дисковых носителей информации, например, магнитооптические диски, но ввиду их малой распространенности мы их рассматривать не будем.

    Накопители на гибких магнитных дисках

    Некоторое время назад дискеты были самым популярным средством передачи информации с компьютера на компьютер, так как интернет в те времена был большой редкостью, компьютерные сети тоже, а устройства для чтения-записи компакт дисков стоили очень дорого. Дискеты и сейчас используются, но уже достаточно редко. В основном для хранения различных ключей (например, при работе с системой клиент-банк) и для передачи различной отчетной информации государственным надзорным службам.

    Дискета - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х - начале 2000-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД - «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД - «накопитель на гибких магнитных дисках», жаргонный вариант - флоповод, флопик, флопарь от английского floppy-disk или вообще "печенюшка"). Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства - дисковод (флоппи-дисковод). Дискета обычно имеет функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Внешний вид 3,5” дискеты представлен на рис. 1.2.

    Накопители на жестких магнитных дисках

    В качестве накопителей на жестких магнитных дисках широкое распространение в ПК получили накопители типа «винчестер».

    Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 КВ (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30/30 известного охотничьего ружья «Винчестер».

    Накопители на оптических дисках

    Компакт-диск («CD», «Shape CD», «CD-ROM», «КД ПЗУ») - оптический носитель информации в виде диска с отверстием в центре, информация с которого считывается с помощью лазера. Изначально компакт-диск был создан для цифрового хранения аудио (т. н. Audio-CD), однако в настоящее время широко используется как устройство хранения данных широкого назначения (т. н. CD-ROM). Аудио-компакт-диски по формату отличаются от компакт-дисков с данными, и CD-плееры обычно могут воспроизводить только их (на компьютере, конечно, можно прочитать оба вида дисков). Встречаются диски, содержащие как аудиоинформацию, так и данные - их можно и послушать на CD-плеере, и прочитать на компьютере.

    Оптические диски имеют обычно поликарбонатную или стеклянную термообработанную основу. Рабочий слой оптических дисков изготавливают в виде тончайших плёнок легкоплавких металлов (теллур) или сплавов (теллур-селен, теллур-углерод, теллур-селен-свинец и др.), органических красителей. Информационная поверхность оптических дисков покрыта миллиметровым слоем прочного прозрачного пластика (поликарбоната). В процессе записи и воспроизведения на оптических дисках роль преобразователя сигналов выполняет лазерный луч, сфокусированный на рабочем слое диска в пятно диаметром около 1 мкм. При вращении диска лазерный луч следует вдоль дорожки диска, ширина которой также близка к 1 мкм. Возможность фокусировки луча в пятно малого размера позволяет формировать на диске метки площадью 1-3 мкм. В качестве источника света используются лазеры (аргоновые, гелий-кадмиевые и др.). В результате плотность записи оказывается на несколько порядков выше предела, обеспечиваемого магнитным способом записи. Информационная ёмкость оптического диска достигает 1 Гбайт (при диаметре диска 130 мм) и 2-4 Гбайт (при диаметре 300 мм).

    Широкое применение в качестве носителя информации получили также магнитооптические компакт-диски типа RW (Re Writeble). На них запись информации осуществляется магнитной головкой с одновременным использованием лазерного луча. Лазерный луч нагревает точку на диске, а электромагнит изменяет магнитную ориентацию этой точки. Считывание же производится лазерным лучом меньшей мощности.

    Во второй половине 1990-х годов появились новые, весьма перспективные носители документированной информации - цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

    По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

    1. Диски с постоянной (нестираемой) информацией (CD-ROM). Это пластиковые компакт-диски диаметром 4,72 дюйма и толщиной 0,05 дюйма. Они изготавливаются с помощью стеклянного диска-оригинала, на который наносится фоторегистрирующий слой. В этом слое лазерная система записи формирует систему питов (меток в виде микроскопических впадин), которая затем переносится на тиражируемые диски-копии. Считывание информации осуществляется также лазерным лучом в оптическом дисководе персонального компьютера. CD-ROM обычно обладают ёмкостью 650 Мбайт и используются для записи цифровых звуковых программ, программного обеспечения для ЭВМ и т.п.;
    2. Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write-Once, Read-Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ. Они представляют собой основу из прозрачного материала, на которую нанесён рабочий слой;
    3. Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW; CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения. Они аналогичны дискам для однократной записи, но содержат рабочий слой, в котором физические процессы записи являются обратимыми. Технология изготовления таких дисков сложнее, поэтому они стоят дороже дисков для однократной записи.
    В настоящее время оптические (лазерные) диски являются наиболее надёжными материальными носителями документированной информации, записанной цифровым способом. Вместе с тем активно ведутся работы по созданию ещё более компактных носителей информации с использованием так называемых нанотехнологий, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по нанотехнологии, может заменить тысячи лазерных дисков.

    Электронные носители информации

    Вообще говоря, все рассмотренные ранее носители тоже косвенно связаны с электроникой. Однако имеется вид носителей, где информации хранится не на магнитных/оптических дисках, а в микросхемах памяти. Эти микросхемы выполнены по FLASH-технологии, поэтому такие устройства иногда называют FLASH-дисками (в народе просто «флэшка»). Микросхема, как можно догадаться, диском не является. Однако операционные системы носители информации с FLASH-памятью определяют как диск (для удобства пользователя), поэтому название «диск» имеет право на существование.

    Флэш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Флэш-память может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи - это намного больше, чем способна выдержать дискета или CD-RW. Стирание происходит участками, поэтому нельзя изменить один бит или байт без перезаписи всего участка (это ограничение относится к самому популярному на сегодня типу флэш-памяти - NAND). Преимуществом флэш-памяти над обычной является её энергонезависимость - при выключении энергии содержимое памяти сохраняется. Преимуществом флэш-памяти над жёсткими дисками, CD-ROM-ами, DVD является отсутствие движущихся частей. Поэтому флэш-память более компактна, дешева (с учётом стоимости устройств чтения-записи) и обеспечивает более быстрый доступ.

    Хранение информации

    Хранение информации - это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга - библиотека, картина - музей, фотография - альбом). Этот процесс такой же древний, как и жизнь человеческой цивилизации. Уже в древности человек столкнулся с необходимостью хранения информации: зарубки на деревьях, чтобы не заблудиться во время охоты; счет предметов с помощью камешков, узелков; изображение животных и эпизодов охоты на стенах пещер.

    ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.

    Информационная система - это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации. Наличие таких процедур - главная особенность информационных систем, отличающих их от простых скоплений информационных материалов.

    От информации к данным

    Человек по-разному подходит к хранению информации. Все зависит от того сколько ее и как долго ее нужно хранить. Если информации немного ее можно запомнить в уме. Нетрудно запомнить имя своего друга и его фамилию. А если нужно запомнить его номер телефона и домашний адрес мы пользуемся записной книжкой. Когда информация запомнена (сохранена) ее называют данные.

    Данные в компьютере имеют различное назначение. Некоторые из них нужны только в течение короткого периода, другие должны храниться длительное время. Вообще говоря, в компьютере есть довольно много «хитрых» устройств, которые предназначены для хранения информации. Например, регистры процессора, регистровая КЭШ-память и т.п. Но большинство «простых смертных» даже не слышали таких «страшных» слов. Поэтому мы ограничимся рассмотрением оперативной памяти (ОЗУ) и постоянной памяти, к которой относятся уже рассмотренные нами носители информации.

    Оперативная память компьютера

    Как уже было сказано, в компьютере тоже есть несколько средств для хранения информации. Самый быстрый способ запомнить данные - это записать их в электронные микросхемы. Такая память называется оперативной памятью. Оперативная память состоит из ячеек. В каждой ячейке может храниться один байт данных.

    У каждой ячейки есть свои адрес. Можно считать, что это как бы номер ячейки, поэтому такие ячейки еще называют адресными ячейками. Когда компьютер отправляет данные на хранение в оперативную память, он запоминает адреса, в которые эти данные помещены. Обращаясь к адресной ячейке, компьютер находит в ней байт данных.

    Регенерация оперативной памяти

    Адресная ячейка оперативной памяти хранит один байт, а поскольку байт состоит из восьми битов, то в ней есть восемь битовых ячеек. Каждая битовая ячейка микросхемы оперативной памяти хранит электрический заряд.

    Заряды не могут храниться в ячейках долго - они «стекают». Всего за несколько десятых долей секунды заряд в ячейке уменьшается настолько, что данные утрачиваются.

    Дисковая память

    Для постоянного хранения данных используют носители информации (см. раздел «Виды носителей информации»). Компакт диски и дискеты имеют относительно небольшое быстродействие, поэтому большая часть информации, к которой необходим постоянный доступ, хранится на жестком диске. Вся информация на диске хранится в виде файлов. Для управления доступом к информации существует файловая система. Имеется несколько типов файловых систем.

    Структура данных на диске

    Чтобы данные можно было не только записать на жесткий диск, а потом еще и прочитать, надо точно знать, что и куда было записано. У всех данных должен быть адрес. У каждой книги в библиотеке есть свой зал, стеллаж, полка и инвентарный номер - это как бы ее адрес. По такому адресу книгу можно найти. Все данные, которые записываются на жесткий диск, тоже должны иметь адрес, иначе их не разыскать.

    Файловые системы

    Стоит отметить, что структура данных на диске зависит от типа файловой системы. Все файловые системы состоят из структур, необходимых для хранения и управления данными. Эти структуры обычно включают загрузочную запись операционной системы, каталоги и файлы. Файловая система также исполняет три главных функции:

    1. Отслеживание занятого и свободного места
    2. Поддержка имен каталогов и файлов
    3. Отслеживание физического местоположения каждого файла на диске.
    Различные файловые системы используются различными операционными системами (ОС). Некоторые OС могут распознавать только одну файловую систему, в то время как другие OС могут распознавать несколько. Некоторые из наиболее распространенных файловых систем:
    • FAT (File Allocation Table)
    • FAT32 (File Allocation Table 32)
    • NTFS (New Technology File System)
    • HPFS (High Performance File System)
    • NetWare File System
    • Linux Ext2 и Linux Swap
    FAT

    Файловая система FAT используется DOS, Windows 3.x и Windows 95. Файловая система FAT также доступна в Windows 98/Me/NT/2000 и OS/2.

    Файловая система FAT реализуется при помощи File Allocation Table (FAT - Таблицы Распределения Файлов) и кластеров. FAT - сердце файловой системы. Для безопасности FAT имеет дубликат, чтобы защитить ее данные от случайного стирания или неисправности. Кластер - самая маленькая единица системы FAT для хранения данных. Один кластер состоит из фиксированного числа секторов диска. В FAT записано, какие кластеры используются, какие являются свободными, и где файлы расположены в пределах кластеров.

    FAT-32

    FAT32 - файловая система, которая может использоваться Windows 95 OEM Service Release 2 (версия 4.00.950B), Windows 98, Windows Me и Windows 2000. Однако, DOS, Windows 3.x, Windows NT 3.51/4.0, более ранние версии Windows 95 и OS/2 не распознают FAT32 и не могут загружать или использовать файлы на диске или разделе FAT32.

    FAT32 - развитие файловой системы FAT. Она основана на 32-битовой таблице распределения файлов, более быстрой, чем 16-битовые таблицы, используемые системой FAT. В результате, FAT32 поддерживает диски или разделы намного большего размера (до 2 ТБ).

    NTFS

    NTFS (Новая Технология Файловой Системы) доступна только Windows NT/2000. NTFS не рекомендуется использовать на дисках размером менее 400 МБ, потому что она требует много места для структур системы.

    Центральная структура файловой системы NTFS - это MFT (Master File Table). NTFS сохраняет множество копий критической части таблицы для защиты от неполадок и потери данных.

    HPFS

    HPFS (Файловая система с высокой производительностью) - привилегированная файловая система для OS/2, которая также поддерживается старшими версиями Windows NT.

    В отличие от файловых систем FAT, HPFS сортирует свои каталоги, основываясь на именах файлов. HPFS также использует более эффективную структуру для организации каталога. В результате доступ к файлу часто быстрее и место используется более эффективно, чем с файловой системой FAT.

    HPFS распределяет данные файла в секторах, а не в кластерах. Чтобы сохранить дорожку, которая имеет секторы или не используется, HPFS организовывает диск или раздел в виде групп по 8 МБ. Такое группирование улучшает производительность, потому что головки чтения/записи не должны возвращаться на нулевую дорожку каждый раз, когда ОС нуждается в доступе к информации о доступном месте или местоположении необходимого файла.

    NetWare File System

    Операционная система Novell NetWare использует файловую систему NetWare, которая была разработана специально для использования службами NetWare.

    Linux Ext2 и Linux Swap

    Файловые системы Linux Ext2 и Linux были разработаны для ОС Linux OS (Версия UNIX для свободно распространения). Файловая система Linux Ext2 поддерживает диск или раздел с максимальным размером 4 ТБ.

    Каталоги и путь к файлу

    Рассмотрим для примера структуру дискового пространства системы FAT, как самой простой.

    Информационная структура дискового пространства - это внешнее представление дискового пространства, ориентированное на пользователя и определяемое такими элементами, как том (логический диск), каталог (папка, директория) и файл. Эти элементы используются при общении пользователя с операционной системой. Общение осуществляется с помощью команд, выполняющих операции доступа к файлам и каталогам.

    Источники информации

    1. Информатика: Учебник. – 3-е перераб. изд. / Под ред. Н.В. Макаровой. – М.: Финансы и статистика, 2002. – 768 с.: ил.
    2. Волк В.К. Исследование функциональной структуры памяти персонального компьютера. Лабораторный практикум. Учебное пособие. Издательство Курганского государственного университета, 2004 г. – 72 с.