• Помехи и искажения в канале связи. Помехи и искажения

    Помехи в системах связи

    Внешние помехи принимаются антенной вместе с полезным сигналом и создаются:

    а) электромагнитными процессами, происходящими в атмосфере, ионосфере и космическом пространстве;

    б) электроустановками и соседними р/станциями;

    в) средствами постановки преднамеренных помех.

    Внутренние помехи локализованы в различных элементах системы радиосвязи (флуктуационные шумы ламп и полупроводниковых приборов, нестабильность питающих напряжений и т.п.). Характеристики внутренних помех приемного устройства обычно пересчитываются к его входу.

    Внутренние и внешние помехи являются аддитивными, когда на входе ПрУ сигнал представляется в виде:

    где S(t) - передаваемый сигнал, n(t) - помеха. Аддитивные помехи: флуктуационные, импульсные и синусоидальные.

    А. К Флуктуационным помехам (ФП) относятся шумы приемника и шумы среды распространения сигнала. Их спектр на входе ПУ обычно шире полосы пропускания ПУ. Плотность вероятности ФП часто является нормальной. В большинстве случаев ее принимают как аддитивный БГШ.

    Б. Импульсные помехи представляют собой непериодическую последовательность одиночных радиоимпульсов и создаются атмосферными и промышленными источниками помех. (В некоторых случаях посторонними каналами связи).

    В. Синусоидальные помехи (СП) - помехи, сосредоточенные по спектру (ширина их спектра мала по сравнению с полосой пропускания приемного тракта). Источники СП:

    • станции преднамеренных помех;
    • генераторы ВЧ сигналов;
    • радиостанции эталонных частот. К синусоидальным можно отнести комбинированные помехи внутри самого приемника.

    Искажения сигналов в линиях связи

    Искажения сигналов в ЛС обусловлены хаотическим изменением коэффициента передачи физической среды, в которой распространяется сигнал. Изменения коэффициента проявляется в флуктуациях амплитуды и фазы в точке приема. В КВ и УКВ диапазонах частот возникают искажения сигналов в виде замираний, обусловленных многолучевостью распространения сигналов. Обычно такие искажения называют мультипликативной помехой. В этом случае радиосигнал представляется в виде произведения

    передаваемого сигнала S(t), и помехи m(t).

    В общем случае на полезный сигнал воздействуют аддитивная и мультипликативная помехи.

    Речевые сообщения и методы их преобразования

    Речь - непрерывный нестационарный случайный процесс, образованный следующими друг за другом звуками.

    Звуки речи образуются в результате прохождения воздушного потока из легких через голосовые связки, полость рта и носа. Спектральная плотность речевого процесса S(t), определенная экспериментально, представлена на рисунке 1.

    Она достигает максимального значения на частоте 500 Гц. Ширина спектра на уровне 0,5 составляет примерно 3 КГц (DF=3400-3100) для служебной связи. В радиовещании художественных программ (КВ) – 50-4500 Гц, в УКВ спектр ТЛФ КС – 30-10000 Гц.

    Возможные способы передачи речи делятся на:

    • непосредственную передачу речевого сигнала;
    • передача с предварительным преобразованием речевого сигнала.

    Непосредственная передача речевого сообщения может осуществляться по аналоговым, импульсным и цифровым каналам. В аналоговых КС сигналом является гармоническое колебание, один из параметров которого (амплитуда, частота, фаза) изменяется по закону речевого сообщения. При передаче речевых сообщений по импульсным КС по закону речевого процесса изменяются параметры радиоимпульсов (амплитуда, длительность и время появления). В цифровых КС непрерывные речевые сообщения передаются с помощью цифровых сигналов.

    Передача с предварительным преобразованием речевого сигнала осуществляется по каналам связи, имеющим физические ограничения, в частности малую полосу пропускания (скорость передачи информации). Для этого аналоговый сигнал предварительно искажается в основном двумя путями:

    • путем непосредственной компрессии (сжатия по амплитуде, частоте или длительности передачи звуков);
    • >на основе методов функционального преобразования, а затем, на приемной стороне, восстанавливается. Последний подход широко используется в современных сотовых сетях связи.

    Лекция № 4.

    Помеха – это любое мешающее внешнее или внутреннее воздействие на сигнал, вызывающее случайные отклонения принятого сигнала от передаваемого .

    Помехи очень разнообразны как по своему происхождению, так и по физическим свойствам. Иногда помехи резко отличаются от сигнала, а иногда даже трудно определить, где сигнал, а где помеха. Вдруг в телефоне слышно два разговора. Надо время, чтобы различить, где полезный сигнал, а где случайно подключившаяся «помеха». В то же время эта «помеха» - полезный сигнал для другого абонента.

    Помехи можно классифицировать по следующим признакам:

    По происхождению (месту возникновения);

    По физическим свойствам;

    По характеру воздействия на сигнал.

    По происхождению в первую очередь надо отметить внутренние шумы аппаратуры, входящей в канал связи, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах. Эти помехи также называются тепловыми шумами . Квадрат эффективного напряжения теплового шума на сопротивлении R определяется известной формулой Найквиста

    где – абсолютная температура сопротивления ; – полоса частот;

    Вт·с/град – постоянная Больцмана.

    Эти шумы принципиально устранимы только при абсолютном нуле ().

    Помехи от посторонних источников делятся на:

    - атмосферные помехи (грозовые разряды, полярные сияния и др.), обусловленные электрическими процессами в атмосфере;

    - индустриальные помехи , возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, медицинские установки, системы зажигания двигателей и др.);

    - помехи от посторонних станций и каналов , возникающие от различных нарушений режима их работы и свойств каналов;

    - космические помехи , связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.

    По физическим свойствам различают флуктуационные и сосредоточенные помехи.

    Флуктуационными называют помехи, обусловленные флуктуациями тех или иных физических величин. Название происходит от физического понятия флуктуации (лат. fluctuation – колебание) – случайные отклонения физических величин от среднего. Флуктуационная помеха представляет собой непрерывные колебания, меняющиеся случайным образом. Они проникают в систему связи не только извне, но и зарождаются также внутри самой системы в различных ее звеньях.

    Причинами внутренних флуктуационных помех являются в основном тепловой шум в проводниках и дробовый эффект в электронных приборах. К внешним флуктуационным помехам относятся помехи космического происхождения, помехи, вызванные взаимными влияниями цепей в линиях связи (линейные и нелинейные переходы, попутный поток и некоторые другие).


    Характерной особенностью флуктуационных помех является то, что явления, порождающие эти помехи, лежат в физической природе вещей (дискретное строение вещества, дискретная природа электромагнитного поля) и принципиально не могут быть устранены.

    К сосредоточенным во времени (импульсным) помехам относятся помехи в виде одиночных коротких импульсов различной интенсивности и длительности, следующих один за другим через случайные, достаточно большие промежутки времени. Причинами импульсных помех являются: грозовые разряды; радиостанции, работающие в импульсном режиме; линии электропередачи и другие энергоустановки; система зажигания и энергообеспечения транспорта; перегрузки усилителей; плохие контакты в оборудовании и питании; недостатки разработки и изготовления оборудования; эксплуатационные работы (реконструкция, профилактика, подключение к действующему каналу измерительных приборов, ошибочная коммутация и т.п.).

    К сосредоточенным по спектру помехам относятся помехи посторонних радиостанций, генераторов высокой частоты различного назначения (медицинские, промышленные, бытовые и др.), переходные помехи от соседних каналов многоканальных систем. Обычно это гармонические или модулированные колебания с шириной спектра меньшей или соизмеримой с шириной спектра полезного сигнала.

    По характеру воздействия на сигнал различают аддитивные и мультипликативные помехи.

    Аддитивной является помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействуют на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

    Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. Эти помехи непосредственно связаны с процессами прохождения сигнала в среде распространения и могут ощущаться только при наличии сигнала в системе связи.

    В реальных каналах электросвязи обычно имеет место не одна, а совокупность помех. Но основными можно считать флуктуационные помехи, воздействующие на сигнал как аддитивные.

    Искажения – это такие изменения формы сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линиях связи, цепях передатчика и приемника.

    Существует два вида искажений:

    - линейные искажения , возникающие в линейных цепях;

    - нелинейные искажения , возникающие в нелинейных цепях.

    Искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

    При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. А дальше изменение формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при дальнейшей обработке в приемнике. Другое дело помехи – они заранее неизвестны и поэтому не могут быть устранены полностью.

    Методы борьбы с помехами .

    При всем многообразии методов борьбы с помехами их можно свести к трем основным направлениям:

    1. Подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо, так как существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.).

    2. Уменьшение помех на путях их проникновения в приемник. Помехи обычно воздействуют на сигнал в среде распространения, поэтому как проводные, так и радиолинии строятся так, чтобы обеспечить заданный уровень помех.

    3. Ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление борьбы с помехами является предметом изучения в теории электросвязи.

    В микроэлектронных устройствах линии связи чаще всего являются электрически разомкнутыми линиями без потерь. Входное сопротивление таких линий носит емкостной характер, и его можно представить в виде конденсатора С n 11 , включенного параллельно приемнику сигнала и имеющего входной импеданс Z вх1 (рис. 2.55). В линии связи возникают помехи, источником которых являются тепловые шумы элементов линии, ЭДС гальванических пар и термопар, возникающих в местах контакта разнородных металлов. Напряжение помех U вн1 такого вида включено последовательно с Z вх1. Помехи такого вида зависят только от собственных параметров канала связи, поэтому будем называть их внутренними.

    При наличии нескольких каналов связи обычно обратный провод делают общим для всех или для нескольких линий связи из соображений экономии проводов или из-за невозможности изолирования общих выводов нескольких источников и приемников сигналов. Этот факт отмечен введением в эквивалентную схему Z общ.

    Токовые (последовательные) внешние помехи, напряжение которых включено последовательно с ; – напряжение помехи, наводимой из второго канала связи в первый; – напряжение помехи, наводимой из первого канала связи во второй;

    Потенциальные (параллельные) внешние помехи и соответственно, напряжение которых включено параллельно Zвх соответствующего канала: Zвх1 и Zвх2. Такое разделение вида помех позволяет получить обобщенные формулы для расчета значения помех на входе приемника сигнала.

    Для параллельной внешней помехи верно равенство

    где – изображение тока во втором канале (канале, создающем помеху). В соответствии со схемой

    Параграф 2.2: Искажения и помехи в каналах связи.

    Раздел 2: Каналы электросвязи

    Параграф 2.1: Определœение классификации каналов связи.

    Каналом передачи информации принято называть совокупность технических средств, предназначенных для передачи сообщений. Под техническими средствами при этом принято понимать как технические устройства, осуществляющие обработку сообщений сигналов, так и линии связи, физическая среда, в которой располагается сигнал между функциями связи.

    Классификация каналов связи возможна по следующим признакам:

    1. по назначению

    2. по характеру линии связи

    3. по диапазону используемых ими частот

    4. по характеру сигнала на входе и выходе канала

    По назначению каналы делят:

    ­ телœефонные

    ­ телœеграфные

    ­ передача данных

    ­ телœевизионные

    ­ фототелœеграфные

    ­ звукового вещания

    Учитывая зависимость оттого, распространяется сигнал между пунктами связи в свободном пространстве или по направленным линиям различают:

    ­ канал радиосвязи

    ­ канал проводной связи (воздушные, кабельные, волоконно-оптические линии связи)

    На воздушных проводных линиях используются частоты не свыше 150кГц, т.к. на более высоких частотах возрастают помехи и увеличиваются затухания. Коаксиальные кабели, являющиеся основой сетей магистральной дальней связи пропускают диапазон частот до сотен МГц. Радиосвязь осуществляется с помощью электромагнитных волн, распространяется в частично ограниченном(к примеру: землей и ионосферой) пространстве. Сегодня в радиосвязи применяют частоты примерно от 3*103 – 3*1012Гц. Этот диапазон принято в соответствии с десятичной классификации подразделять следующим образом:

    Наименование волн Длина волн Наименование частот Частоты
    Декакилометровые (сверх длинные; СВД) 100…10 км ОНЧ 3…30 кГц
    Километровые (длинные; ДВ) 10…1 км НЧ 30…300 кГц
    Гектаметровые (средние; СВ) 1000…100 м СЧ 300…3000 кГц
    Декаметровые (короткие; КВ) 100…10 м ВЧ 3…30 МГц
    Метровые (ультракороткие; УКВ) 10…1 м ОВЧ 30…300 МГц
    Дециметровые 100…10 см УВЧ 300…3000 МГц
    Сантиметровые 10…1 см СВЧ 3…30 ГГц
    Миллиметровые 10…1 мм КВЧ 30…300 ГГц
    Децимиллиметровые 1…0,1 мм ГПЧ 300…3000 ГГц

    В таблице, в скобках, указаны не стандартные, но используемые на практике названия диапазонов волн. Диапазон децимиллиметровых волн уже вплотную подходит к диапазону инфракрасных волн. Сегодня, благодаря созданию и широкому внедрению квантовых генераторов или лазеров, освоен и диапазон световых волн (оптический диапазон). Практически, в оптико-волоконных линиях связи используются частоты порядка 1014 Гц (длины волн:1,55; 1,35; 0,85 микронов). Важно заметить, что для современного этапа развития техники связи характеризуется тенденция к переходу на более высокие частоты. Это вызвано крайне важно стью повышать скорость передачи информации, меньше интенсивность помех, высокочастотный диапазон, возможность применения помехоустойчивых широкополосных методов модуляции. Применение систем связи с расширенным спектром дает дополнительные возможности по защите информации. По характеру сигналов на входе и выходе канала различают:

    ­ дискретные каналы

    ­ непрерывные каналы

    ­ полунепрерывные каналы

    Всякий дискретный и полу непрерывный канал обязательно содержит внутри себя непрерывный канал – линию связи. Дискретность и непрерывность канала не связана с характером передаваемых сообщений. Можно передавать дискретные сообщения по непрерывному каналу и наоборот.

    Передача сообщений и соответствующих им электрических сигналов через реальные каналы связи сопровождается их изменениями. Эти изменения обусловлены несовершенством реальных каналов. Их можно подразделить:

    ­ детерминированные

    ­ случайные

    Детерминированные изменения сигнала в непрерывном канале определяется построением канала и сводится к изменению масштаба (ослаблению или усилению), задержки (изменение формы сигнала). В дискретном канале детерминированные изменения приводят лишь к задержке, т.к. там входные и выходные сигналы имеют фиксированную импульсную форму. Случайные изменения сигнала в непрерывном так и в дискретном каналах обусловлены помехой, действующей в непрерывном канале. Помеха – случайный процесс, налагающийся на передаваемые сигналы, а также, случайные изменения параметров канала, к примеру, коэффициент передачи. В непрерывном канале, помеха приводит к случайным изменениям формы, масштаба и задержки сигнала. В дискретном канале – к ошибкам. С точки зрения передачи информации, важно подразделœение изменения сигнала на обратимые, т.е не приводящие к потере информации и необратимые. Детерминированным обратным преобразованием входного сигнала является преобразование вида:

    .

    Выходной канал Y(t) отличается от входного X(t) масштабом k и задержкой t. Масштаб должна быть легко восстановлен с помощью соответствующего усиления или ослабления сигнала. Задержка сигнала приводит к задержке приема сообщений. В случае если X(t) в последнем выражении узкополосный сигнал, его удобно представить в квазигармонической форме:

    где - медленно меняющиеся функции времени. При малой задержке t, можно считать, что , и выходной сигнал канала Y(t) можно записать в виде:

    Фазовый сдвиг в канале.

    При узкополосном сигнале малая задержка сводится к некоторому сдвигу фаз. Необратимыми изменениями сигнала являются изменения его формы, вызываемые влиянием линœейных и нелинœейных искажений и помех. При введении этих понятий полагаем, что канал имеет эквивалентную схему замещения в виде четырехполюсника с постоянными параметрами.

    Линœейными искажениями называются изменения сигнала, которые возникают в инœерционном (содержит реактивные элементы) линœейном четырехполюснике с постоянными параметрами. Во временной области линœейные искажения объясняются отличием формы импульсной реакции от . Условием отсутствия искажений является равенство , ĸᴏᴛᴏᴩᴏᴇ точно возможно только в безынерционном четырехполюснике. При выполнении этого условия, сигнал на выходе канала связан с входным сигналом X(t) в соответствии с интегралом Дюамеля случайным соотношением:

    Откуда, в соответствии с фильтрующим свойством d функции , что соответствует случаю наличия в канале лишь обратимых искажений. В частотной области линœейные искажения объясняются нарушением тех соотношений амплитуд и фаз гармонических составляющих, которые существуют в передаваемом сигнале. Нарушения соотношений амплитуд называют частотными, а фаз – фазовыми искажениями. Для их отсутствия нужно, чтобы для всœех гармонических составляющих сигнала были одинаковы: , .

    Поскольку , для выполнения равенства крайне важно, чтобы была линœейной функцией частоты, ᴛ.ᴇ. , где . Неравномерность амплитудно-частотной характеристики и нелинœейность фазы частотной характеристики приводит к возникновению искажений формы передаваемых импульсов. Импульсы расплываются во времени вследствие чего, возникает их взаимная (межсимвольная) интерференция (наложение).

    Нелинœейными называются искажения сигнала, которые возникают в нелинœейном безынерционном четырехполюснике с постоянными параметрами из-за нелинœейности их амплитудных характеристик.

    Амплитудной характеристикой принято называть зависимость сигнала на выходе четырехполюсника от сигнала на его входе . Коэффициент передачи четырехполюсника в случаи, когда такая зависимость нелинœейная, зависит от уровня поступающего на его вход сигнала.

    В результате нелинœейных искажений, спектры сигналов расширяются, в них появляются дополнительные гармонические составляющие, вследствие чего, форма сигналов также изменяется.

    Для рассмотрения помех в непрерывных каналах выходной сигнал Y(t) можно представить в виде:

    Аддитивная помеха обусловлена возникновением в канале случайной ЭДС. Основные причины, вызывающие аддитивные помехи:

    1. тепловые шумы в радиоэлектронных элементах

    2. наводки, обусловленные природными или промышленными процессами.

    Аддитивные помехи делят:

    ­ сосредоточенные

    ­ флуктуационные

    Сосредоточенные характеризуются сосредоточенностью энергии в полосœе частот (узкополосные или сосредоточенные по спектру) или на отрезке времени (импульсные помехи). Узкополосная помеха имеет спектр, составляющий наибольшую часть полосы пропускания каналов. Чаще всœего эти помехи обусловлены действием посторонних источников, к примеру, сосœедних станций в радиосвязи. Импульсные помехи – случайные последовательности относительно коротких импульсов, создаваемые промышленными установками и атмосферными источниками.

    Флуктуационная помеха занимает промежуточное положение между сосредоточенными по спектру импульсными помехами. Она характеризуется размытостью энергии по частоте и по времени, в связи с этим подавить ее невозможно. Борьба с флуктуационной помехой реализуется путем использования оптимальных методов приема сигналов. Основная причина возникновения – тепловой шум, математической моделью которого является белый шум.

    Мультипликативная помеха обуславливается случайными изменениями коэффициента передачи канала, они возникают из-за изменения характеристик среды, в которой располагаются сигналы; коэффициента усиления электронных схем при изменении питающих напряжения; из-за замирания сигналов в результате взаимного наложения и различных затуханий при многолучевом распространение радиоволн.

    Помимо мультипликативных и аддитивные помех существуют помехи, влияние которых на сигнал зависит от самого сигнала нелинœейным образом. К числу таких помех относится, к примеру, существующие для оптических каналов связи помехи квантовый шум, вызванный дискретной природой излучения светового сигнала. Интенсивность этой помехи коррелированна с интенсивностью самого сигнала.

    Параграф 2.2: Искажения и помехи в каналах связи. - понятие и виды. Классификация и особенности категории "Параграф 2.2: Искажения и помехи в каналах связи." 2017, 2018.

    1.7. Помехи и искажения

    Общие сведения. В реальном канале сигнал при передаче искажается и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения, вносимые самим каналом, и помехи, воздействующие на сигнал.

    Частотные и временные характеристики канала определяют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных его звеньев. Как линейные, гак и нелинейные искажения обусловлены известными характеристиками канала и поэтому, в принципе, могут быть устранены путем надлежащей коррекции.

    Следует четко отделить искажения от помех, имеющих случайный характер. Помехи заранее неизвестны и поэтому не могут быть полностью устранены.

    Под помехой понимается любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. В радиоканалах наиболее распространенными являются атмосферные помехи, обусловленные электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами. Энергия этих помех сосредоточена, главным образом, в области длинных и средних волн. Сильные помехи создаются также промышленными установками. Это так называемые индустриальные помехи, возникающие из-за резких изменений тока в электрических цепях всевозможных электроустройств. Сюда относятся помехи от электротранспорта, электрических моторов, медицинских установок, систем зажигания двигателей и т. п.

    Распространенным видом помех являются помехи от посторонних радиостанций и каналов. Этот вид помех обусловлен нарушением регламента распределения рабочих частот, недостаточной стабильностью частот, и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к перекрестным искажениям.

    В проводных каналах связи основным видом помех являются импульсные шумы и прерывания связи. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает. Такие прерывания могут быть вызваны различными причинами, из которых наиболее частыми являются нарушение контактов в реле, разъемах и т.п.

    Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

    В общем виде влияние помехи ω на передаваемый сигнал s можно выразить оператором

    x =Ψ(s ,ω) (1.9)

    В частном случае, когда оператор Ψ вырождается в сумм

    x = s (1.10)

    помеха называется аддитивной. Если же оператор может быть представлен в виде произведения

    x = μs (1.11)

    то помеху называют мультипликативной. Здесь μ (t ) - случайный процесс. Если μ - медленный по сравнению с сигналом процесс, то его называют замираниями. В реальных каналах обычно имеют место и аддитивные, и мультипликативные помехи, поэтому

    x = μs (1.12)

    Флуктуационная помеха. Среди аддитивных помех особое место занимает флуктуационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Такая помеха наиболее изучена и представляет наибольший интерес, как в теоретическом, так и в практическом отношениях. Этот вид помех практически имеет место во всех реальных каналах. Сумма большого числа любых помех от различных источников также имеет характер флуктуационной помехи. И, наконец, многие помехи три прохождении через приемное устройство часто приобретают свойства нормальной флуктуационной помехи.

    Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя непрерывный случайный процесс.

    С физической точки зрения случайные помехи порождаются различного рода флуктуациями, т. е. случайными отклонениями тех или иных физических величин от их средних значений. Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

    Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов (напряжение) на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

    где Т - абсолютная температура, которую имеет сопротивление R ; F - полоса частот; k=вт. сек/град- постоянная Больцмана.

    Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот. Типичным примером флуктуационных помех являются внутренние шумы приемника. Флуктуационный характер имеют космические помехи, а также некоторые виды атмосферных и индустриальных помех.

    Импульсные помехи. К импульсным или сосредоточенным по времени помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса. К таким помехам относятся многие виды атмосферных и индустриальных помех. Заметим, что понятия «флуктуационная помеха» и «импульсная помеха» являются относительными. В зависимости от частоты следования импульсов одна и та же помеха может воздействовать как импульсная на приемник с широкой полосой пропускания и как флуктуационная на приемник с относительно узкой полосой пропускания.

    Импульсные помехи представляют собой дискретный случайный процесс, состоящий из отдельных редких, случайно распределенных по времени и амплитуде импульсов. Статические свойства таких помех с достаточной для практических целей полнотой описываются распределением вероятностей амплитуд импульсов и распределением временных интервалов между этими импульсами.

    Сосредоточенные по спектру помехи. К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения (промышленные, медицинские) и т. п. Обычно это модулированные колебания, т. е. синусоидальные колебания с изменяющимися параметрами. В одних случаях эти колебания являются непрерывными (например, сигналы вещательных и телевизионных радиостанций), в других случаях они носят импульсный характер (сигналы радиотелеграфных станций). В отличие от флуктуационных и импульсных помех, спектр которых заполняет всю полосу частот приемника, ширина спектра сосредоточенной полежи в большинстве случаев меньше полосы пропускания приемника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.