• Виды и принципы действия электросвязи. Мультимедийные технологии. Электросвязь

    ГЛАВА 1 ОСНОВЫ ТЕЛЕКОММУНИКАЦИЙ

    1. 1. Типовая система передачи данных

    Любая система передачи данных (СПД) может быть описана через три основные свои компоненты. Такими компонентами являются передатчик (или так называемый "источник передачи информации"), канал передачи данных и приемник (также называемый "получателем" информации). При двухсторонней (дуплексной передаче) источник и получатель могут быть объединены так, что их оборудование может передавать и принимать данные одновременно. В простейшем случае СПД между точками А и В (рис. 1. 1) состоит из следующих основных семи частей:

    > Оконечного оборудования данных в точке А.

    > Интерфейса (или стыка) между оконечным оборудованием данных и аппаратурой канала данных.

    > Аппаратуры канала данных в точке А. > Канала передачи между точками А и В. > Аппаратуры канала данных в точке В. > Интерфейса (или стыка) аппаратуры канала данных.

    > Оконечного оборудования данных в точке В.

    Оконечное оборудование данных (ООД) - это обобщенное понятие, используемое для описания оконечного прибора пользователя или его части. ООД


    Рис. 1.1. Типовая система передачи данных: а - блок-схема системы передачи данных;

    б - реальная система передачи данных

    может являться источником информации, ее получателем или тем и другим одновременно. ООД передает и (или) принимает данные посредством использования аппаратуры канала данных (АКД) и канала передачи. В литературе часто употребляется соответствующий международный термин - DTE (Data Terminal Equipment). Часто в качестве DTE может выступать персональный компьютер, большая ЭВМ (mainframe computer), терминал, устройство сбора данных, кассовый аппарат, приемник сигналов глобальной навигационной системы или любое другое оборудование, способное передавать или принимать данные.

    Аппаратуру канала данных также называют аппаратурой передачи данных (АПД). Широко используется международный термин DCE (Data Communications Equipment), который и будем употреблять в дальнейшем. Функция DCE состоит в обеспечении возможности передачи информации между двумя или большим числом DTE по каналу определенного типа, например по телефонному. Для этого DCE должен обеспечить соединение с DTE с одной стороны, и с каналом передачи - с другой. На рис. 1. 1, а DCE может являться аналоговым модемом, если используется аналоговый канал, или, например, устройством обслуживания канала/данных (CSU/DSU - Channel Seruis Unit/ Data Service Unit), если используется цифровой канал типа Е1/Т1 или ISDN. Модемы, разработанные в 60-70-х годах, представляли собой устройства исключительно с функциями преобразования сигналов. Однако в последние годы модемы приобрели значительное количество сложных функций, которые будут рассмотрены ниже.

    Слово модем является сокращенным названием устройства, осуществляющего процесс МОдуляции/ДЕМодуляции. Модуляцией называется процесс изменения одного либо нескольких параметров выходного сигнала по закону входного сигнала При этом входной сигнал является, как правило, цифровым и называется модулирующим Выходной сигнал - обычно аналоговый и часто носит название модулированного сигнала В настоящее время модемы наиболее широко используются для передачи данных между компьютерами через коммутируемую телефонную сеть общего пользования (КТСОП, GTSN - General Switched Telefone Network)

    Важную роль во взаимодействии DTE и DCE играет их интерфейс, который состоит из входящих/исходящих цепей в DTE и DCE, разъемов и соедини тельных кабелей В отечественной литературе и стандартах также часто употребляется термин стык

    Соединение DTE с DCE происходит по одному из стыков типа С2 При подключении DCE к каналу связи или среде распространения применяется один из стыков типа С1

    1. 2. Каналы связи

    1. 2. 1. Аналоговые и цифровые каналы

    Под каналом связи понимают совокупность среды распространения и техни ческих средств передачи между двумя канальными интерфейсами или стыками типа С1 (см рис 1 1). По этой причине стык С1 часто называется канальным стыком

    В зависимости от типа передаваемых сигналов различают два больших класса каналов связи цифровые и аналоговые

    Цифровой канал является битовым трактом с цифровым (импульсным) сигналом на входе и выходе канала На вход аналогового канала поступает непрерывный сигнал, и с его выхода также снимается непрерывный сигнал (рис 1 2) Как известно, сигналы характеризуются формой своего представления


    Рис 1 2 Цифровые и аналоговые каналы передачи

    Параметры сигналов могут быть непрерывными или принимать только дискретные значения. Сигналы могут содержать информацию либо в каждый момент времени (непрерывные во времени, аналоговые сигналы), либо только в определенные, дискретные моменты времени (цифровые, дискретные, импульсные сигналы).

    Цифровыми являются каналы систем ИКМ, ISDN, каналы типа Т1/Е1 и многие другие. Вновь создаваемые СПД стараются строить на основе цифровых каналов, обладающих рядом преимуществ перед аналоговыми.

    Аналоговые каналы являются наиболее распространенными по причине длительной истории их развития и простоты реализации. Типичным примером аналогового канала является канал тональной частоты (ктч), а также групповые тракты на 12, 60 и более каналов тональной частоты. Телефонный канал КТСОП, как правило, включает многочисленные коммутаторы, устройства разделения, групповые модуляторы и демодуляторы. Для КТСОП этот канал (его физический маршрут и ряд параметров) будет меняться при каждом очередном вызове.

    При передаче данных на входе аналогового канала должно находиться устройство, которое преобразовывало бы цифровые данные, приходящие от DTE, в аналоговые сигналы, посылаемые в канал. Приемник должен содержать устройство, которое преобразовывало бы обратно принятые непрерывные сигналы в цифровые данные. Этими устройствами являются модемы. Аналогично, при передаче по цифровым каналам данные от DTE приходится приводить к виду, принятому для данного конкретного канала. Этим преобразованием занимаются цифровые модемы, очень часто называемые адаптерами ISDN, адаптерами каналов Е1/Т1, линейными драйверами, и так далее (в зависимости от конкретного типа канала или среды передачи).

    Термин модем используется широко. При этом необязательно подразумевается какая-либо модуляция, а просто указывается на определенные операции преобразования сигналов, поступающих от DTE для их дальнейшей передачи по используемому каналу. Таким образом, в широком смысле понятия модем и аппаратура канала данных (DCE) являются синонимами.

    1. 2. 2. Коммутируемые и выделенные каналы

    Коммутируемые каналы предоставляются потребителям на время соединения по их требованию (звонку). Такие каналы принципиально содержат в своем составе коммутационное оборудование телефонных станций (АТС). Обычные телефонные аппараты используют коммутируемые каналы КТСОП. Кроме того, коммутируемые каналы предоставляет цифровая сеть с интеграцией служб (ISDN - Integrated Services Digital Network).

    Выделенные (арендованные) каналы арендуются у телефонных компаний или (очень редко) прокладываются самой заинтересованной ерганизацией. Такие каналы являются принципиально двухточечными. Их качество в общем случае выше качества коммутируемых каналов по причине отсутствия влияния коммутационной аппаратуры АТС.

    1. 2. 3. Двух- и четырехпроводные каналы

    Как правило, каналы имеют двухпроводное или четырехпроводное окончание. Для краткости их называют, соответственно, двухпроводными и четырехпроводными.

    Четырехпроводные каналы предоставляют два провода для передачи сигнала и еще два провода для приема. Преимуществом таких каналов является практически полное отсутствие влияния сигналов, передаваемых во встречном направлении.

    Двухпроводные каналы позволяют использовать два провода как для передачи, так и для приема сигналов. Такие каналы позволяют экономить на стоимости кабелей, но требуют усложнения каналообразующей аппаратуры и аппаратуры пользователя. Двухпроводные каналы требуют решение задачи разделения принимаемого и передаваемого сигналов. Такая развязка реализуется при помощи дифференциальных систем, обеспечивающих необходимое затухание по встречным направлениям передачи. Неидеальность дифференциальных систем (а идеального ничего не бывает) приводит к искажениям ампли-тудно-частотных и фазо-частотных характеристик канала и к специфической помехе в виде эхо-сигнала.

    1. 3. Семиуровневая модель OSI

    Для того, чтобы взаимодействовать, люди используют общий язык. Если невозможно разговаривать друг с другом непосредственно, применяются вспомогательные средства для передачи сообщений. Одним из таких средств является система почтовой связи (рис. 1. 3). В ее составе можно выделить определенные функциональные уровни, например, уровень сбора и доставки писем из почтовых ящиков на ближайшие почтовые узлы связи и в обратном направлении, уровень сортировки писем в транзитных узлах, и т. д. Принятые в почтовой связи всевозможные стандарты на размеры конвертов, порядок оформления адресов и др. позволяют отправлять и получать корреспонденцию практически из любой точки Земного шара.

    Похожая картина имеет место и в области электронных коммуникаций, где рынок компьютеров, коммуникационного оборудования информационных систем и сетей необычайно широк и разношерстен. По этой причине создание современных информационных систем стадо невозможным без использования общих подходов при их разработке, без унификации характеристик и параметров их составных компонент.

    Теоретическую основу современных информационных сетей определяет Базовая эталонная модель взаимодействия открытых систем (OSI - Open Systems Interconnection) Международной организации стандартов (ISO - International Standards Organization). Она описана стандартом ISO 7498. Модель является международным стандартом для передачи данных. Согласно эталонной

    Таблица 1. 1. Функции уровней модели взаимодействия открытых систем

    Уровень Функции
    7. Прикладной Интерфейс с прикладными процессами
    6. Представительный Согласование представления и интерпретация передаваемых данных
    5. Сеансовый Поддержка диалога между удаленными процессами; обеспечение соединения и разъединения этих процессов; реализация обмена данными между ними
    4. Транспортный Обеспечение сквозного обмена данными между системами
    3. Сетевой Маршрутизация; сегментирование и объединение блоков данных; управление потоками данных; обнаружение ошибок и сообщение о них
    2. Канальный Управление каналом передачи данных; формирование кадров: управление доступом к среде передачи; передача данных по каналу; обнаружение ошибок в канале и их коррекция
    1. Физический Физический интерфейс с каналом передачи данных; битовые протоколы модуляции и линейного кодирования


    модели взаимодействия OSI выделяются семь уровней, образующих область взаимодействия открытых систем (табл. 1. 1).

    Основная идея этой модели заключается в том, что каждому уровню отводится конкретная роль. Благодаря этому общая задача передачи данных расщепляется на отдельные конкретные задачи. Функции уровня, в зависимости от его номера, могут выполняться программными, аппаратными либо программно-аппаратными средствами. Как правило, реализация функций высших уровней носит программный характер, функции канального и сетевого уровней могут быть исполнены как программными, так и аппаратными средствами. Физический уровень обычно выполняется в аппаратном виде.

    Каждый уровень определяется группой стандартов, которые включают в себя две спецификации: протокол и обеспечиваемый для вышестоящего уровня сервис. Под протоколом подразумевается набор правил и форматов, определяющих взаимодействие объектов одного уровня модели.

    Наиболее близким к пользователю является прикладной уровень. Его главная задача - предоставить уже переработанную (принятую) информацию. С этим обычно справляется системное и пользовательское прикладное программное обеспечение, например, терминальная программа. При передаче информации между различными вычислительными системами должно применяться одинаковое кодовое представление используемых алфавитно-цифровых знаков. Другими словами, прикладные программы взаимодействующих пользователей должны работать с одинаковыми кодовыми таблицами. Количество представленных в коде знаков зависит от числа битов, используемых в коде, то есть от основания кода. Наибольшее распространение нашли коды, приведенные в табл. 1. 2.


    Рис. 13. Функциональные уровни системы почтовой связи

    Таблица 1. 2. Основные характеристики распространенных знаковых кодов


    Часто используются всевозможные национальные расширения перечисленных кодов, например основная и альтернативная кодировки кириллицы для кода ASCII. В этом случае основание кода увеличивается до 8 бит.

    Функции современных модемов относятся к наиболее "далеким" от пользователя уровням - физическому и канальному.

    1. 3. 1. Физический уровень

    Данный уровень определяет интерфейсы системы с каналом связи, а именно, механические, электрические, функциональные и процедурные параметры соединения. Физический уровень также описывает процедуры передачи сигналов в канал и получения их из канала. Он предназначен для переноса потока двоичных сигналов (последовательности бит), в виде, пригодном для передачи по конкретной используемой физической среде. В качестве такой физической среды передачи могут выступать канал тональной частоты, соединительная проводная линия, радиоканал или что-то другое.

    Физический уровень выполняет три основные функции: установление и разъединение соединений; преобразование сигналов и реализация интерфейса.

    Установление и разъединение соединения

    При использовании коммутируемых каналов на физическом уровне необходимо осуществить предварительное соединение взаимодействующих систем и их последующее разъединение. При использовании выделенных (арендуемых) каналов такая процедура упрощается, так как каналы постоянно закреплены за соответствующими направлениями связи. В последнем случае обмен данными между системами, не имеющими прямых связей, организуется с помощью коммутации потоков, сообщений или пакетов данных через промежуточные взаимодействующие системы (узлы). Однако функции такой коммутации выполняются уже на более высоких уровнях и к физическому уровню отношения не имеют.

    Кроме физического подключения взаимодействующие модемы могут также "договариваться" об устраивающем их обоих режиме работы, то есть способе модуляции, скорости передачи, режимах исправления ошибок и сжатия данных и т. д. После установления соединения управление передается более высокому канальному уровню.

    Преобразование сигналов

    Для согласования последовательности передаваемых бит с параметрами используемого аналогового или цифрового канала требуется выполнить их преобразование в аналоговый либо дискретный сигнал, соответственно. К этой же группе функций относятся процедуры, реализующие стык с физическим (аналоговым или цифровым) каналом связи. Такой стык часто называется стыком, зависящим от среды и он может соответствовать одному из гостированных канальных стыков С1. Примерами таких стыков С1 могут быть: С1-ТФ (ГОСТы 23504-79, 25007-81, 26557-85) - для каналов КТСОП, С1-ТЧ (ГОСТы 23475-79, 23504-79, 23578-79, 25007-81, 26557-85) - для выделенных каналов тональной частоты, С1-ТГ (ГОСТ 22937-78) - для телеграфных каналов связи, С1-ШП (ГОСТы 24174-80, 25007-81, 26557-85) - для первичных широкополосных каналов, С1-ФЛ (ГОСТы 24174-80, 26532-85) - для физических линий связи, С1-АК - для акустического сопряжения DCE с каналом связи и ряд других.

    Функция преобразования сигналов является главнейшей функцией модемов. По этой причине первые модемы, не обладавших интеллектуальными возможностями и не выполнявшие аппаратное сжатие и коррекцию ошибок, часто называли устройствами преобразования сигналов (У ПС).

    Реализация интерфейса

    Реализация интерфейса между DTE и DCE является третьей важнейшей функцией физического уровня. Такого рода интерфейсы регламентируются соответствующими рекомендациям и стандартами, к которым, в частности, относятся V. 24, RS-232, RS-449, RS-422A, RS-423A, V. 35 и другие. Такие интерфейсы определяются отечественными ГОСТами как преобразовательные стыки С2 или стыками, не зависящими от среды.

    Стандарты и рекомендации по интерфейсам DTE-DCE определяют общие характеристики (скорость и последовательность передачи), функциональные и процедурные характеристики (номенклатура, категория цепей интерфейса, правила их взаимодействия); электрические (величины напряжений, токов и сопротивлений) и механические характеристики (габариты, распределение контактов по цепям).

    На физическом уровне происходит диагностика определенного класса неисправностей, например таких, как обрыв провода, пропадание питания, потеря механического контакта и т. п.

    Типовой профиль протоколов при использовании модема, поддерживающего только функции физического уровня, приведен на рис. 1. 4. При этом считается, что компьютер (DTE) соединяется с модемом (DCE) посредством интерфейса RS-232, а модем использует протокол модуляции V. 21.


    Рис 1 4 Профиль протоколов для модема с функциями только физического уровня

    Помехозащищенность канала связи, состоящего из двух модемов и среды передачи между ними, является ограниченной и, как правило, не удовлетворяет требованиям, предъявляемым к достоверности передаваемых данных По этой причине физический уровень рассматривается как ненадежная система Задача исправления искаженных в канале передачи битов решается на более высоких уровнях, в частности, на канальном уровне

    1. 3. 2. Канальный уровень

    Канальный уровень часто называют уровнем управления звеном данных Средства этого уровня реализуют следующие основные функции

    > формирование из передаваемой последовательности бит блоков данных определенного размера для их дальнейшего размещения в информационном поле кадров, которые и передаются по каналу,

    > кодирование содержимого кадра помехоустойчивым кодом (как правило, с обнаружением ошибок) с целью повышения достоверности передачи данных,

    > восстановление исходной последовательности данных на приемной стороне,

    > обеспечение кодонезависимой передачи данных с целью реализации для пользователя (или прикладных процессов) возможности произвольного выбора кода представления данных;

    > управление потоком данных на уровне канала, то есть темпа их выдачи в DTE получателя;

    > устранение последствий потерь, искажений или дублирования передаваемых в канале кадров.

    В качестве стандарта Для протоколов второго уровня организацией ISO рекомендуется протокол HDLC (High Level Data Link Control). Он получил в мире телекоммуникаций чрезвычайно широкое распространение. На основе протокола HDLC разработано множество других, являющихся по своей сути некоторой адаптацией и упрощением ряда его возможностей по отношению к конкретной области применения. К такому подмножеству HDLC относятся часто используемые протоколы SDLC (Synchronous Data Link Control), LAP (Link Access Procedure), LAPB (Link Access Procedure Balanced), LAPD (Link Access Procedure D-channel), LAPM (Link Access Procedure for Modems), LLC (Logical Link Network), LAPX (Link Access Procedure eXtention) и ряд других. Например, протоколы LAPB и LAPD применяются в цифровых сетях ISDN (Integrated Services Digital Network)," LAPM является базовым для стандарта коррекции ошибок V. 42, LAPX является полудуплексным вариантом HDLC и используется в терминальных сетях и системах, работающих в стандарте Teletex, а протокол LLC (Link Logic Control) реализован практически во всех сетях с множественным доступом (например, в беспроводных локальных сетях). На рис. 1. 5 изображено семейство протокола HDLC и области его применения.


    Рис. 1. 5. Семейство протокола HDLC


    Рис 1 6. Профиль протоколов для модема с функциями физического и канального уровней

    Возможный профиль протоколов для модема, поддерживающего функции физического и канального уровней, представлен на рис. 1. 6. Считается, что компьютер соединяется с модемом посредством интерфейса RS-232, и уже модем реализует протокол модуляции V 34 и аппаратную коррекцию ошибок согласно стандарта V 42


    Рис. 1 7 Профиль протоколов для DCE с множественным доступом

    В некоторых сетях, основанных на каналах с многоточечным подключением, сигнал, принимаемый каждым DCE, является суммой сигналов, передаваемых от целого ряда других DCE Каналы связи в таких сетях называют каналами с множественным доступом или моноканалами, а сами сети называют сетями множественного доступа. Такими сетями являются некоторые спутниковые сети, наземные пакетные радиосети, а также локальные проводные и беспроводные сети.

    Соответствующие уровни модели OSI при передаче в режиме множественного доступа несколько отличны от тех, что используются в СПД с двухточечными каналами. Второй уровень должен обеспечить верхние уровни виртуальным каналом для безошибочной передачи пакетов, а физический уровень должен предоставить битовый тракт. Появляется необходимость в промежуточном уровне для управления каналом с множественным доступом таким образом, чтобы из каждого DCE можно было передавать кадры без постоянных конфликтов с остальными DCE. Этот уровень называется уровнем управления доступом к среде передачи MAC (Medium Access Control). Обычно его считают первым подуровнем уровня 2, т. е. уровнем 2. 1. Традиционный канальный уровень в этом случае превращается в уровень управления логическим каналом LLC (Logical Link Control) и является подуровнем 2. 2. На рис. 1. 7 показана взаимосвязь второго уровня и подуровней LLC и MAC.

    1. 4. Факсимильная связь

    1. 4. 1. Передача факсимильного изображения

    Факсимильная связь является видом документальной связи, предназначенной для передачи не только содержания, но и внешнего вида самого документа. Сущность факсимильного метода передачи состоит в том, что передаваемое изображение (оригинал) разбивается на отдельные элементарные площадки, которые сканируются со скоростью развертки 60, 90, 120, 180 или 240 строк/мин. Сигнал яркости пропорциональный коэффициенту отражения таких элементарных площадок преобразуется в цифровой вид и передается по каналу связи с использованием того либо иного способа модуляции. На приемной стороне эти сигналы преобразуются в элементы изображения и воспроизводятся (записываются) на приемном бланке.

    Структурная схема факсимильной связи приведена на рис. 1. 8. Изображение (оригинал), подлежащее передаче, подвергается сканированию световым пятном требуемых размеров. Пятно формируется светооптической системой, содержащей источник света и оптическое устройство. Перемещение пятна по поверхности оригинала осуществляется развертывающим устройством (РУ). Часть светового потока, падающего на элементарную площадку оригинала, отражается и поступает на фотоэлектрический преобразователь (ФП), в котором происходит его преобразование в электрический видеосигнал. Амплитуда видеосигнала на выходе фотопреобразователя пропорциональна величине отраженного светового потока. Далее видеосигнал поступает на вход аналого-цифрового преобразователя (АЦП), где преобразуется в цифровой код. С выхода АЦП цифровой код поступает на вход устройства преобразования сигналов (УПС), то есть модулятора, где посредством использования одного из протоколов модуляции спектр цифрового видеосигнала переносится в область частот используемого канала связи.


    Рис. 1. 8. Структурная схема факсимильной связи

    При приемной стороне приходящий из канала связи модулированный сигнал последовательно поступает в УПС и ЦАП для демодуляции и цифро-ана-логового преобразования, соответственно. Далее видеосигнал поступает в воспроизводящее устройство (ВУ), где в результате действия развертывающего устройства на бланке воспроизводится копия переданного изображения. Процесс получения конечной факсимильной копии обратный процессу сканирования носит название репликации. Для обеспечения синхронности и синфазности разверток на передающей и приемной сторонах используются устройства синхронизации (УС).

    Таким образом, аппарат факсимильной связи (факс) очень напоминает ксерокс, в котором оригинал и копию разделяют многие километры.

    Современные факс-модемы имеют в своем составе все составные части факсимильных аппаратов за исключением сканирующего и воспроизводящего устройств. Они "умеют" связываться с обыкновенными факсами, при этом принимаемая информация о передаваемом изображении выдается на компьютер, где программой передачи факсимильных сообщений преобразуется в один из распространенных графических форматов. В дальнейшем, полученный таким образом документ, можно отредактировать, вывести на принтер или передать другому корреспонденту, имеющему факс или компьютер с факс-модемом.

    1. 4. 2. Стандарты факсимильной связи

    Согласно рекомендациям Сектора стандартизации Международного союза электросвязи (ITU-T - International Telecommunications Union - Telecommunications) в зависимости от используемого вида модуляции различают факсы четырех групп. Первые факсимильные стандарты, относящиеся к группе 1, были основаны на аналоговом методе передачи информации. Страница текста факсами группы 1 передавалась за 6 минут. Стандарты группы 2 усовершенствовали эту технологию в направлении увеличения скорости передачи, в результате чего время передачи одной страницы сократилось до 3 минут.

    Стандарт на факсы группы 3 изначально был определен рекомендацией ITU-Т Т. 4 1980 года. Этот стандарт был дважды переиздан - первый раз в 1984 г. и затем в 1988 г. В модификации этого стандарта от 1990 г. были одобрены схемы кодирования, разработанные для факсимильных аппаратов группы 4, а также более высокие скорости передачи, определяемые стандартами V. I 7, V. 29 и V. 33. Радикальное отличие факсаппаратов группы 3 от более ранних заключается в полностью цифровом методе передачи со скоростями до 14400 бит/с. В результате, применяя сжатие данных, факс группы 3 передает страницу за 30-60 с. При ухудшении качества связи факсы группы 3 переходят в аварийный режим, замедляя скорость передачи. Согласно стандарту группы 3 возможны две степени разрешения: стандартное, обеспечивающее 1728 точек по горизонтали и 100 точек/дюйм по вертикали; и высокое, удваивающее количество точек по вертикали, что дает разрешение 200х200 точек/дюйм и вдвое уменьшает скорость.

    Факсимильные аппараты первых трех групп ориентированы на использование аналоговых телефонных каналов КТСОП. В 1984 году ITU-T принял стандарт группы 4, который предусматривает разрешение до 400х400 точек/дюйм и повышение скорости при более низком разрешении. Факсы группы 4 дают разрешение очень высокого качества. Однако, они нуждаются в высокоскоростных каналах связи, которые могут предоставить сети ISDN, и не могут работать через каналы КТСОП.

    Практически все продаваемые в настоящее время факсы основаны на стандарте группы 3. Рис. 1. 8 иллюстрирует работу именно таких факсов.

    1. 5. Управление потоком

    1. 5. 1. Необходимость управления потоком

    В любой системе либо сети передачи данных возникают ситуации, когда поступающая в сеть нагрузка превышает возможности по ее обслуживанию. В этом случае, если не предпринимать никаких мер по ограничению поступающих данных (графика), размеры очередей на линиях сети будут неограниченно расти и в конце концов превысят размеры буферов соответствующих средств связи. Когда это происходит, единицы данных (сообщения, пакеты, кадры, блоки, байты, символы), поступающие в узлы, для которых нет свободного места в буфере, будут сброшены и позднее переданы повторно. В результате возникает эффект, когда при увеличении поступающей нагрузки реальная пропускная способность уменьшается, а задержки передачи становятся чрезвычайно большими.

    Средством борьбы с такими ситуациями выступают методы управления потоком, суть которых заключается в ограничении поступающего трафика для предотвращения перегрузок.

    Схема управления потоком может понадобиться на участке передачи между двумя пользователями (транспортный уровень), между двумя узлами сети (сетевой уровень), между двумя соседними DCE, обменивающимися данными по логическому каналу (канальный уровень), а также между терминальным оборудованием и аппаратурой канала данных, взаимодействующих по одному из интерфейсов DTE-DCE (физический уровень).

    Схемы управления потоком транспортного уровня реализованы в протоколах передачи файлов, таких как ZModem; схемы управления потоком сетевого уровня - в составе протоколов Х. 25 и TCP/IP; схемы управления потоком канального уровня - в составе протоколов повышения достоверности, таких как MNP4, V. 42; управление потоком на физическом уровне реализуется в рамках набора функций соответствующих интерфейсов, таких как RS-232. Перечисленные три уровня схем управления имеют непосредственное отношение к аппаратному и программному обеспечению модемов и их конкретные реализации будут рассмотрены в соответствующих разделах книги.

    1. 5. 2. Метод окна

    Рассмотрим часто используемый протоколами канального, сетевого и транспортного уровней класс методов управления потоком, названный оконным управлением потоком. Под окном понимается наибольшее число информационных единиц, которые могут оставаться неподтвержденными в данном направлении передачи.

    В процессе передачи между передатчиком и приемником используется оконное управление, если установлена верхняя граница на число единиц данных, которые уже переданы передатчиком, но на которые еще не получено подтверждение от приемника. Верхняя граница в виде целого положительного числа и является окном или размером окна. Приемник уведомляет передатчик о том, что к нему попала единица данных путем отправления специального сообщения к приемнику (рис. 1. 9). Такое сообщение называется подтверждением, разрешением или квитанцией. Подтверждение может быть положительным - АСК (ACKnowledgement), сигнализирующим об успешном приеме соответствующей информационной единицы, и отрицательным - NAK (Negative AcKnowledgement), свидетельствующим о неприеме ожидаемой порции данных. После получения квитанции передатчик может передать еще одну единицу данных приемнику. Число квитанций, находящихся в использовании, не должно превышать размер окна.


    Рис. 1. 9. Оконное управление потоком

    Квитанции либо содержатся в специальных управляющих пакетах, либо добавляются в обычные информационные пакеты. Управление потоком используется при передаче по одному виртуальному каналу, группе виртуальных каналов, управлению может подвергаться весь поток пакетов, возникающих в одном окне и адресованных другому узлу. Передатчиком и приемником могут быть два узла сети или терминал пользователя и входной узел сети связи. Единицами данных в окне могут быть сообщения, пакеты, кадры или символы.

    Выделяют две стратегии: оконное управление от конца в конец и поузловое управление. Первая стратегия относится к управлению потоком между входным и выходными узлами сети для некоторого процесса передачи и часто реализуется в составе протоколов передачи файлов. Вторая стратегия относится к управлению потоком между каждой парой последовательных узлов и реализуется в составе протоколов канального уровня, таких как SDLC, HDLC, LAPB, LAPD, LAPM и других.

    1. 6. Классификация модемов

    Строгой классификации модемов не существует и, вероятно, не может существовать по причине большого разнообразия как самих модемов, так и сфер применения и режимов их работы. Тем не менее можно выделить ряд признаков, по которым и провести условную классификацию. К таким признакам или критериям классификации можно отнести следующие: область применения;

    функциональное назначение; тип используемого канала; конструктивное исполнение; поддержка протоколов модуляции, исправления ошибок и сжатия данных. Можно выделить еще множество более детальных технических признаков, таких как применяемый способ модуляции, интерфейс сопряжения с DTE и так далее.

    1. 6. 1. По области применения

    Современные модемы можно разделить на несколько групп:

    > для коммутируемых телефонных каналов;

    > для выделенных (арендуемых) телефонных каналов;

    > для физических соединительных линий:

    Модемы низкого уровня (линейные драйверы) или модемы на короткие расстояния (short range modems)",

    - модемы основной полосы (. baseband modems);

    > для цифровых систем передачи (CSU/DSU);

    > для сотовых систем связи;

    > для пакетных радиосетей;

    > для локальных радиосетей.

    Подавляющее большинство выпускаемых модемов предназначено для использования на коммутируемых телефонных каналах. Такие модемы должны уметь работать с автоматическими телефонными станциями (АТС), различать их сигналы и передавать свои сигналы набора номера.

    Основное отличие модемов для физических линий от других типов модемов состоит в том, что полоса пропускания физических линий не ограничена значением 3, 1 кГц, характерным для телефонных каналов. Однако полоса пропускания физической линии также является ограниченной и зависит в основном от типа физической среды (экранированная и неэкранированная витая пара, коаксиальный кабель и др.) и ее длины.

    С точки зрения используемых для передачи сигналов модемы для физических линий могут быть разделены на модемы низкого уровня (линейные драйверы), использующие цифровые сигналы, и модемы с "основной полосы" (baseband), в которых применяются методы модуляции, аналогичные применяемым в модемах для телефонных каналов.

    В модемах первой группы обычно используются цифровые методы биим-пульсной передачи, позволяющие формировать импульсные сигналы без постоянной составляющей и часто занимающие более узкую полосу частот, чем исходная цифровая последовательность.

    В модемах второй группы часто используются различные виды квадратурной амплитудной модуляции, позволяющие радикально сократить требуемую для передачи полосу частот. В результате на одинаковых физических линиях такими модемами может достигаться скорость передачи до 100 Кбит/с, в то время как модемы низкого уровня обеспечивают только 19, 2 Кбит/с.

    Модемы для цифровых систем передачи напоминают модемы низкого уровня. Однако в отличие от них обеспечивают подключение к стандартным цифровым каналам, таким как Е1/Т1 или ISDN, и поддерживают функции соответствующих канальных интерфейсов.

    Модемы для сотовых систем связи отличаются компактностью исполнения и поддержкой специальных протоколов модуляции и исправления ошибок, позволяющих эффективно передавать данные в условиях сотовых каналов с высоким уровнем помех и постоянно изменяющимися параметрами. Среди таких протоколов выделяются ZyCELL, ETC и MNP10.

    Пакетные радиомодемы предназначены для передачи данных по радиоканалу между мобильными пользователями. При этом несколько радиомодемов используют один и тот же радиоканал в режиме множественного доступа, например, множественного доступа с контролем несущей, в соответствии с ITU-T АХ. 25. Радиоканал по своим характеристикам близок к телефонному и организуется с использованием типовых радиостанций, настроенных на одну и ту же частоту в УКВ либо KB диапазоне. Пакетный радиомодем реализует методы модуляции и множественного доступа.

    Локальные радиосети являются быстроразвивающейся перспективной сетевой технологией дополняющей обыкновенные локальные сети. Ключевым их элементом являются специализированные радиомодемы (адаптеры локальных радиосетей). В отличие от ранее упомянутых пакетных радиомодемов такие модемы обеспечивают передачу данных на небольшие расстояния (до 300 м) с высокой скоростью (2-10 Мбит/с), сопоставимой со скоростью передачи в проводных локальных сетях. Кроме того, радиомодемы локальных радиосетей работают в определенном диапазоне частот с применением сигналов сложной формы, таких как сигналы с псевдослучайной перестройкой рабочей частоты.

    1. 6. 2. По методу передачи

    По методу передачи модемы делятся на асинхронные и синхронные. Говоря о синхронном либо асинхронном методе передачи обычно подразумевают передачу по каналу связи между модемами. Однако передача по интерфейсу DTE-DCE также может быть синхронной и асинхронной. Модем может работать с компьютером в асинхронном режиме и одновременно с удаленным модемом - в синхронном режиме или наоборот. В таком случае иногда говорят, что модем синхронно-асинхронный или он работает в синхронно-асинхронном режиме.

    Как правило, синхронизация реализуется одним из двух способов, связанных с тем, как работают тактовые генераторы отправителя и получателя:

    независимо друг от друга (асинхронно) или согласованно (синхронно). Если передаваемые данные составлены из последовательности отдельных символов, то, как правило, каждый символ передается независимо от остальных и получатель синхронизируется вначале каждого получаемого символа. Для такого типа связи обычно используется асинхронная передача. Если передаваемые данные образуют непрерывную последовательность символов или байтов, то тактовые генераторы отправителя и получателя должны быть синхронизированы в течение длительного промежутка времени. В этом случае используется синхронная передача.

    Асинхронный режим передачи используется главным образом тогда, когда передаваемые данные генерируются в случайные моменты времени, например пользователем. При такой передаче получающее устройство должно восстанавливать синхронизацию в начале каждого получаемого символа. Для этого каждый передаваемый символ обрамляется дополнительным стартовым и одним или более стоповыми битами. Такой асинхронный режим часто применяется при передаче данных по интерфейсу DTE-DCE. При передаче данных по каналу связи возможности применения асинхронного режима передачи во многом ограничены его низкой эффективностью и необходимостью использования при этом простых методов модуляции, таких как амплитудная и частотная. Более совершенные методы модуляции, такие как ОФМ, КАМ и др., требуют поддержания постоянного синхронизма опорных тактовых генераторов отправителя и получателя.

    При синхронном методе передачи осуществляют объединение большого числа символов или байт в отдельные блоки или кадры. Весь кадр передается как одна цепочка битов без каких-либо задержек между восьмибитными элементами. Чтобы принимающее устройство могло обеспечить различные уровни синхронизации, должны выполняться следующие требования.

    > Передаваемая последовательность битов не должна содержать длинных последовательностей нулей или единиц для того, что бы принимающее устройство могло устойчиво выделять тактовую частоту синхронизации.

    > Каждый кадр должен иметь зарезервированные последовательности битов или символов, отмечающие его начало и конец.

    Существует два альтернативных метода организации синхронной связи: символьно- или байт-ориентированный, и бит-ориентированный. Различие между ними заключается в том, как определяются начало и конец кадра. При бит-ориентированном методе получатель может определить окончание кадра с точностью до отдельного бита, а байта (символа).

    Кроме высокоскоростной передачи данных собственно по физическим каналам синхронный режим часто применяется и для передачи по интерфейсу DTE - DCE. В этом случае для синхронизации используются дополнительные интерфейсные цепи, по которым передается сигнал тактовой частоты от отправителя к получателю.

    1. 6. 3. По интеллектуальным возможностям

    По интеллектуальным возможностям можно выделить модемы:

    без системы управления;

    > поддерживающие набор АТ-команд;

    > с поддержкой команд V. 25bis;

    > с фирменной системой команд;

    > поддерживающие протоколы сетевого управления.

    Большинство современных модемов наделено широким спектром интеллектуальных возможностей. Стандартом де-факто стало множество АТ-команд, разработанных в свое время фирмой Hayes и позволяющее пользователю или прикладному процессу полностью управлять характеристиками модема и параметрами связи. По этой причине модемы, поддерживающие АТ-команды носят название Hayes-совместимых модемов. Следует заметить, что АТ-команды поддерживают не только модемы для КТСОП, но и пакетные радиомодемы, внешние адаптеры ISDN и ряд других модемов с более узкими сферами применения.

    Наиболее распространенным набором команд, позволяющим управлять режимами установления соединения и автовызова являются команды рекомендации ITU-T V. 25bis.

    Специализированные модемы для промышленного применения часто имеют фирменную систему команд, отличную от набора АТ-команд. Причиной тому является большое различие в режимах работы и выполняемых функциях между модемами широкого применения и промышленными (сетевыми) модемами.

    Промышленные модемы часто поддерживают протокол сетевого управления SMNP (Simple Manager Network Protocol), позволяющий администратору управлять элементами сети (включая модемы) с удаленного терминала.

    1. 6. 4. По конструкции

    По конструкции различают модемы:

    > внешние;

    > внутренние;

    > портативные;

    > групповые.

    Внешние модемы Представляют собой автономные устройства, подключаемые к компьютеру или другому DTE посредством одного из стандартных интерфейсов DTE-DCE. Внутренний модем - это плата расширения, вставляемая в соответствующий слот компьютера. Каждый из вариантов конструктивного исполнения имеет свои преимущества и недостатки, которые будут расмотрены далее.

    Портативные модемы предназначены для использования мобильными пользователями совместно с компьютерами класса Notebook. Они отличаются малыми габаритами и высокой ценой. Их функциональные возможности, как правило, не уступают возможностям полнофункциональных модемов. Часто портативные модемы оснащены интерфейсом PCMCIA.

    Групповыми модемами называют совокупность отдельных модемов, объединенных в общий блок и имеющих общие блок питания, устройства управления и отображения. Отдельный модем группового модема представляет собой плату с разъемом, устанавливаемую в блок, и рассчитан на один или небольшое число каналов.

    1. 6. 5. По поддержке международных и фирменных протоколов

    Модемы также можно классифицировать в соответствии с реализованными в них протоколами. Все протоколы, регламентирующие те или иные аспекты функционирования модемов, могут быть отнесены к двум большим группам:

    международные и фирменные.

    Протоколы международного уровня разрабатываются под эгидой ITU-T и принимаются им в качестве рекомендаций (ранее ITU-T назывался Международным консультативным комитетом по телефонии и телеграфии - МККТТ, международная абревиатура - CCITT). Все рекомендации ITU-T относительно модемов относятся к серии V. Фирменные протоколы разрабатываются отдельными компаниями - производителями модемов, с целью преуспеть в конкурентной борьбе. Часто фирменные протоколы становятся стандартными протоколами де-факто и принимаются частично либо полностью в качестве рекомендаций ITU-T, как это случилось с рядом протоколов фирмы Microcom. Наиболее активно разработкой новых протоколов и стандартов занимаются такие известные фирмы, как AT&T, Motorolla, U. S. Robotics, ZyXEL и другие.

    С функциональной точки зрения модемные протоколы могут буть разделены на следующие группы:

    > Протоколы, определяющие нормы взаимодействия модема с каналом связи (V. 2, V. 25):

    > Протоколы, регламентирующие соединение и алгоритмы взаимодействия модема и DTE (V. 10, V. 11, V. 24, V. 25, V. 25bis, V. 28);

    > Протоколы модуляции, определяющие основные характеристики модемов, предназначенных для коммутируемых и выделенных телефонных каналов. К ним относятся такие протоколы, как V. 17, V. 22, V. 32, V. 34, HST, ZyX и большое количество других;

    > Протоколы защиты от ошибок (V. 41, V. 42, MNP1-MNP4);

    > Протоколы сжатия передаваемых данных, такие как MNP5, MNP7, V. 42bis;


    Рис. 1. 10. Классификация модемных протоколов

    > Протоколы, определяющие процедуры диагностики модемов, испытания и измерения параметров каналов связи (V. 51, V. 52, V. 53, V. 54, V. 56).

    > Протоколы согласования параметров связи на этапе ее установления (Handshaking), например V. 8.

    Приставки "bis" и "ter" в названиях протоколов обозначают, соответственно, вторую и третью модификацию существующих протоколов или протокол, связанный с исходным протоколом. При этом исходный протокол, как правило, остается поддерживаемым.

    Некоторую ясность среди многообразия модемных протоколов может внести их условная классификация, приведенная на рис. 1. 10. ГЛАВА 8 ПРОТОКОЛЫ СЖАТИЯ ДАННЫХ

    ГЛАВА 9 ПРОТОКОЛЫ ПЕРЕДАЧИ ФАЙЛОВ ГЛАВА 10 ПАКЕТНЫЕ РАДИОМОДЕМЫ ГЛАВА 11 МОДЕМЫ В СОТОВЫХ СЕТЯХ СВЯЗИ ГЛАВА 12 РАБОТА С МОДЕМАМИ ГЛАВА 13 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ МОДЕМОВ ГЛАВА 14 ОБЗОР СОВРЕМЕННЫХ МОДЕМОВ Предисловие предисловие и главы книги ЗАКЛЮЧЕНИЕ введение ГЛОССАРИЙ

    Коммуникация, связь, радиоэлектроника и цифровые приборы

    Краткая информация о видах электросвязи Электросвязь - передача информации посредством электрических сигналов, распространяющихся по проводам (проводная связь), или (и) радиосигналов (радиосвязь). К электросвязи относят, кроме того, передачу информа...


    А также другие работы, которые могут Вас заинтересовать

    18988. Распределение Максвелла 326.5 KB
    Лекция I 1. Распределение Максвелла. Статистическая физика изучает свойства макроскопических тел т.е. систем состоящих из огромного числа частиц. Например для аудитории с размерами учитывая что каждый моль воздуха занимает объем 224 л и содержит число Авогадро мол
    18989. Квантовомеханическое описание 288 KB
    Лекция II 1. Квантовомеханическое описание. Казалось бы каноническое распределение Гиббса I.4.5 невозможно согласовать с требованиями квантовой механики так как обобщенные координаты и импульсы в соответствии с принципом неопределенности Гейзенберга не коммутирую
    18990. Микроканоническое распределение 283 KB
    Лекция III 1. Микроканоническое распределение. Рассмотрим замкнутую макроскопическую систему занимающую объем и содержащую частиц. Как это следует из рис. III.1 любая макроскопическая система является замкнутой поскольку ее энергия практически не флуктуирует т.е. о
    18991. Расчет с помощью программы “Fullprof” магнитной структуры магнетика. Магнитная структура DyB4 572.5 KB
    Давайте проведем расчет нейтронограммы соединения AB, для которого мы вручную рассчитывали нейтронограммы ядерного и магнитного рассеяния”. Как мы уже знаем, нейтронограмма должна содержать, по крайней мере, две фазы – ядерную и магнитную
    18992. Работа и тепло 268.5 KB
    Лекция V 1. Работа и тепло. Обсудим физический смысл основного термодинамического тождества V.1.1 Поскольку давление это средняя сила отнесенная к единице площади а изменение объема то второе с...
    18993. Температурная зависимость плотности энергии равновесного (черного) излучения 246 KB
    Лекция VI 1. Температурная зависимость плотности энергии равновесного черного излучения. Если для какойлибо системы удается найти связь между давлением объемом и энергией т.е. аналог уравнения состояния то можно вычислить все ее термодинамические величины. Для излу...
    18994. О черных дырах 228 KB
    Лекция VII 1. О черных дырах. Научное представление о черных дырах возникло к концу 18 века. В 1799 г. Лаплас на основании ньютоновской теории тяготения и предположения о конечной скорости света показал что достаточно компактное массивное тело будет невидимым для внешнего...
    18995. Большое каноническое распределение Гиббса 309 KB
    Лекция VIII 1. Большое каноническое распределение Гиббса. Рассмотрим малую часть микроканонического ансамбля см. III.1.1 которая может обмениваться с термостатом не только энергией тепловой контакт но и частицами. Энергия этой квазизамкнутой подсистемы зависит от объ...
    18996. Идеальные газы 249.5 KB
    Лекция IX 1. Идеальные газы. Большую статистическую сумму удается рассчитать для идеальных газов. Это системы в которых можно пренебречь взаимодействием частиц. Такое пренебрежение возможно когда взаимодействие мало черное излучение асимптотическая свобода или газ...

    ПРАВИТЕЛЬСТВО МОСКВЫ

    Комитет города Москвы по ценовой политике в строительстве

    и государственной экспертизе проектов

    ДОПОЛНИТЕЛЬНЫЕ ИНЖЕНЕРНЫЕ СИСТЕМЫ

    Сборник 5.2

    СИСТЕМЫ ЭЛЕКТРОСВЯЗИ

    МРР-5.2-16

    Сборник 5.2 «Системы электросвязи. МРР-5.2-16» (далее - Сборник) разработан специалистами ГАУ «НИАЦ» (С.В. Лахаев, Е.А. Игошин, А.М. Вайнерман) при участии специалистов ОАО «Моспроект».

    Сборник утвержден и введен в действие с 9 января 2017 г. приказом Комитета города Москвы по ценовой политике в строительстве и государственной экспертизе проектов от 29 декабря 2016 г. № МКЭ-ОД/16-75.

    Сборник является составной частью Единой нормативной базы МРР.

    Сборник разработан взамен МРР-3.2.75-13.

    Введение

    1. Общие положения

    2. Методика определения стоимости проектных работ

    3. Базовые цены

    3.1. Мультисервисные сети, сети передачи данных и телефонии, системы кабельного телевидения (СКТВ)

    3.2. Телефонный и радио ввод

    3.3. Автоматизированные системы управления и диспетчеризации (АСУД)

    3.4. Системы охраны входов (домофон) и квартир

    3.5. Локальные компьютерные сети и структурированные кабельные системы

    3.6. Учрежденческая автоматическая телефонная станция (УАТС)

    3.7. Системы местной телефонной связи на базе мини-АТС, оперативно-диспетчерской, селекторной, громкоговорящей связи

    3.8. Система электрочасофикации

    3.9. Кабельпроводы и закладные устройства для сетей систем электросвязи

    3.10. Системы звукоусиления, видеопроекции, отображения информации, лингафонные системы, мини аудио-видео студии и комплекс систем электросвязи в залах многоцелевого назначения

    3.11. Электроснабжение систем электросвязи, предусмотренных настоящим сборником

    Приложения

    Приложение 1. Условные обозначения

    Приложение 2. Примеры расчета стоимости работ

    ВВЕДЕНИЕ

    Настоящий Сборник 5.2 «Системы электросвязи. МРР-5.2-16» (далее - Сборник) разработан в соответствии с государственным заданием.

    Настоящий Сборник предназначен для применения государственными заказчиками, проектными и другими заинтересованными организациями при расчете начальных (максимальных) цен контрактов и определении стоимости проектных работ, осуществляемых с привлечением средств бюджета города Москвы.

    При разработке Сборника были использованы следующие нормативно-методические и другие источники:

    Градостроительный кодекс Российской Федерации;

    Постановление Правительства Российской Федерации от 16 февраля 2008 г. №87 «О составе разделов проектной документации и требованиях к их содержанию»;

    СП 54.13330.2011 Здания жилые многоквартирные. Актуализированная редакция СНиП 31-01 -2003;

    СП 42.13330.2011 Градостроительство. Планировка и застройка городских и сельских поселений. Актуализированная редакция СНиП 2.07.01-89*;

    СП 134.13330.2012 Системы электросвязи зданий и сооружений. Основные положения проектирования;

    МГСН 3.01-01 «Жилые здания»;

    МГСН 1.01-99 «Нормы и правила проектирования планировки и застройки города Москвы»;

    Сборник 9.1 «Методика расчета стоимости научных, нормативно-методических, проектных и других видов работ (услуг) на основании нормируемых трудозатрат. МРР-9.1-16»;

    Сборник 1.1 «Общие указания по применению Московских региональных рекомендаций. МРР-1.1-16»;

    Сборник 5.5 «Автоматизированные системы учета энергопотребления (АСУЭ) в жилищно-гражданском строительстве. МРР-5.5-16».

    1. ОБЩИЕ ПОЛОЖЕНИЯ

    1.1. Сборник является методической основой для определения стоимости проектирования систем электросвязи для жилых домов, общественных и административных зданий и других объектов, проектируемых на территории города Москвы.

    1.2. При определении стоимости работ на основании настоящего Сборника также следует руководствоваться положениями сборника 1. 1 «Общие указания по применению Московских региональных рекомендаций. МРР-1.1-16».

    1.3. Приведение базовой стоимости работ, определенной в соответствии с настоящим Сборником, к текущему уровню цен осуществляется путем применения коэффициента пересчета (инфляционного изменения), утверждаемого в установленном порядке.

    1.4. Настоящий Сборник включает в себя базовые цены на проектирование следующих слаботочных сетей, систем и устройств:

    Мультисервисные волоконно-оптические линии связи (ВОЛС) систем кабельного телевидения (СКТВ), телефонии и передачи данных;

    Коаксиальные магистральные сети систем кабельного телевидения (СКТВ);

    Головные станции (ГС) систем кабельного телевидения (СКТВ);

    Домовая распределительная сеть (ДРС) без абонентской разводки;

    Абонентская телевизионная разводка;

    Телефонный и радиоввод;

    Магистральные сети автоматизированной системы диспетчерского контроля и управления (АСУД);

    Диспетчерские АСУД;

    Переподключение существующих домов к диспетчерской АСУД;

    Элементы (домовая сеть) АСУД;

    Система охраны входов (домофон);

    Единая система охраны входов и квартир;

    Локальные компьютерные сети и структурированные кабельные системы;

    Учрежденческая автоматическая телефонная станция (УАТС);

    Системы местной телефонной связи на базе мини-АТС, оперативно - диспетчерской, селекторной, громкоговорящей связи;

    Система электрочасофикации;

    Кабельпроводы и закладные устройства для сетей систем электросвязи;

    Системы звукоусиления, видеопроекции, отображения информации, лингафонные системы, мини аудио-видео студии и комплекс систем электросвязи в залах многоцелевого назначения.

    Также Сборник включает в себя базовые цены на проектирование электроснабжения разрабатываемых систем электросвязи.

    Стоимость проектирования наружной прокладки канализации для кабелей связи и радио определяется на основании таблицы 3.8 «Сети связи и радио» Сборника 4.2 «Инженерные сети и сооружения. МРР-4.2-16».

    Стоимость проектирования внутренних сетей телефонизации и радиофикации для жилых, общественных и административных зданий входит в стоимость основных проектных работ по зданиям, определяемую на основании Сборника 4.1 «Объекты капитального строительства. МРР-4.1-16». Доли стоимости подраздела «Сети связи» в стоимости основных проектных работ по зданиям приведены в соответствующих таблицах приложения 1 к МРР-4.1-16.

    1.5. Распределение стоимости основных проектных работ, определенной на основании настоящего Сборника, представлено в таблице 1.1.

    Таблица 1.1

    Виды документации

    Доля стоимости основных проектных работ (%)

    Проектная документация (П)

    Рабочая документация (Р)

    Проектная и рабочая документация (П+Р)*

    * Данная строка включена справочно для определения общей стоимости разработки проектной и рабочей документации (при необходимости).

    1.6. В базовых ценах Сборника учтены и не требуют дополнительной оплаты затраты на выполнение работ, перечисленных в пунктах 3.3-3.5 МРР-1.1-16, а также:

    Участие в составлении заданий на проектирование (исключая технологическое задание);

    Участие совместно с заказчиком в проведении обязательных согласований проектной документации.

    1.7. Базовыми ценами настоящего Сборника не учтена разработка проектных решений в нескольких вариантах в соответствии с заданием на проектирование.

    1.8. В базовых ценах Сборника не учтены и требуют дополнительной оплаты работы и услуги, выполняемые по отдельным договорам с заказчиком в соответствии с таблицей 5.2 МРР-1.1-16, а также сопутствующие расходы, приведенные в пункте 3.6 МРР-1.1-16.

    2. МЕТОДИКА ОПРЕДЕЛЕНИЯ СТОИМОСТИ ПРОЕКТНЫХ РАБОТ

    2.1. Базовая цена на проектные работы зависит от натуральных показателей и определяется по формуле:

    Ц (б) - базовая цена проектных работ, осуществляемых с привлечением средств бюджета города Москвы (тыс. руб);

    а - постоянная величина, выраженная в тыс. руб.;

    в - постоянная величина, имеющая размерность тыс. руб. на единицу натурального показателя;

    Х - натуральный показатель.

    Параметры «а» и «в» являются постоянными для определенного интервала изменения натурального показателя.

    Значения параметров «а», «в» и натурального показателя «Х» представлены в соответствующих таблицах раздела 3.

    2.2. Стоимость проектных работ определяется по следующей формуле:

    С (б) - базовая стоимость проектных работ;

    Ц (б) - базовая цена проектных работ;

    Произведение корректирующих коэффициентов, учитывающих усложняющие (упрощающие) факторы и условия проектирования;

    К в - коэффициент, учитывающий вид разрабатываемой документации (определяется по таблице 1.1).

    2.3. Стоимость проектирования внутренних и наружных слаботочных сетей, систем и устройств на объекте, подлежащих реконструкции или техническому перевооружению, определяется с применением повышающего коэффициента 1,25.

    2.4. Стоимость основных проектных работ по комплексам, состоящим из нескольких зданий, сооружений, коммуникаций определяется по натуральным показателям отдельно по каждому зданию, сооружению, образующему комплекс, а затем суммируется.

    2.5. При разработке проектной документации на этапы строительства (пусковые, градостроительные комплексы), предусмотренные заданием на проектирование, стоимость проектирования определяется отдельно для каждого этапа строительства (пускового комплекса) с увеличением на 5% от стоимости проектных работ данного этапа.

    3. БАЗОВЫЕ ЦЕНЫ

    3.1. Мультисервисные сети, сети передачи данных и телефонии, системы кабельного телевидения (СКТВ)

    1. Базовые цены подраздела 3.1 учитывают комплекс работ по проектированию систем, состоящих из оборудования и линий связи, включающий проектирование прокладок линий связи, подбор и размещение оконечного оборудования, а так же расчет систем.

    Таблица 3.1.1

    Мультисервисные волоконно-оптические линии связи (ВОЛС) систем кабельного телевидения (СКТВ), телефонии и передачи данных

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    ВОЛС длиной до 1000 м и количеством домов с волоконно-оптическими узами (ВОУ):

    ВОЛС длиной до 2000 м и количеством домов с ВОУ:

    ВОЛС длиной до 3000 м и количеством домов с ВОУ:

    ВОЛС длиной свыше 3000 м и количеством домов с ВОУ:

    Примечания:

    2. В базовых ценах учтена прокладка волоконно-оптических сетей СКТВ в проектируемой кабельной канализации и по воздушно-кабельным переходам. При проектировании прокладки волоконно-оптических сетей в канализации без использования воздушно-кабельных переходов к базовой цене применяется коэффициент К=0,85. При проектировании прокладки волоконно-оптических сетей по существующим коллектору или канализации к базовой цене применяется коэффициент К=1,2.

    3. Стоимость проектирования оптической головной станции определяется по пункту 1 таблицы 3.1.3 настоящего Сборника

    4. При раздельном проектировании в составе мультисервисной сети отдельных сетей (например, передачи данных, телефонии и пр., передающих информацию по различным волокнам ВОК) к базовым ценам для каждой последующей сети применяется коэффициент К=0,6.

    Таблица 3.1.2

    Коаксиальные магистральные сети систем кабельного телевидения (СКТВ) на 50 каналов

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Коаксиальные магистральные сети на 1 дом, протяженностью, п.м:

    от 100 до 200

    от 200 до 300

    от 300 до 500

    Магистральные сети с числом домов до 5, протяженностью, п.м:

    от 300 до 500

    от 500 до 1000

    от 1000 до 2000

    Магистральные сети с числом домов до 10, протяженностью, п.м:

    от 500 до 1000

    от 1000 до 2000

    от 2000 до 5000

    Примечания:

    1. В базовых ценах не учтено проектирование прокладки телефонной канализации, стоимость которого рассчитывается на основании таблицы 3.8 МРР-4.2-16, а также проектирование головных станций, стоимость которого рассчитывается на основании таблицы 3.1.3 настоящего Сборника.

    2. В базовых ценах учтена прокладка коаксиальных магистральных сетей СКТВ в проектируемой кабельной канализации.

    3. При проектировании прокладки коаксиальных магистральных сетей СКТВ воздушно-кабельными переходами и по существующим коллектору или канализации к базовой цене применяется коэффициент К=1,2.

    Таблица 3.1.3

    Головные станции (ГС) систем кабельного телевидения (СКТВ)

    Примечания:

    1. Базовыми ценами учтены проектные работы по подбору, установке, размещению и подключению оборудования головных станций и антенных сооружений в соответствии с ТУ и частотным планом сети.

    Таблица 3.1.4

    Домовая распределительная сеть (ДРС) системы кабельного телевидения (СКТВ) на 50 каналов без абонентской разводки

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    В домах до 17 этажей с количеством абонентов до 4 на этаже в секции, при общем количестве абонентов:

    от 50 до 100

    от 100 до 200

    от 200 до 300

    от 300 до 400

    от 400 до 500

    от 500 до 600

    В домах до 17 этажей с количеством абонентов свыше 4 на этаже в секции, при общем количестве абонентов:

    от 50 до 100

    от 100 до 200

    от 200 до 300

    от 300 до 400

    от 400 до 500

    от 500 до 600

    В домах до 25 этажей с количеством абонентов до 4 на этаже в секции, при общем количестве абонентов:

    от 50 до 100

    от 100 до 200

    от 200 до 300

    от 300 до 400

    от 400 до 500

    от 500 до 600

    от 600 до 1000

    В домах до 25 этажей с количеством абонентов свыше 4 на этаже в секции, при общем количестве абонентов:

    от 100 до 200

    от 200 до 300

    от 300 до 400

    от 400 до 500

    от 500 до 600

    от 600 до 1000

    Примечания:

    1. При проектировании ДРС в зданиях высотой более 75 м к базовой цене применяется коэффициент К=1,2.

    2. При проектировании элементов магистральной сети СКТВ (внутри здания) к базовой цене применяется коэффициент К=0,4.

    3. Базовые цены для ДРС разработаны для их проектирования в индивидуальных домах.

    4. При проектировании ДРС в домах типовых серий к базовой цене применяется коэффициент 0,7.

    5. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

    Таблица 3.1.5

    Абонентская разводка в домовой распределительной сети (ДРС) системы кабельного телевидения (СКТВ)

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Абонентская разводка в одном здании с количеством оконечных розеток:

    от 50 до 100

    от 100 до 200

    от 200 до 400

    от 400 до 600

    от 600 до 1000

    Примечание: абонентская телевизионная разводка проектируется по заданию заказчика в индивидуальных жилых домах, в общественных и административных зданиях. Абонентской разводкой считается разводка от абонентского отвода распределительного устройства, установленного в этажном шкафу слаботочного стояка, до телевизионных розеток.

    Таблица 3.1.6

    Домовая сеть телефонизации здания по технологии PON

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    В домах при общем количестве абонентов:

    от 50 до 100

    от 100 до 200

    от 200 до 300

    от 300 до 400

    от 400 до 500

    от 500 до 600

    от 600 до 800

    от 800 до 1000

    Примечания:

    1. Базовые цены учитывают затраты на проектирование сети телефонизации по технологии PON в существующих домах.

    2. Базовыми ценами учтено проектирование прокладки оптических кабелей от домового оптического распределительного шкафа до коробок в этажном шкафу с дооборудованием домового шкафа, установкой этажных распределительных коробок, организацией новых слаботочных стояков для прокладки межэтажных кабелей, а также проведение необходимых обследований и согласований.

    3. При разработке сети в проектируемых домах типовых серий, для которых разработаны типовые проекты телефонизации на медных кабелях, данная расценка применяется с коэффициентом 0,7 дополнительно к стоимости привязки раздела «Сети связи» (СС) по МРР-4.1-16, в котором в том числе при привязке осуществляется изъятие проектных решений по телефонизации на медных кабелях.

    4. При разработке сети в проектируемых индивидуальных секционных жилых зданиях данная расценка применяется с коэффициентом 0,4 дополнительно к стоимости раздела «Сети связи» (СС) по МРР-4.1-16 (в котором не учтена специфика проектирования сетей на волоконно-оптических кабелях).

    5. При разработке сети в проектируемых нежилых зданиях и проектируемых нежилых помещениях с конкретной технологией в жилых зданиях данная расценка применяется с коэффициентом 0,4 дополнительно к стоимости раздела «Сети связи» (СС) по МРР-4.1-16.

    3.2. Телефонный и радио ввод

    Таблица 3.2.1

    Примечания:

    1. Базовыми ценами учтены работы по организации ввода кабелей в отдельно стоящее здание, выбору места установки распределительного шкафа и других работ по увязке внутренних и наружных сетей. Настоящая расценка применяется при «привязке» типовых проектов зданий.

    2. При определении стоимости проектирования телефонного ввода к базовой цене применяются корректирующие коэффициенты в зависимости от количества пар:

    До 300 пар или 6 оптических волокон - коэффициент 1,0;

    Свыше 300 пар или свыше 8 оптических волокон - коэффициент 1,1.

    3.3. Автоматизированные системы управления и диспетчеризации (АСУД)

    Таблица 3.3.1

    Магистральные сети АСУД

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Магистральные распределительные сети (ДЭЗ-диспетчерская-дом) на один АРМ в диспетчерской с количеством домов:

    Примечания:

    1. В базовых ценах не учтено проектирование прокладки телефонной канализации, стоимость которого рассчитывается на основании таблицы 3.8 МРР-4.2-16.

    2. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

    Таблица 3.3.2

    Диспетчерские АСУД

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Диспетчерская АСУД в проектируемом здании

    Диспетчерская АСУД в существующем здании

    Временная диспетчерская (пультовая) АСУД в здании

    Примечания:

    1. При переносе существующей диспетчерской из одного здания в другое (проектируемое или существующее) к базовой цене соответственно пунктов 1, 2 таблицы 3.3.2 применяется коэффициент 1,15.

    2. При подключении существующих домов от нескольких диспетчерских на одну (проектируемую или существующую) к базовой цене соответственно пунктов 1, 2 таблицы 3.3.2 применяется коэффициент 1,2.

    3. Стоимость проектирования электроснабжения оборудования в проектируемом здании определяется по пункту 3.11.

    Таблица 3.3.3

    Переподключение существующих домов к диспетчерским АСУД

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Переподключение существующего дома к новому АРМу АСУД, при количестве модулей обработки информации (концентратор, терминал):

    Таблица 3.3.4

    Элементы (домовая сеть) АСУД

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Элементы (домовая сеть) АСУД, громкоговорящая связь на базе АСУД при количестве модулей обработки информации (концентратор, терминал):

    Примечания:

    1. При определении стоимости проектирования элементов АСУД в жилых домах с первыми нежилыми этажами применяются следующие корректирующие коэффициенты (в соответствии с МРР-5.5-16):

    С одним нежилым этажом К= 1,1;

    С двумя нежилыми этажами К= 1,2;

    С тремя и более нежилыми этажами К=1,25.

    2. Базовые цены разработаны для проектирования в индивидуальных домах. При проектировании элементов АСУД в домах типовых серий к базовой цене применяется коэффициент 0,7.

    3. При проектировании элементов АСУД на внедряемом вновь оборудовании, с использованием новых технических средств, а также технических средств, находящихся в стадии серийного освоения к базовой цене применяется коэффициент 1,2. Под указанным оборудованием понимается оборудование (в т.ч. того же производителя), имеющее структуру, существенно отличающуюся от структуры ранее используемого оборудования за счет существенного изменения элементов системы и (или) связей между ними (например, использование радиоканала вместо проводных каналов связи). Коэффициент применяется при первом использовании разработчиком АСУД с документальным подтверждением.

    4. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

    3.4. Системы охраны входов (домофон) и квартир

    Таблица 3.4.1

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Системы охраны входов (аудиодомофон) в одной секции для абонентов в количестве:

    от 88 до 144

    от 144 до 204

    от 204 до 264

    от 264 до 300

    Единая система охраны входов и квартир, видеодомофон в одной секции для абонентов в количестве:

    от 88 до 144

    от 144 до 204

    от 204 до 264

    от 264 до 300

    Примечания:

    1. Базовые цены для систем охраны входов и охраны квартир разработаны для их проектирования в индивидуальных домах.

    2. При проектировании системы в домах типовых серий к базовой цене применяется коэффициент 0,7.

    3. При проектировании жилых домов из нескольких секций или дополнительных входов в нежилых зданиях к базовой цене применяются следующие понижающие коэффициенты:

    От 2 до 4 секций (входов) К=0,85;

    От 5 до 8 секций (входов) К=0,65;

    От 8 до 10 секций (входов) К=0,55;

    Свыше 10 секций (входов) К=0,5.

    4. При проектировании системы на внедряемом вновь оборудовании, с использованием новых технических средств, а также технических средств, находящихся в стадии серийного освоения к базовой цене применяется коэффициент 1,2. Под указанным оборудованием понимается оборудование (в т.ч. того же производителя), имеющее структуру, существенно отличающуюся от структуры ранее используемого оборудования за счет существенного изменения элементов системы и (или) связей между ними (например, использование радиоканала вместо проводных каналов связи). Коэффициент применяется при первом использовании разработчиком системы с документальным подтверждением.

    5. При проектировании системы охраны входов без разводки по квартирам к базовой цене применяется коэффициент 0,7.

    6. Стоимость проектирования электроснабжения оборудования, в том числе устанавливаемого в квартирах, определяется по пункту 3.11.

    3.5. Локальные компьютерные сети и структурированные кабельные системы

    Таблица 3.5.1

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Структурированные кабельные системы (СКС) в одном здании с количеством портов:

    от 50 до 100

    от 100 до 300

    от 300 до 500

    от 500 до 1000

    от 1000 до 2000

    от 2000 до 4000

    Активная часть компьютерной сети в одном здании с количеством портов:

    от 50 до 100

    от 100 до 300

    от 300 до 500

    от 500 до 1000

    от 1000 до 2000

    от 2000 до 4000

    Примечания:

    1. При отсутствии данных о количестве компьютерных рабочих мест и абонентских розеток местной телефонной связи количество портов определяется в зависимости от общей площади офисной части здания из расчета 10 кв.м на 2 порта и 15 - 20 кв.м на один телефон.

    2. При проектировании структурированных кабельных систем (СКС) без горизонтальной (или вертикальной) подсистемы к базовой цене применяется коэффициент 0,5.

    3. Базовыми ценами данной таблицы учтено проектирование прокладки закладных устройств только для компьютерной и местной телефонной сетей, при этом расценки пункта 3.9 не применяются.

    4. При проектировании общих закладных устройств для всего комплекса систем электросвязи применяется расценка по пункту 3.9. При этом к базовой цене таблицы 3.5.1 применяется коэффициент 0,8.

    5. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

    3.6. Учрежденческая автоматическая телефонная станция (УАТС)

    Таблица 3.6.1

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    УАТС в одном здании, с количеством номеров:

    от 100 до 300

    от 300 до 500

    от 500 до 800

    от 800 до 1000

    Примечания:

    1. Базовыми ценами настоящей таблицы учтено проектирование только станционной части. При проектировании местной телефонной связи на базе УАТС стоимость проектирования линейной части определяется по таблице 3.5.1.

    2. Стоимость проектирования электроснабжения УАТС определяется по пункту 3.11.

    3.7. Системы местной телефонной связи на базе мини-АТС, оперативно-диспетчерской, селекторной, громкоговорящей связи

    Таблица 3.7.1

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Системы местной телефонной связи на базе мини-АТС, оперативно-диспетчерской, селекторной, громкоговорящей связи, при количестве абонентов:

    Примечания:

    1. Базовыми ценами настоящей таблицы учтено проектирование станционной и линейной части, а так же закладных устройств (кабель-проводов) в местах размещения абонентских устройств.

    2. Стоимость проектирования электроснабжения оборудования систем местной телефонной связи на базе мини-АТС, оперативно-диспетчерской, селекторной, громкоговорящей связи определяется по пункту 3.11.

    3.8. Система электрочасофикации

    Таблица 3.8.1

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Станция электрических часов с количеством вторичных часов:

    от 50 до 100

    Примечания:

    1. Базовыми ценами настоящей таблицы учтено проектирование станционной и линейной части, а так же закладных устройств (кабельпроводов) в местах размещения вторичных часов.

    2. Стоимость проектирования электроснабжения оборудования системы электрочасофикации определяется по пункту 3.11.

    3.9. Кабельпроводы и закладные устройства для сетей систем электросвязи

    Таблица 3.9.1

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Кабельпроводы (закладные) для сетей систем электросвязи с плотностью до 6 кв.м на абонентское, при количестве абонентских устройств в одном здании:

    от 50 до 100

    от 100 до 300

    от 300 до 500

    от 500 до 700

    от 700 до 1000

    от 1000 до 1500

    от 1500 до 2000

    от 2000 до 4000

    от 4000 до 6000

    Кабельпроводы (закладные) для сетей систем электросвязи с плотностью от 6 до 12 кв.м на абонентское устройство, при количестве абонентских устройств в одном здании:

    от 50 до 100

    от 100 до 300

    от 300 до 500

    от 500 до 700

    от 700 до 1000

    от 1000 до 1500

    от 1500 до 2000

    от 2000 до 4000

    от 4000 до 6000

    Кабельпроводы (закладные) для сетей систем электросвязи с плотностью свыше 12 кв.м на абонентское устройство, при количестве абонентских устройств в одном здании:

    от 50 до 100

    от 100 до 300

    от 300 до 500

    от 500 до 700

    от 700 до 1000

    от 1000 до 1500

    от 1500 до 2000

    от 2000 до 4000

    от 4000 до 6000

    Примечания:

    1. Данная таблица применяется для определения стоимости проектирования объединенных закладных устройств и кабельпроводов при проектировании комплекса систем электросвязи, определяемых настоящим сборником.

    2. Плотность на одно абонентское устройство определяется делением полезной площади здания в кв.м (включая коридоры) на количество абонентских устройств.

    3. При проектировании закладных устройств в неполном объеме принимается, что вертикальная прокладка сетей электросвязи составляет 20%, горизонтальная - 80% (в том числе по коридорам - 30%, по помещениям - 50%) от объема работ, определяемого по таблице 3.9.1.

    3.11 Системы звукоусиления, видеопроекции, отображения информации, лингафонные системы, мини аудио-видео студии и комплекс систем электросвязи в залах многоцелевого назначения

    Таблица 3.10.1

    Система звукоусиления

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Система звукоусиления в залах с количеством мест:

    от 200 до 400

    от 400 до 800

    от 800 до 1000

    от 1000 до 1500

    от 1500 до 2000

    Примечания:

    1. Базовыми ценами не учтено выполнение электроакустического расчета системы.

    2. Базовые цены рассчитаны для речевого режима работы системы.

    3. Базовыми ценами учтено проектирование кабельпроводов и закладных устройств.

    4. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

    Таблица 3.10.2

    Мини аудио-видео студии

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Комплекс аудио программ

    Комплекс видео программ

    Комплекс аудио-видео программ

    Примечания:

    1. Базовыми ценами не учтено выполнение акустического расчета и рекомендаций по обработке студии и аппаратных комплекса.

    2. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

    Таблица 3.10.3

    Система видеопроекции

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Система видеопроекция на экран с диагональю, метров:

    от 1,2 до 2,7

    от 2,7 до 4,7

    от 4,7 до 7,0

    от 7,0 до 10,0

    Примечания:

    1. Базовыми ценами учтено проектирование технологической части экрана. Стоимость проектирования механической части экрана определяется дополнительно по соответствующему нормативно-методическому документу.

    2. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

    Таблица 3.10.4

    Комплекс систем электросвязи в залах многоцелевого назначения

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Комплекс систем электросвязи в залах, с числом мест:

    от 700 до 1600

    от 1600 до 2000

    Примечания:

    1. Комплекс систем электросвязи включает в себя следующие подсистемы:

    Звукоусиления с речевым и музыкальными режимами работы;

    Видеопроекция на большой экран;

    Аппаратно-программный блок с мини студией (8%);

    Режиссерско-постановочной связи (12%);

    Трансляции мероприятий из зала в помещения здания (10%);

    Перевода речи до 4-х языков и технологического наблюдения для перевода речи (20%).

    2. В случае отсутствия в комплексе некоторых подсистем к базовой цене применяется понижающий коэффициент с учетом процентного вклада данных подсистем. Вклад указан в скобках после названия подсистемы.

    3. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

    Таблица 3.10.5

    Лингафонные системы

    Наименование объекта проектирования

    Натуральный показатель «Х»

    Параметры базовой цены

    а, тыс. руб.

    в, тыс.руб./ед. натур. пок.

    Лингафонные системы, с числом мест в одном помещении:

    Примечание: стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

    3.11. Электроснабжение систем электросвязи, предусмотренных настоящим сборником

    Таблица 3.11.1

    Примечания:

    1. Группой подключения является линия электрической сети от распределительного щита до точки (точек) подключения слаботочного устройства с установкой в щите отдельного аппарата защиты,

    2. При размещении слаботочного оборудования вне электрощитовой с установкой дополнительного распределительного щита, к базовой цене применяется коэффициент 1,2.

    ПРИЛОЖЕНИЯ

    Приложение 1

    Принятые сокращения

    Приложение 2

    Примеры расчета стоимости работ

    Пример 1. Волоконно-оптические сети (ВОЛС) системы кабельного телевидения (СКТВ).

    1. Исходные данные.

    1.1. Волоконно-оптическая сеть протяженностью 900 м.

    1.2. Число волоконно-оптических узлов - 5.

    2. Расчет стоимости.

    2.1. Базовая цена проектирования волоконно-оптических сетей СКТВ определяется по формуле (2.1) на основании данных таблицы 3.1.1 (пункт 1):

    Ц (б) = а + в х Х = 66,0 + 8,0 х 5 = 106,0 тыс. руб.

    К в = 0,4 - коэффициент, учитывающий разработку проектной документации.

    С (т) = С (б) х К пер = 42,4 х 3,533 = 149,8 тыс.руб.

    Пример 2. Коаксиальные магистральные сети системы кабельного телевидения (СКТВ) на 50 каналов.

    1. Исходные данные.

    1.1. Коаксиальная магистральная сеть протяженностью 550 м.

    1.2. Число домов - 3.

    1.3. Проектная документация - 40% согласно таблице 1.1.

    2. Расчет стоимости.

    2.1. Базовая цена проектирования коаксиальных магистральных сетей СКТВ определяется по формуле (2.1) на основании данных таблицы 3.1.2 (пункт 2):

    Ц (б) = а + в х Х = 54,0 + 0,022 х550 = 66,1 тыс. руб.

    2.2. Стоимость разработки проектной документации в базовом уровне цен определяется по формуле (2,2):

    К в = 0,4 - коэффициент, учитывающий разработку проектной документации;

    2.3. Стоимость разработки проектной документации в текущем уровне цен по состоянию на IV квартал 2016 года определяется по формуле (4.1) «Общих указаний по применению Московских региональных рекомендаций. МРР-1.1-16» и составляет:

    С (т) = С (б) х К пер = 26,44 х 3,533 = 93,41 тыс.руб.

    где К пер =3,533 - коэффициент пересчета (инфляционного изменения) базовой стоимости работ градостроительного проектирования, осуществляемых с привлечением средств бюджета города Москвы, в уровень цен IV квартала 2016 года (согласно приложению к приказу Москомэкспертизы № МКЭ-ОД/16-1 от 21.01.2016).

    Пример 3. Домовая распределительная сеть (ДРС) системы кабельного телевидения (СКТВ) на 50 каналов, без абонентской разводки.

    1. Исходные данные.

    1.1. 17-ти этажный, 4-х секционный жилой дом

    1.2. Число абонентов - 256

    1.3. Проектная документация - 40% согласно таблице 1.1.

    2. Расчет стоимости.

    2.1. Базовая цена проектирования домовой распределительной сети (ДРС) определяется по формуле (2.1) на основании данных таблицы 3.1.4 (пункт 1):

    Ц (б) = а + в х Х = 67,0 + 0,150 х256 = 105,4 тыс.руб.

    2.2. Стоимость разработки проектной документации в базовом уровне цен определяется по формуле (2.2):

    К в = 0,4 - коэффициент, учитывающий разработку проектной документации

    2.3. Стоимость разработки проектной документации в текущем уровне цен по состоянию на IV квартал 2016 года определяется по формуле (4.1) «Общих указаний по применению Московских региональных рекомендаций. МРР-1.1-16» и составляет:

    С (т) = С (б) х К пер = 42,2 х 3,533 = 149,1 тыс.руб.

    где К пер =3,533 - коэффициент пересчета (инфляционного изменения) базовой стоимости работ градостроительного проектирования, осуществляемых с привлечением средств бюджета города Москвы, в уровень цен IV квартала 2016 года (согласно приложению к приказу Москомэкспертизы № МКЭ-ОД/16-1 от 21.01.2016).

    сигналами, распространяющимися по проводам, или радиосигналами. В соответствии со способами передачи (переноса) сигналов различают проводную связь и радиосвязь ; в различных системах Электросвязь первую часто используют в сочетании с разновидностями второй (например, с радиорелейной связью , спутниковой связью). По классификации, принятой Международным союзом электросвязи, к Электросвязь относят, кроме того, передачу информации при помощи оптических (см. Оптическая связь ) или других электромагнитных систем связи. По характеру передаваемых сообщений Электросвязь подразделяется на следующие основные виды: телефонная связь , обеспечивающая ведение телефонных переговоров между людьми; телеграфная связь , предназначенная для передачи буквенно-цифровых сообщений - телеграмм; факсимильная связь , при которой передаётся графическая информация - неподвижные изображения текста или таблиц, чертежей, схем, графиков, фотографий и т. п.; передача данных (телекодовая связь), целью которой является передача информации, представленной в формализованном виде (знаками или непрерывными функциями), для обработки этой информации ЭВМ или уже обработанной ими; видеотелефонная связь (см. Видеотелефон ), служащая для одновременной передачи речевой и зрительной информации. При помощи технических средств Электросвязь осуществляются также проводное вещание , радиовещание (звуковое вещание) и телевизионное вещание (см. Телевидение ).

    Для установления Электросвязь между отправителем (источником сообщений) и получателем (приёмником сообщений) служат: оконечные аппараты - передающий и приёмный; канал связи , образуемый с помощью одной или нескольких включенных последовательно систем передачи; кроме того, вследствие наличия большого количества оконечных передающих и приёмных аппаратов и необходимости их всевозможных попарных соединений для организации непрерывного (сквозного) канала между ними, используется система коммутационных устройств, состоящая из одной или нескольких коммутационных станций и узлов.

    Оконечные аппараты. Оконечный передающий аппарат служит для преобразования сигнала исходной формы (звуков речи; знаков текста телеграмм; знаков, записанных в закодированном виде на перфоленте или каком-либо другом носителе информации ; изображений объектов и т. д.) в электрический сигнал. В телефонной связи и радиовещании для электроакустических преобразований применяют микрофон . В телеграфной связи кодовые комбинации знаков текста телеграмм преобразуют в серии электрических импульсов; такое преобразование осуществляется либо непосредственно (при использовании стартстопного телеграфного аппарата ), либо с предварительной записью знаков на перфоленту (при использовании трансмиттера ). В факсимильной связи преобразование светового потока переменной яркости, отражённого от оригинала, в электрические импульсы производится факсимильным аппаратом . Информацию о распределении светотеней какого-либо объекта телевизионной передачи преобразуют в видеосигнал при помощи телевизионной передающей камеры (телекамеры).

    Оконечный приёмный аппарат служит для приведения принимаемых электрических сигналов к форме, удобной для их восприятия приёмником сообщений. При Электросвязь многих видов оконечные аппараты содержат как передающие, так и приёмные устройства. В первую очередь это относится к такой Электросвязь , которая обеспечивает двухсторонний (обычно дуплексный; см. Дуплексная связь ) обмен сообщениями. Так, телефонный аппарат , как правило, содержит микрофон и телефон , объединённые в одном конструктивном узле - микротелефонной трубке. В радиовещании и телевизионном вещании передающие и приёмные оконечные аппараты разделены, причём сигналы от одного передающего устройства принимаются сразу многими оконечными аппаратами - радиоприёмниками и телевизорами .

    Канал связи; многоканальные системы передачи . Канал связи (канал электросвязи) - технические устройства и физическая среда, в которых электрические сигналы распространяются от передатчика к приёмнику. Технические устройства (модуляторы , демодуляторы, усилители электрических колебаний , кодирующие устройства , дешифраторы и т. д.) размещают в оконечных и промежуточных пунктах линий связи (кабельных, радиорелейных и т. д.). Система передачи информации - каналообразующая аппаратура и другие устройства, обеспечивающие в совокупности образование множества каналов связи в одной линии связи (см. также Линии связи уплотнение ).

    Используемые в Электросвязь каналы связи подразделяются на аналоговые и дискретные. Аналоговые каналы служат для передачи непрерывных электрических сигналов (примеры таких сигналов: напряжения и токи, получающиеся при электроакустических преобразованиях звуков речи, музыки, при развёртке изображений). Возможность передачи через данный канал связи непрерывных сигналов от того или иного источника обусловлена прежде всего такими характеристиками канала, как полоса пропускания частот и допустимая максимальная мощность передаваемых сигналов. Кроме того, поскольку любой канал подвержен различного рода помехам (см. Помехи в проводной связи, Помехи радиоприёму , Помехоустойчивость ), то он характеризуется также минимальной мощностью электрического сигнала, которая должна в заданное число раз превышать мощность помех. Отношение максимальной мощности сигналов, пропускаемых каналом, к минимальной называется динамическим диапазоном канала связи.

    Дискретные каналы служат для передачи импульсных сигналов. Такие каналы обычно характеризуются скоростью передачи информации (измеряемой в бит/сек ) и верностью передачи. Дискретные каналы могут быть также использованы для передачи аналоговых сигналов и, наоборот, аналоговые каналы - для передачи импульсных сигналов. Для этого сигналы преобразуются; аналоговые в импульсные с помощью аналого-дискретных (цифровых) преобразователей, а импульсные в аналоговые с помощью дискретно (цифро)-аналоговых преобразователей. На рис. 1 показаны возможные способы сочетания источников аналоговых и дискретных сигналов с аналоговыми и дискретными каналами связи.

    Используемые в Электросвязь системы передачи обычно обеспечивают одновременную и независимую передачу сообщений от многих источников к такому же числу приёмников. В таких системах многоканальной связи общая линия связи уплотняется несколькими десятками - несколькими тысячами индивидуальных каналов. Наибольшее распространение (1978) получили многоканальные системы с частотным разделением аналоговых каналов. При построении таких систем передачи каждому каналу связи отводится определённый участок области частот в полосе пропускания линейного тракта передачи, общего для всех передаваемых сообщений. Для переноса спектра сигнала в участок, отведённый ему в полосе частот группового тракта (частотного преобразования сигнала), используют амплитудную или частотную модуляцию (см. также Модуляция колебаний ) групп «несущих» синусоидальных токов. При амплитудной модуляции (АМ) в соответствии с передаваемым сообщением изменяется амплитуда гармонических колебаний тока несущей частоты . В результате на выходе модулирующего устройства (модулятора) создаются колебания, в спектре которых кроме составляющей несущей частоты (несущей) имеются две боковые полосы. Поскольку каждая из боковых полос содержит полную информацию об исходном (модулирующем) сигнале, то в линию связи пропускают только одну из них, а другую и несущую подавляют с помощью полосно-пропускающих электрических фильтров или иных устройств (см. Однополосная модуляция , Однополосная связь ). При частотной модуляции (ЧМ) в соответствии с передаваемым сообщением изменяется несущая частота. Системы с ЧМ обладают большей по сравнению с системами с АМ помехоустойчивостью, однако это преимущество реализуется лишь при достаточно большой девиации частоты , для чего необходима широкая полоса частот. Поэтому, например, в радиосистемах ЧМ применяют главным образом в диапазоне метровых (и более коротких) волн, где на каждый индивидуальный канал приходится полоса частот, в 10-15 раз большая, чем в системах с АМ, работающих на более длинных волнах. В радиорелейных линиях нередко используют сочетание АМ с ЧМ; с помощью АМ создаётся некоторый промежуточный спектр, который затем переводится в линейный диапазон частот с помощью ЧМ.

    Для передачи сообщений различного вида требуются каналы с определённой шириной полосы пропускания. Характерная особенность современной системы передачи - возможность организации в одной и той же системе каналов, применяемых для различных видов Электросвязь При этом в качестве стандартного канала используется телефонный канал, называемый каналом тональной частоты (ТЧ). Он занимает полосу частот 300-3400 гц. Для упрощения фильтрующих устройств, разделяющих соседние каналы, каналы ТЧ отделяются друг от друга защитными частотными интервалами и занимают (с учётом этих интервалов) полосу 4 кгц. Кроме передачи сигналов речи, каналы ТЧ используются также в факсимильной связи, низкоскоростной передаче данных (от 600 до 9600 бит/сек ) и некоторых других видах Электросвязь Учитывая большой удельный вес каналов ТЧ в сетях Электросвязь , их принимают за основу при создании как широкополосных (> 4 кгц ), так и узкополосных (< 4 кгц ) каналов. Например, в радиовещании применяется канал с полосой, втрое (иногда вчетверо) превышающей полосу канала ТЧ; для высокоскоростной передачи данных между ЭВМ, передачи изображений газетных полос и др. употребляются каналы, в 12, 60 и даже 300 раз более широкие; сигналы программ телевизионного вещания передаются через каналы с полосой, в 1600 раз превышающей полосу канала ТЧ (что составляет примерно 6 Мгц ). На базе канала ТЧ (посредством его т. н. вторичного уплотнения) создаются каналы для телеграфирования с полосами пропускания 80, 160 или 320 гц, со скоростями передачи (соответственно) 50, 100 или 200 бит/сек . Линии радиорелейной связи позволяют создать 300, 720, 1920 каналов ТЧ (в каждой паре высокочастотных стволов); линии связи через ИСЗ - от 400 до 1000 и более (в каждой паре стволов). Проводные линии связи, используемые в системах передачи с частотным разделением каналов, характеризуются следующим числом каналов ТЧ: симметричные кабели 60 (в расчёте на две пары проводов); коаксиальные кабели - 1920, 3600 или 10 800 (на каждую пару коаксиальных трубок). Возможно создание систем с ещё большим числом каналов.

    С целью увеличения дальности связи посредством уменьшения влияния шумов (накапливаемых по мере прохождения сигнала в линии) в проводных системах передачи с частотным разделением каналов используют усилители, общие для всех сигналов, передаваемых в каждом линейном тракте, и включаемые на определённом расстоянии друг от друга. Расстояние между усилителями зависит от числа каналов: для мощных проводных систем (10 800 каналов) оно составляет 1,5 км, для маломощных (60 каналов) - 18 км. В системах радиорелейной связи сооружают ретрансляционные станции в среднем на расстоянии 50 км одна от другой.

    Наряду с системами передачи с частотным разделением каналов с 70-х гг. 20 в. началось внедрение систем, в которых каналы разделяются во времени на основе методов импульсно-кодовой модуляции (ИКМ), дельта-модуляции и др. При ИКМ каждый из передаваемых аналоговых сигналов преобразуется в последовательность импульсов, образующих определённые кодовые группы (см. Код , Кодирование ). Для этого в сигнале через заданные промежутки времени (равные половине периода, соответствующего максимальной частоте изменения сигнала) вырезаются узкие импульсы (рис. 2 , а). Число, характеризующее высоту каждого вырезанного импульса, передаётся 8-значным кодом за время, не превышающее протяжённость (ширину) импульса (рис. 2 , б). В промежутках времени между передачей кодовых групп данного сообщения линия свободна и может быть использована для передачи кодовых групп других сообщений. На приёмном конце линии производится обратное преобразование кодовых комбинаций в последовательность импульсов различной высоты (рис. 2 , в), из которых с определённой степенью точности может быть восстановлен исходный аналоговый сигнал (рис. 2 , г). При дельта-модуляции аналоговый сигнал сначала преобразуется в ступенчатую функцию (рис. 3 , а), причём кол-во ступенек на период, соответствующий максимальной частоте изменения сигнала, в различных системах составляет 8-16. Передаваемая в линию последовательность импульсов отображает ход ступенчатой функции в изменении знака производной сигнала: возрастающие участки аналоговой функции (характеризующиеся положительной производной) отображаются положительными импульсами, спадающие участки (с отрицательной производной) - отрицательными (рис. 3 , б). В промежутках между этими импульсами располагаются импульсы, образованные от других сигналов. При приёме импульсы каждого сигнала выделяются и интегрируются, в результате с заданной степенью точности восстанавливается исходный аналоговый сигнал (рис. 3 , в).

    Каналы ИКМ и дельта-модуляции (без оконечных аналого-цифровых преобразующих устройств) - дискретные и часто используются непосредственно для передачи дискретных сигналов. Основным достоинством систем с временным разделением каналов является отсутствие накопления шумов в линии; искажение формы сигналов при их прохождении устраняется с помощью регенераторов, устанавливаемых на определённом расстоянии друг от друга (аналогично усилителям в системах с частотным разделением). Однако в системах с временным разделением существует шум «квантования», возникающий при преобразовании аналогового сигнала в последовательность кодовых чисел, характеризующих этот сигнал лишь с точностью до единицы. Шум «квантования», в отличие от обычного шума, не накапливается по мере прохождения сигнала в линии.

    К сер. 70-х гг. разработаны системы с ИКМ на 30, 120 и 480 каналов; находятся в стадии разработки системы на несколько тыс. каналов. Развитие систем передачи с разделением каналов во времени стимулируется тем, что в них широко используют элементы и узлы ЭВМ, и это в конечном счёте приводит к удешевлению таких систем как в проводной связи, так и радиосвязи. Весьма перспективны импульсные системы передачи на основе находящихся в стадии разработки волноводных и световодных линий связи (число каналов ТЧ может достигать 10 5 в волноводной трубе диаметром примерно 60 мм или в паре стеклянных световодных нитей диаметром 30-70 мкм ).

    Системы коммутационных устройств. Применяемые в Электросвязь системы коммутационных устройств бывают двух типов: узлы и станции коммутации каналов (КК), позволяющие при конечном числе каналов создавать временное прямое соединение через канал связи любого источника с любым приёмником (после окончания переговоров соединение разрывается, а освободившийся канал используется для организации другого соединения); узлы и станции коммутации сообщений (КС), используемые в Электросвязь тех видов, в которых допустима задержка (накопление) передаваемых сообщений во времени. Задержка бывает необходима при невозможности их немедленной передачи вызываемому абоненту из-за отсутствия в данный момент свободного канала либо занятости вызываемой абонентской установки. Узлы и станции КК, применяемые в Электросвязь наиболее массовых видов - телефонной и телеграфной, - представляют собой телефонные станции или телеграфные станции , а также телефонные или телеграфные узлы связи , размещаемые в определённых пунктах телефонной сети или телеграфной сети . Станции и узлы КК различаются в зависимости от выполняемых ими функций и их расположения в сети. Например, в телефонной сети существуют такие автоматические телефонные станции (АТС), как сельские, городские, междугородные, а также различные коммутационные узлы: узлы автоматической коммутации, узлы входящих и исходящих сообщений и другие. Характерной особенностью узлов является то, что они связывают между собой различные АТС. Любая современная станция или узел КК содержит комплекс управляющих устройств, построенных на базе электромеханических или электронных приборов, и коммутационных устройств, которые под воздействием сигналов управления осуществляют соединение или разъединение соответствующих каналов (рис. 4 ). В наиболее распространённых (1978) системах КК устройства управления строятся на основе электромеханического реле , а коммутационные устройства - на основе многократных координатных соединителей . Такие станции и узлы называются координатными.

    Системы КС используются преимущественно в телеграфной связи и при передаче данных. Дополнительно к управляющим и коммутирующим устройствам в системах КС имеются устройства для накопления передаваемых сигналов. В процессе прохождения сигналов от передатчика к приемнику в системах КС осуществляются такие технологические операции с накапливаемыми сообщениями, как изменение порядка их следования к абонентам (с учётом возможных приоритетов, т. е. преимущественного права на передачу), приём сообщений по каналу одного типа (характеризующемуся одной скоростью передачи), а передача - по каналу другого типа (с др. скоростью) и ряд дополнительных операций в соответствии с заданным алгоритмом работы. В некоторых случаях могут создаваться комбинированные узлы КС и КК, позволяющие обеспечить наиболее благоприятные режимы передачи сообщений и использования сетей Электросвязь

    Для развития современных коммутационных станций и узлов характерны тенденции использования в коммутационных устройствах быстродействующих миниатюрных герметизированных контактов (например, герконов ) для реализации соединений, а для управления процессами соединений - специализированных ЭВМ. Коммутационные станции и узлы такого типа получили название квазиэлектронных. Введение ЭВМ позволяет предоставлять абонентам дополнительные услуги: возможность применения сокращённого (с меньшим кол-вом знаков) набора номеров наиболее часто вызываемых абонентов; установку аппаратов на «ожидание», если номер вызываемого абонента занят; переключение соединения с одного аппарата на другой и т. д. С внедрением систем передачи с временным разделением каналов намечается возможность перехода к чисто электронным (без механических контактов) станциям и узлам коммутации. В таких системах коммутируются непосредственно дискретные каналы (без преобразования дискретных сигналов в аналоговые). В результате происходит объединение (интеграция) процессов передачи и коммутации, что служит предпосылкой к созиданию интегральной сети связи, в которой сообщения всех видов передаются и коммутируются едиными методами. В СССР Электросвязь развивается в рамках разработанной и планомерно внедряемой Единой автоматизированной сети связи (ЕЛСС). ЕАСС представляет собой комплекс технических средств связи, взаимодействующих посредством использования общей - «первичной» - сети каналов, на основе которой с помощью коммутационных станций и узлов и оконечных аппаратов создаются различные «вторичные» сети, обеспечивающие организацию Электросвязь всех видов.

    Лит.: Чистяков Н. И., Хлытчиев С. М., Малочинский О. М., Радиосвязь и вещание, 2 изд., М., 1968; Многоканальная связь, под ред. И. А. Аболица, М., 1971; Автоматическая коммутация и телефония, под ред. Г. Б. Метельского, ч. 1-2, М., 1968-69; Емельянов Г. А., Шварцман В. О., Передача дискретной информации и основы телеграфии, М., 1973; Румпф К. Г., Барабаны, телефон, транзисторы, пер. с нем., М., 1974; Лившиц Б. С., Мамонтова Н. П., Развитие систем автоматической коммутации каналов, М., 1976: Давыдов Г. Б., Рогинекий В. Н., Толчан А. Я., Сети электросвязи, М., 1977; Давыдов Г. Б., Электросвязь и научно-технический прогресс, М., 1978.

    1 , 2 , ...Nn - каналы или абонентские линии; СК- станционные комплекты для обеспечения функционирования оконечных аппаратов (питание микрофонов, посылка адресной информации и др.): ШК - шнуровые комплекты." src="a_pictures/18/10/th_262622794.jpg">
    Рис. 4. Структурная схема коммутационной станции (узла): ЛК - линейные комплекты для сопряжения каналов и устройств управления; M1, М2, ...Мn, 1 , 2 , ...Nn - каналы или абонентские линии; СК- станционные комплекты для обеспечения функционирования оконечных аппаратов (питание микрофонов, посылка адресной информации и др.): ШК - шнуровые комплекты.

    Статья про слово "Электросвязь " в Большой Советской Энциклопедии была прочитана 8763 раз

    Понятие и виды электросвязь

    1. Современные виды электросвязи

    Все виды электросвязи можно условно разделить на четыре группы передачи:

    · звуковых сообщений

    · неподвижных оптических сообщений;

    · подвижных оптических изображений;

    · сообщений между ЭВМ.

    · передачи сообщений, только при развитии IP - телефонии.

    Телеграфная связь и передача данных служат для передачи дискретных сообщений в виде текстов (телеграмм) и цифровых данных соответственно. Причем передача данных обеспечивает более скоростную и качественную передачу сообщений.

    Факсимильная связь и ее разновидность (передача газетных полос) обеспечивают передачу оптических сообщений в виде неподвижных изображений (в том числе и цветных).

    Телефонная связь и системы звукового вещания предназначены для передачи звуковых сообщений. Телефонная связь обеспечивает ведение переговоров между людьми (абонентами), а звуковое вещание -- одностороннюю и высококачественную передачу звуковых сообщений (радиопрограмм), предназначенных одновременно для многих слушателей.

    Телевизионное вещание и видеотелефонная связь обеспечивают одновременную передачу оптических и звуковых сообщений. При этом телевидение обеспечивает одностороннюю передачу массовых сообщений, а видеотелефонная связь -- двустороннюю передачу индивидуальных сообщений, позволяя вести переговоры, при которых собеседники видят друг друга. Этот вид электросвязи получил широкое распространение, из-за относительно высокой стоимости Каждый вид электросвязи реализуется с помощью определенной системы, обеспечивающей передачу на расстояние конкретных сообщений. Поэтому в электросвязи существуют системы: телефонной, телеграфной, факсимильной, видеотелефонной связи, передачи газет, передачи данных, а также звукового и телевизионного вещания. Состав и схемы этих систем определяются характером и видом передаваемых сообщений.

    Телефонные, телеграфные, видеотелефонные системы и системы передачи данных обеспечивают одновременную двухстороннюю передачу сообщений между абонентами, то есть позволяют вести переговоры. Для этого каждый абонент должен иметь как передатчик, так и приемник, связанные между собой двумя каналами связи, один из которых обеспечивает передачу сигналов в одном направлении, а другой в другом (обратном) направлении.

    Системы звукового и телевизионного вещания, а также передачи газет обеспечивают одностороннюю передачу сообщений, предназначенных одновременно для большого числа абонентов. Каждый слушатель или группа слушателей, находящиеся у одного приемника, пользуется "своей" системой связи, состоящей из передатчика, канала связи и приемника. При этом передатчик является общим элементом одновременно для многих систем. Общее число систем соответствует числу приемников.

    История развития пожарной автоматики

    На смену морально и технически устаревшим пожарным извещателям АТИМ, АТП, ДТЛ, ДИ-1, КИ-1, РИД-1, ИДФ-1, ИДФ-1М, ПОСТ-1 и приемно-контрольного оборудования СКПУ-1, СДПУ-1, ППКУ-1М, ТОЛЮ/100...

    Многоканальная система передачи информации

    Необходимо отметить, что для рассматриваемой СПДИ выполняются необходимые условия функционирования многоканальной системы электросвязи, а именно и. Целесообразно запас рассматриваемого канала связи по пропускной способности Ск>Iс =1...

    Модернизация телефонной сети в сельской местности Республики Казахстан

    Модернизируемая сельская сеть предполагает: использование цифровых АТС большей, чем в настоящее время, емкости в сочетании с необслуживаемыми абонентскими выносами. Современные сети строятся с использованием удаленных концентраторов...

    Основы инфокоммуникационных технологий

    Электросвязь -- передача информации с помощью электрических сигналов по проводам, волоконно-оптическому кабелю или радиоволн. Принцип электросвязи основан на преобразовании сигналов сообщения (звук...

    Понятие и виды электросвязь

    Системы для передачи непрерывных сообщений. Системы телефонной связи предназначены для передачи на расстояние звуковых (акустических) сообщений, создаваемых голосовыми связками и воспринимаемых органом слуха (ухом) человека...

    Понятие и виды электросвязь

    Витая пара является самой дешёвой и распространённой средой передачи данных. Она состоит из двух изолированных медных проводов, свитых друг с другом. Витая пара широко используется внутри зданий для объединения компьютеров в локальные сети...

    Понятие и виды электросвязь

    Классификация решений профессиональной мобильной радиосвязи (ПМР) определяется различием потребностей заказчиков, а также их отраслевой спецификой. Как и вся коммуникационная инфраструктура предприятия...

    Разработка компонентов инфраструктуры сервисного обслуживания встроенной памяти гибкой автоматизированной системы на кристалле

    В настоящее время значительная часть подобных конфигурируемых проектов разрабатывается в виде печатной платы как комбинация микросхем программируемой и жесткой логики, аналоговых блоков, микроконтроллеров...

    Расчет экономической эффективности внедрения новых служб

    Современные лазерные гироскопы

    Современный лазерный гироскоп представляет собой сложную оптико-электронную систему, основным элементом которой является КОКГ. Конструкция лазерного гироскопа выполняется в виде монолитного блока из высококачественного кварца или ситалла...

    Стандартизация оборудования в области радиосвязи

    Организацией, обеспечивающей стандартизацию оборудования связи в глобальном масштабе при ООН, является Международный союз электросвязи (МСЭ)...

    Эксплуатация трассовых радиолокаторов и радиолокационных комплексов