• Защита от сетевых атак

    защита компьютерный сеть

    Сетевая защита и брандмауэр

    Как бы ни была безопасна система, всегда есть риск, что кто-то извне по компьютерной сети будет пытаться ее взломать. Единственным решением, которое позволяет в большинстве случаев решить эту проблему является своевременное обновление версий программного обеспечения. Но и в этом случае можно найти какую-то особенность в функционировании программного обеспечения и использовать ее для взлома системы. Например: использование пользователем демонстрационной версии программного продукта или используемая версия программного обеспечения больше не поддерживается разработчиком. В этих ситуациях, если не использовать каких-либо дополнительных мер, пользователь может оказаться беззащитным от атак извне.

    Понимая опасность таких ситуаций, многие исследовательские центры и частные компании занимались решением этой проблемы. Разработчики рассудили: раз сетевой взломщик не должен взломать компьютер пользователя, то он просто не должен получить к нему доступ, т.е. необходимо гарантированно закрыть доступ к компьютеру несанкционированным пользователям. Разработанный метод защиты похож на стену, окружающую со всех сторон компьютер, поэтому он и получил название Firewall (пожарная стена), иначе сетевой экран или фильтр, который отфильтровывает запросы сетевых пользователей к системе. В официальной русской версии Windows XP он переведен как брандмауэр .

    Брандмауэр - это специальное программное обеспечение, поставляемое вместе с операционной системой или устанавливаемое пользователем, которое позволяет запретить любой доступ нежелательных пользователей из сети к системе. Брандмауэр помогает повысить безопасность компьютера. Он ограничивает информацию, поступающую на компьютер с других компьютеров, позволяя лучше контролировать данные на компьютере и обеспечивая линию обороны компьютера от людей или программ (включая вирусы и «черви»), которые несанкционированно пытаются подключиться к компьютеру. Брандмауэр - это пограничный пост, на котором проверяется информация (трафик), приходящая из Интернета или по локальной сети. В ходе проверки брандмауэр отклоняет или пропускает информацию на компьютер в соответствии с установленными параметрами.

    В состав Windows XP входит встроенная версия брандмауэра (в пакет обновления SP2 для Microsoft Windows XP брандмауэр включен по умолчанию), основной алгоритм работы которого обеспечивает защиту от несанкционированных пользователей. Практически невозможно найти уязвимость, которая бы обеспечивала проникновение взломщика на защищенную сетевым экраном систему. Функции, выполняемые брандмауэром :

    • - блокировка доступа на компьютер вирусам и «червям»;
    • - запрос пользователя о выборе блокировки или разрешения для определенных запросов на подключение;
    • - ведение журнала безопасности и по желанию пользователя запись разрешенных и заблокированных попыток подключения к компьютеру, журнал может оказаться полезным для диагностики неполадок.

    Идея атак взломщиков основывается на работе низкоуровневых алгоритмов обработки сетевых запросов, в некоторых старых версиях программного обеспечения их можно было пытаться использовать для возможного проникновения через сетевой экран. В современных версиях брандмауэра , если грамотно его настроить, можно избежать любых атак взломщиков.

    Когда на компьютер поступает непредусмотренный запрос (кто-то пытается подключиться из Интернета или по локальной сети), брандмауэр блокирует подключение. Если на компьютере используются программы передачи мгновенных сообщений или сетевые игры, которым требуется принимать информацию из Интернета или локальной сети, брандмауэр запрашивает пользователя о блокировании или разрешении подключения. Если пользователь разрешает подключение, брандмауэр создает исключение, чтобы в будущем не тревожить пользователя запросами по поводу поступления информации для этой программы. Предусмотрена так же возможность отключения брандмауэра для отдельных подключений к Интернету или локальной сети, но это повышает вероятность нарушения безопасности компьютера.

    Задание. Установить и настроить межсетевой экран.

    Нижеприведенный текст взят с одного из сайтов с сохранением стиля автора.

    Изначально межсетевой экран (файервол) служил для ограничения доступа к локальным сетям извне. Сейчас популярны комплексные решения. Если речь идет о "профессиональном" применении, то это отдельное устройство, умеющее не только фильтровать пакеты, но и обнаружить попытку сетевой атаки. Нам, простым пользователям, достаточно иметь программный файервол. Даже "простенький" файервол не ограничивается контролем интернет-трафика, он предупреждает о любой подозрительной активности приложений, спрашивая пользователя о том, что разрешать делать приложению, а что - нет. Это является и "недостатком". Первое время придется отвечать на вопросы, причем отвечать правильно. Я видел ситуации, когда пользователь ошибочно заблокировал доступ в интернет своему интернет-браузеру. В итоге - соединение с провайдером устанавливается, но, ни один сайт не открывается.

    К файерволам мы вернемся очень скоро, ведь настала пора перейти к чисто сетевой безопасности.

    Прежде, чем освещать сетевые атаки, неплохо ознакомиться с принципами функционирования сетей. Эти знания могут оказаться полезными и для устранения неполадок своими силами. Тех, кто желает всерьез изучить проблему, отсылаю к серьезным материалам. Простому человеку не обязательно читать всякие RTFSы. Моя цель - помочь пользователю обоснованно выбрать уровень защиты. Здесь приходится руководствоваться необходимой достаточностью, а определение этой "достаточности" - индивидуально.

    Если вы - пользователь Интернет, ваш компьютер постоянно отправляет и получает данные. Отправляются запросы на получение информации, сама информация (например, почта). Получаются служебные ответы (готовность сервера, данные о размере скачиваемого файла и т.д.), и сами данные.

    Представим себе работу двух штабов дружественных армий во время совместных учений. Российский генерал просит китайского поддержать наступление огнем с моря. Как происходит обмен информацией? Составляется письмо, передается шифровальщику, уже зашифрованное - радисту. Последний отстукивает письмо в эфир азбукой Морзе. Китайский радист получает "морзянку", шифровальщик расшифровывает, с удивлением обнаруживает, что послание на русском языке и отдает его переводчикам. Только теперь можно считать, что письмо дошло до адресата. Заметим, что нашим генералам по рангу не положено задумываться об азбуке Морзе, методах шифрования и радиопередатчиках. Также, как пользователь не обязан ничего знать о семи сетевых уровнях взаимодействия. Самым интересным для нас является IP - протокол интернета. Этот протокол должен понимать любой компьютер в сети Интернет, как все радисты способны пользоваться "морзянкой". Известно, что, при организации связи часто используются кабельные линии. Если на пути встречается преграда, например - река, то в место разрыва по берегам устанавливают два приемо-передатчика (ретрансляторы, это выгоднее, чем тянуть по дну кабель), далее могут использоваться и спутниковые каналы, и снова кабельная линия. Два "радиста" используют морзянку и могут ничего не знать о методах передачи сигнала по кабельным или радиоканалам с их аппаратурой уплотнения. Сети передачи данных, на которых базируется интернет, столь же сложны, но оконечные устройства, например Ваш компьютер, понимает IP, независимо от установленной операционной системы.

    В соответствии с концепцией IP, данные преобразуются в отдельные "пакеты", которые могут (но не обязаны) нести в себе помимо куска данных и информации о пункте отправки и назначения, сведения о том, кусок чего именно содержится в пакете, как его стыковать с остальными частями. Понятно, что не существует идеальных каналов для передачи данных, а значит часть пакетов будет содержать ошибки, пакеты достигают цели в "неправильной" последовательности или вообще не достигают. Иногда это не критично. Поскольку теряется лишь небольшая часть пакетов, передачу можно повторить несколько раз (разумный подход, если сообщение небольшое). Сетевик увидит здесь дейтаграммный протокол (UDP), который базируется на протоколе IP и не гарантирует доставку сообщений. Протоколы TCP/IP располагают средствами для надежной доставки за счет установления виртуального соединения. В процессе такого соединения общаются уже две пользовательские программы. "Принимающая" сторона уведомляется о количестве отправленных пакетов и способе их стыковки, и, если какой-то пакет не дошел, просит повторить отправку. Здесь уже можно сделать два практических вывода. Первый: если сигнал сильно искажается или много помех, то значительная часть пакетов проходят с ошибками, что приводит к множеству повторных отправок, то есть, снижается реальная скорость передачи данных. Отсюда и возникает понятие ширины (пропускной способности) канала. Второй вывод: если отправит все заявленные пакеты кроме одного, принимающая сторона не закроет виртуального соединения, ожидая опаздывающего. Если насоздавать множество таких соединений, принимающему компьютеру будет тяжко, поскольку под каждое соединение резервируется участок памяти, а память не резиновая. По такому принципу строили сетевые атаки, "подвешивая" компьютер жертвы.

    Чтобы понять процесс установления соединения, необходимо рассмотреть систему идентификации компьютеров в сети. Если мы говорим об интернет, то у каждого компьютера есть уникальное имя, называемое IP - адресом. выглядит он может примерно так: 213.180.204.11 Трудновато для запоминания, поэтому придумали доменные имена, состоящие из "нормальных" символов, например www.yandex.ru. Если в командной строке Вашего интернет-браузера набрать http://213.180.204.11, то это будет равноценно http://www.yandex.ru. Каждое доменное имя соответствует определенному IP - адресу. Как я узнал IP знаменитой поисковой системы? Можно использовать специальную программку, а можно выполнить команду "ping". Если у Вас Windows, нажмите кнопку "Пуск", кликните на пункте "выполнить". Нам предлагают выполнить на компьютере какую-нибудь команду, скомандуем cmd (введем cmd в поле "открыть"), откроется окно командного интерпретатора. Теперь мы можем видеть вводимые команды и результат их выполнения. Итак, командуем ping yandex.ru, жмем "Enter" и получаем результат. Результат будет положительным, если ваш компьютер подключен к Интернет. В этом случае Вам покажут время прохождения пробных пакетов до сервера yandex, а заодно ip - адрес. В роле "переводчика" выступает DNS - сервер, специальный компьютер, хранящий таблицы соответствия доменных имен ip-адресам, причем таких компьютером может быть много. Интернет изначально задумывался как отказоустойчивая сеть (для военных в США), а надежность должно было обеспечить отсутствие единого центра. Группа пакетов, отправленная в рамках одного соединения, может идти разными путями (на то она и всемирная паутина), управляется этот процесс маршрутизаторами, хранящими различные пути до различных подсетей. Теперь понятно, почему очередность поступления пакетов адресату может отличаться от исходной. Также понятно, что, если злодей подменит запись в таблице адресов, то вместо нужного сайта клиент может угодить на сайт-двойник, где введет свои пароли и другие данные. Утешает то, что подмена таблиц публичных DNS является весьма трудным делом. Но, следует помнить, что браузер первым делом просматривает локальную таблицу, хранящуюся в специальном файле на Вашем компьютере. Если вирусу удастся внести туда свою запись, то введя www.yandex.ru, Вы запросто можете попасть на совершенно другой сайт, быть может, внешне похожий. Если ваш файервол сообщает, что какая-то программа пытается изменить файл с таблицей адресов, стоит обследовать компьютер на предмет опасной заразы.

    Для установления соединения мало знать адрес компьютера. Непременными атрибутами запроса на подключение являются протокол (язык, на котором решено общаться) и номер порта, к которому мы подключаемся. Протокол мы каждый раз указываем в адресной строке браузера (тот самый http, хотя можно набрать ftp и связаться с ftp-сервером, если он есть на сервере). Номер порта обычно явно не указывается, в этом случае для http подразумевается порт 80, на котором "висит" интернет-сервер (не в смысле "мощный компьютер", а в смысле "программа, обслуживающая клиентские приложения". На компьютере может быть запущено множество сервисов (тот же ftp), каждый слушает "свой" порт. Если интернет-браузеры обеспечивают в основном подключение по http и просмотр web-страниц, то для подключения к другим сервисам существуют специальные программы, как стандартные, так и "хакерские" Если установлена программа ICQ, то она открывает свой порт и "слушает" его на предмет желающих подключиться и пообщаться. Чем больше на машине запущено сетевых сервисов, тем больше вероятность, что среди них найдется уязвимый, ведь каждый открытый порт - дверь систему, а надежен ли замок - тот еще вопрос. Существует целый класс программ - сканеры портов, которые опрашивают заданный диапазон портов, перебирая номера и выдают список открытых. Забегая вперед, скажу, что есть "сканеры безопасности", которые не только сканируют порты, но и исследуют в автоматическом режиме целевой хост на наличие всех известных уязвимостей.

    Итак, сетевые атаки. Банки и без моей помощи разберутся с хакерами, мне ближе проблемы простого пользователя. Об этом и поговорим.

    Удаленный взлом компьютера становится не таким простым делом. Если интересно, кто и как занимался этим лет пять назад, вот ссылка на приговор горе-хакерам, в котором описана вся технология взлома (в начале и в конце документа). Во времена Windows 98 любой школьник мог проделать такие штуки. С Windows XP эти фокусы не проходят, а методы взлома Linux знают только профи, которые и у себя в банке неплохо зарабатывают. Для проникновения на чужой компьютер необходимо иметь теперь приличную квалификацию, а персонального внимания толкового злодея удостаиваются не все. Мой компьютер вряд ли кого-то заинтересует. Другое дело, что сканированием портов все же многие балуются. Уж не знаю, чего они там ищут, но раздражает сильно. Трафик то я оплачиваю! Замечу, что адрес, с которого осуществляется сканирование, зачастую принадлежит ничего не подозревающему добропорядочному пользователю. Скорее всего, у последнего поселился червь, выискивающий очередную жертву.

    Если Ваш компьютер кого-то и заинтересовал, то это близкие Вам люди. Я имею в виду деловых партнеров, начальство и ревнивых супругов. В интернете можно найти массу шпионских программ, типа клавиатурных шпионов. Если на компьютере стоит такая программа, то все, что набрано на клавиатуре, включая пароли к электронной почте, записывается в специальный файл и может быть негласно отправлено по электронной почте "хозяину".

    Даже если Вам нечего скрывать, трояны, живущие в компьютере, могут интенсивно загружать линию, увеличивая трафик и мешая прохождению полезной информации. Кроме того, неграмотно написанные программы часто отнимают у компьютера системные ресурсы, а то и нарушают целостность операционной системы. Как плачевный итог - переустановка и связанные с этим потеря времени и денег.

    Теперь рассмотрим наиболее популярные способы заполучить на компьютер трояна (как этого избежать - в следующей главе).

    Способ первый - заразить компьютер компактным вирусом, единственной функцией которого является закачка из интернета и инсталляция полноценного "троянского коня"

    Способ второй - зайти "не на тот" сайт. А уж заставить открыть страницу, содержащую опасное содержимое - дело техники и психологии.

    Способ третий - дать злоумышленнику посидеть за вашим компьютером. Известны также случаи, когда посетитель в организации просто незаметно вставлял специально приготовленную "флэшку" в USB-порт, дальше - понятно.

    Еще одна неприятная реалия сетевой жизни - сниффинг . По простому - перехват трафика. Из предыдущей главы (руководствуясь здравым смыслом) ясно, что исходящие пакеты уходят в некотором смысле "в эфир". По крайней мере, в пределах одной подсети они доступны всем, а это - не так уж мало. Другое дело, что "порядочный" компьютер воспринимает только адресованную ему информацию. Если же злодей установил программу - сниффер (нюхач), то может читать передаваемые данные. Восстановить весь поток - невыполнимая задача, поскольку соединение с источником не устанавливается и запросить повторную отправку потерянных пакетов не удастся (это была бы наглость - подслушивать соседей за стенкой, да еще переспрашивать, когда не расслышали). Сниффинг используют для перехвата паролей, передающихся в открытом (незашифрованном) виде.

    Сознавая уровень реальной опасности, можно разумно подойти к защите своего компьютера от различных напастей. Здесь поход простой: стоимость сейфа не должна превышать стоимость хранимых в нем ценностей. Многое Вы можете сделать сами, с этого и начнем.

    1. Устанавливаем нормальную операционную систему. Исходить приходится из того, что большинству пользователей подходят ОС от Microsoft. В этом случае вариантов нет - Windows XP c SP2 (как минимум). SP2 - это второй пакет обновлений, закрывший многие дыры в безопасности. Сгодилась бы и Windows 2000, но ее перестали поддерживать, а уязвимости находят все новые и новые.

    2. Настраиваем минимальную защиту: включаем брандмауэр (если установлен SP2, то включен по умолчанию) для всех соединений. Делается это так: Пуск>Панель управления>Сетевые подключения, откроется окно со значками настроенных подключений. Кликаем правой кнопкой мыши по значку подключения, выбираем пункт "свойства", жмем на вкладку "дополнительно", потом в зоне "брандмауэр Windows" нажимаем кнопку "параметры". Если установлено значение "выключить", меняем его на "включить" и подтверждаем кнопкой ОК.

    3. Устанавливаем антивирусное программное обеспечение. Как бы ни ругали антивирус Касперского (притормаживает работу компьютера), разумной альтернативы я не вижу. Обновляем антивирусные базы через интернет до актуального состояния. Теперь можно покопаться в настройках (в разных версиях это выглядит по-разному, поэтому подробно описывать не буду). Имеет смысл отключить ежедневную полную проверку компьютера. Обычно я отключаю автоматическое обновление, поскольку большинство компьютеров не подключены к Интернет постоянно.

    4. Находим в "Панели управления" раздел "администрирование", в нем "службы" и отключаем все ненужное. Первым делом - службу сообщений. Объясню, почему. Может быть вы сталкивались с ситуацией, когда во время работы в Интернет периодически всплывает сообщение, в котором вас пугают разными ошибками в системе и прочими вирусами, предлагая зайти на такой-то сайт, где вам помогут избавиться от проблем. На самом деле, посетив такой сайт, эти проблемы можно нажить. Служба сообщений предназначена прежде всего для работы в локальной сети, с ее помощью администратор сети может оповещать пользователей о чем либо. Злодеи же используют ее для заманивания на сайты-ловушки. Еще можно смело отключать "Telnet", "Удаленный реестр" и "Сервер", если ваш компьютер не планируется использовать в качестве сервера. Чем меньше служб запущено, тем быстрее работает компьютер. Там еще много чего можно отключить, но, действовать следует с осторожностью. Если не уверены, лучше пригласите специалиста.

    5. Если Вы не сделали этого ранее, установите пароли для всех пользователей позаковыристей. Последнее означает, что хороший пароль должен быть длинным и состоять из цифр, букв в разных регистрах и специальных символов.

    Когда я настраиваю клиентам компьютер, то обычно останавливаюсь на этом. Для большинства это вполне достаточный уровень защиты. Тем, кто всерьез озабочен безопасностью, следует предпринять еще ряд мер предосторожности.

    6. Наделить всех пользователей только минимально необходимыми правами. Например, запретить всем, кроме "Администратора", устанавливать программы. Даже если Вы единственный пользователь, создайте вторую учетную запись с ограниченными правами, и входите в систему под именем Администратор только в случае необходимости. Дело в том, что некоторые уязвимости позволяют злодею исполнять на компьютере команды от имени текущего пользователя. А если у такового прав - минимум, то и использовать уязвимость не удастся.

    7. Иногда при вводе пароля, например для доступа к своему почтовому ящику, система предлагает сохранить пароль. Я всегда отказываюсь, чего и Вам советую. Это - хорошая привычка.

    8. Установите полноценный файервол. Встроенный брандмауэр Windows многие действия программ попросту не отслеживает.

    Которые вынуждены ждать создания физического файла на компьютере пользователя, сетевая защита начинает анализировать входящие потоки данных, поступающие на компьютер пользователя через сеть, и блокирует угрозы прежде, чем они попадают в систему.

    Основными направлениями сетевой защиты, которые обеспечивают технологии Symantec, являются:

    Загрузки методом drive-by, веб-атаки;
    - Атаки типа «Социальной инженерии»: FakeAV (поддельные антивирусы) и кодеки;
    - Атаки через социальные сети наподобие Facebook;
    - Обнаружение вредоносных программ, руткитов и зараженных ботами систем;
    - Защита от усложненных угроз;
    - Угрозы Нулевого дня;
    - Защита от неисправленных уязвимостей ПО;
    - Защита от вредоносных доменов и IP-адресов.

    Технологии Сетевой защиты

    Уровень "Сетевая защиты" включает в себя 3 различные технологии.

    Network Intrusion Prevention Solution (Network IPS)

    Технология Network IPS понимает и сканирует более 200 различных протоколов. Он интеллектуально и точно «пробивается» сквозь двоичный и сетевой протокол, попутно ища признаки вредоносного трафика. Этот интеллект позволяет обеспечить более точное сетевое сканирование, при этом обеспечивая надежную защиту. В его «сердце» находится движок блокировки эксплойтов, который обеспечивает открытые уязвимости практически непробиваемой защитой. Уникальной особенностью Symantec IPS является то, что никакой настройки этот компонент не требует. Все его функции работают, как говорится, «из коробки». Каждый пользовательский продукт Norton , а также каждый продукт Symantec Endpoint Protection версии 12.1 и новее, обладают данной критичной технологией, включенной по умолчанию.

    Защита Браузера

    Этот защитный движок располагается внутри браузера. Он способен обнаруживать наиболее сложные угрозы, которые ни традиционный антивирус, ни Network IPS не способны определить. В наше время, многие сетевые атаки используют методы обфускации во избежание обнаружения. Поскольку Защита Браузера работает внутри браузера, она способна изучать пока еще не скрытый (обфускацированный) код, во время того, как он выполняется. Это позволяет обнаружить и заблокировать атаку, в случае, если она была пропущена на нижних уровнях защиты программы.

    Un-Authorized Download Protection (UXP)

    Находящаяся внутри слоя сетевой защиты, последняя линия обороны помогает прикрыть и «смягчить» последствия использования неизвестных и неисправленных уязвимостей, без использования сигнатур. Это обеспечивает дополнительный слой защиты от атак Нулевого дня.

    Ориентируясь на проблемы

    Работая вместе, технологии сетевой защиты решают следующие проблемы.

    Загрузки методом Drive-by и наборы инструментов для веб-атак

    Используя Network IPS, Защиту Браузера, и UXP-технологию, технологии сетевой защиты компании Symantec блокируют загрузки Drive-by и, фактически, не позволяют зловреду даже достичь системы пользователя. Практикуются различные превентивные методы, включающие использование этих самых технологий, включая технологию Generic Exploit Blocking и инструментарий обнаружения веб-атак. Общий веб-инструментарий обнаружения атак анализирует характеристики распространенной веб-атаки, не зависимо от того, какой именно уязвимости касается эта атака. Это позволяет обеспечить дополнительной защитой новые и неизвестные уязвимости. Самое лучшее в этом типе защиты - это то, что если вредоносный файл смог бы «тихо» заразить систему, он все равно был бы проактивно остановлен и удален из системы: ведь именно это поведение обычно пропускается традиционными антивирусными продуктами. Но Symantec продолжает блокировать десятки миллионов вариантов вредоносного ПО, которое обычно не может быть обнаружено другими способами.

    Атаки типа «Социальной инженерии»

    Поскольку технологии компании Symantec наблюдают за сетевым трафиком и трафиком браузера во время его передачи, они определяют атаки типа «Социальной инженерии», на подобии FakeAV или поддельных кодеков. Технологии предназначены блокировать подобные атаки до того, как они отобразятся на экране пользователя. Большинство других конкурирующих решений не включает в себя этот мощный потенциал.

    Symantec блокирует сотни миллионов подобных атак при помощи технологии защиты от сетевых угроз.

    Атаки, нацеленные на социальные медиа-приложения

    Социальные медиа-приложения в последнее время стали широко востребованы, поскольку они позволяют мгновенно обмениваться различными сообщениями, интересными видео и информацией с тысячами друзей и пользователей. Широкое распространение и потенциал подобных программ, делают их объектом внимания №1 для хакеров. Некоторые распространенные трюки «взломщиков» включают в себя создание поддельных аккаунтов и рассылку спама.

    Технология Symantec IPS способна защитить от подобных методов обмана, зачастую предотвращая их до того, как пользователь успеет кликнуть на них мышкой. Symantec останавливает мошеннические и поддельные URL, приложения и другие методы обмана с помощью технологии защиты от сетевых угроз.

    Обнаружение вредоносного ПО, руткитов и зараженных ботами систем

    Правда было бы неплохо знать, где именно в сети располагается зараженный компьютер? IPS-решения компании Symantec предоставляют эту возможность, также включая в себя обнаружение и восстановление тех угроз, возможно которым удалось обойти другие слои защиты. Решения компании Symantec обнаруживают вредоносов и ботов, которые пытаются совершить автодозвон или загрузить «обновления», чтобы увеличить свою активность в системе. Это позволяет IT-менеджерам, у которых есть четкий лист систем для проверки, получить гарантию того, что их предприятие находится в безопасности. Полиморфные и сложные скрытые угрозы, использующие методы руткитов наподобие Tidserv, ZeroAccess, Koobface и Zbot, могут быть остановлены и удалены при помощи этого метода.

    Защита от «запутанных» угроз

    Сегодняшние веб-атаки используют комплексные методы усложнения атак. Browser Protection компании Symantec «сидит» внутри браузера, и может обнаружить очень сложные угрозы, которые зачастую не способны увидеть традиционные методы.

    Угрозы «Нулевого дня» и неисправленные уязвимости

    Одним из прошлых, добавленных компанией защитных дополнений, является дополнительный слой защиты против угроз «Нулевого дня» и неисправленных уязвимостей. Используя безсигнатурную защиту, программа перехватывает вызовы System API и защищает от загрузок вредоносного ПО. Эта технология называется Un-Authorized Download Protection (UXP). Она является последним рубежом опоры внутри экосистемы защиты от сетевых угроз. Это позволяет продукту «прикрыть» неизвестные и непропатченные уязвимости без использования сигнатур. Эта технология включена по умолчанию, и она находится во всех продуктах, выпущенных с момента дебюта Norton 2010.

    Защита от неисправленных уязвимостей в ПО

    Вредоносные программы зачастую устанавливаются без ведома пользователя, используя уязвимости в ПО. Сетевая защита компании Symantec предоставляют дополнительный слой защиты, именуемый Generic Exploit Blocking (GEB). Независимо от того, установлены ли последние обновления или нет, GEB «в основном» защищает основные узявимости от эксплуатации. Уязвимости в Oracle Sun Java, Adobe Acrobat Reader, Adobe Flash, Internet Explorer, контролях ActiveX, или QuickTime сейчас повсеместно распространены. Generic Exploit Protection была создана методом «обратного инжиниринга», выяснив, каким образом уявимость могла быть использована в сети, предоставляя при этом специальный патч на сетевом уровне. Одна-единственная GEB или сигнатура уязвимости, способна предоставить защиту от тысяч вариантов зловредов, новых и неизвестных.

    Вредоносные IP и блокировка доменов

    Сетевая защита компании Symantec также включает в себя возможность блокировки вредоносных доменов и IP-адресов, при этом останавливая вредоносно ПО и трафик от известных вредоносных сайтов. Благодаря тщательному анализу и обновлению базы веб-сайтов отделом STAR, Symantec предоставляет защиту от постоянно меняющихся угроз в режиме реального времени.

    Улучшенное сопротивление к Уклонению

    Была добавлена поддержка дополнительных кодировок, чтобы улучшить эффективность детекта атак при помощи техник шифрования, таких как base64 и gzip.

    Обнаружение сетевого аудита для применения политик использования и идентификации утечки данных

    Сетевой IPS может быть использован для идентификации приложений и инструментов, которые могут нарушить корпоративную политику использования, или для предотвращения утечки данных через сеть. Является возможным обнаружить, предупредить или предотвратить трафик на подобии IM, P2P, социальных медиа, или другого «интересного» вида трафика.

    STAR Intelligence Communication Protocol

    Технология сетевой защиты сама по себе не работает. Движок обменивается данными с другими сервисами защиты при помощи протокола STAR Intelligence Communication (STAR ICB). Движок Network IPS соединяется с движком Symantec Sonar, а затем с движком Внутренней Репутации (Insight Reputation). Это позволяет предоставить более информативную и точную защиту.

    В следующей статье мы рассмотрим уровень "Поведенческий анализатор".

    По материалам Symantec

    Нашли опечатку? Выделите и нажмите Ctrl + Enter

    20.06.05 37K

    Интернет полностью меняет наш образ жизни: работу, учебу, досуг. Эти изменения будут происходить как в уже известных нам областях (электронная коммерция, доступ к информации в реальном времени, расширение возможностей связи и т.д.), так и в тех сферах, о которых мы пока не имеем представления.

    Может наступить такое время, когда корпорация будет производить все свои телефонные звонки через Интернет, причем совершенно бесплатно. В частной жизни возможно появление специальных Web-сайтов, при помощи которых родители смогут в любой момент узнать, как обстоят дела у их детей. Наше общество только начинает осознавать безграничные возможности Интернета.

    Введение

    Одновременно с колоссальным ростом популярности Интернета возникает беспрецедентная опасность разглашения персональных данных, критически важных корпоративных ресурсов, государственных тайн и т.д.

    Каждый день хакеры подвергают угрозе эти ресурсы, пытаясь получить к ним доступ при помощи специальных атак, которые постепенно становятся, с одной стороны, более изощренными, а с другой - простыми в исполнении. Этому способствуют два основных фактора.

    Во-первых , это повсеместное проникновение Интернета. Сегодня к Сети подключены миллионы устройств, и многие миллионы устройств будут подключены к Интернету в ближайшем будущем, поэтому вероятность доступа хакеров к уязвимым устройствам постоянно возрастает.

    Кроме того, широкое распространение Интернета позволяет хакерам обмениваться информацией в глобальном масштабе. Простой поиск по ключевым словам типа «хакер », «взлом », «hack », «crack » или «phreak » даст вам тысячи сайтов, на многих из которых можно найти вредоносные коды и способы их использования.

    Во-вторых , это широчайшее распространение простых в использовании операционных систем и сред разработки. Данный фактор резко снижает уровень необходимых хакеру знаний и навыков. Раньше, чтобы создавать и распространять простые в использовании приложения, хакер должен был обладать хорошими навыками программирования.

    Теперь, чтобы получить доступ к хакерскому средству, нужно только знать IP-адрес нужного сайта, а для проведения атаки достаточно щелкнуть мышью.

    Классификация сетевых атак

    Сетевые атаки столь же многообразны, как и системы, против которых они направлены. Некоторые атаки отличаются большой сложностью, другие по силам обычному оператору, даже не предполагающему, к каким последствиям может привести его деятельность. Для оценки типов атак необходимо знать некоторые ограничения, изначально присущие протоколу TPC/IP. Сеть

    Интернет создавалась для связи между государственными учреждениями и университетами с целью оказания помощи учебному процессу и научным исследованиям. Создатели этой сети не подозревали, насколько широкое распространение она получит. В результате в спецификациях ранних версий Интернет-протокола (IP) отсутствовали требования безопасности. Именно поэтому многие реализации IP являются изначально уязвимыми.

    Через много лет, после множества рекламаций (Request for Comments, RFC ), наконец стали внедряться средства безопасности для IP. Однако ввиду того, что изначально средства защиты для протокола IP не разрабатывались, все его реализации стали дополняться разнообразными сетевыми процедурами, услугами и продуктами, снижающими риски, присущие этому протоколу. Далее мы кратко рассмотрим типы атак, которые обычно применяются против сетей IP, и перечислим способы борьбы с ними.

    Сниффер пакетов

    Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки).

    При этом сниффер перехватывает все сетевые пакеты, которые передаются через определенный домен. В настоящее время снифферы работают в сетях на вполне законном основании. Они используются для диагностики неисправностей и анализа трафика. Однако ввиду того, что некоторые сетевые приложения передают данные в текстовом формате (Telnet, FTP, SMTP, POP3 и т.д .), с помощью сниффера можно узнать полезную, а иногда и конфиденциальную информацию (например, имена пользователей и пароли).

    Перехват имен и паролей создает большую опасность, так как пользователи часто применяют один и тот же логин и пароль для множества приложений и систем. Многие пользователи вообще имеют единый пароль для доступа ко всем ресурсам и приложениям.

    Если приложение работает в режиме «клиент-сервер », а аутентификационные данные передаются по сети в читаемом текстовом формате, то эту информацию с большой вероятностью можно использовать для доступа к другим корпоративным или внешним ресурсам. Хакеры слишком хорошо знают и используют человеческие слабости (методы атак часто базируются на методах социальной инженерии).

    Они прекрасно представляют себе, что мы пользуемся одним и тем же паролем для доступа к множеству ресурсов, и потому им часто удается, узнав наш пароль, получить доступ к важной информации. В самом худшем случае хакер получает доступ к пользовательскому ресурсу на системном уровне и с его помощью создает нового пользователя, которого можно в любой момент использовать для доступа в Сеть и к ее ресурсам.

    Снизить угрозу сниффинга пакетов можно с помощью следующих средств :

    Аутентификация . Сильные средства аутентификации являются важнейшим способом защиты от сниффинга пакетов. Под «сильными » мы понимаем такие методы аутентификации, которые трудно обойти. Примером такой аутентификации являются однократные пароли (One-Time Passwords, OTP ).

    ОТР - это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. Типичным примером двухфакторной аутентификации является работа обычного банкомата, который опознает вас, во-первых, по вашей пластиковой карточке, а во-вторых, по вводимому вами пин-коду. Для аутентификации в системе ОТР также требуются пин-код и ваша личная карточка.

    Под «карточкой » (token) понимается аппаратное или программное средство, генерирующее (по случайному принципу) уникальный одномоментный однократный пароль. Если хакер узнает данный пароль с помощью сниффера, то эта информация будет бесполезной, поскольку в этот момент пароль уже будет использован и выведен из употребления.

    Отметим, что этот способ борьбы со сниффингом эффективен только в случаях перехвата паролей. Снифферы, перехватывающие другую информацию (например, сообщения электронной почты), не теряют своей эффективности.

    Коммутируемая инфраструктура . Еще одним способом борьбы со сниффингом пакетов в вашей сетевой среде является создание коммутируемой инфраструктуры. Если, к примеру, во всей организации используется коммутируемый Ethernet, хакеры могут получить доступ только к трафику, поступающему на тот порт, к которому они подключены. Коммутируемая инфраструктура не устраняет угрозы сниффинга, но заметно снижает ее остроту.

    Антиснифферы . Третий способ борьбы со сниффингом заключается в установке аппаратных или программных средств, распознающих снифферы, работающие в вашей сети. Эти средства не могут полностью ликвидировать угрозу, но, как и многие другие средства сетевой безопасности, они включаются в общую систему защиты. Антиснифферы измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать лишний трафик. Одно из таких средств, поставляемых компанией LOpht Heavy Industries, называется AntiSniff.

    Криптография . Этот самый эффективный способ борьбы со сниффингом пакетов хотя и не предотвращает перехвата и не распознает работу снифферов, но делает эту работу бесполезной. Если канал связи является криптографически защищенным, то хакер перехватывает не сообщение, а зашифрованный текст (то есть непонятную последовательность битов). Криптография Cisco на сетевом уровне базируется на протоколе IPSec, который представляет собой стандартный метод защищенной связи между устройствами с помощью протокола IP. К другим криптографическим протоколам сетевого управления относятся протоколы SSH (Secure Shell) и SSL (Secure Socket Layer) .

    IP-спуфинг

    IP-спуфинг происходит в том случае, когда хакер, находящийся внутри корпорации или вне ее, выдает себя за санкционированного пользователя. Это можно сделать двумя способами: хакер может воспользоваться или IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам.

    Атаки IP-спуфинга часто являются отправной точкой для прочих атак. Классический пример - атака DoS, которая начинается с чужого адреса, скрывающего истинную личность хакера.

    Как правило, IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами.

    Для двусторонней связи хакер должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес. Некоторые хакеры, однако, даже не пытаются получить ответ от приложений - если главная задача заключается в получении от системы важного файла, то ответы приложений не имеют значения.

    Если же хакеру удается поменять таблицы маршрутизации и направить трафик на ложный IP-адрес, он получит все пакеты и сможет отвечать на них так, как будто является санкционированным пользователем.

    Угрозу спуфинга можно ослабить (но не устранить) с помощью перечисленных ниже меров:

    • Контроль доступа . Самый простой способ предотвращения IP-спуфинга состоит в правильной настройке управления доступом. Чтобы снизить эффективность IP-спуфинга, настройте контроль доступа на отсечение любого трафика, поступающего из внешней сети с исходным адресом, который должен располагаться внутри вашей сети.

      Правда, это помогает бороться с IP-спуфингом, когда санкционированными являются только внутренние адреса; если же санкционированными являются и некоторые адреса внешней сети, данный метод становится неэффективным;

    • Фильтрация RFC 2827 . Вы можете пресечь попытки спуфинга чужих сетей пользователями вашей сети (и стать добропорядочным сетевым гражданином). Для этого необходимо отбраковывать любой исходящий трафик, исходный адрес которого не является одним из IP-адресов вашей организации.

      Данный тип фильтрации, известный под названием RFC 2827, может выполнять и ваш провайдер (ISP). В результате отбраковывается весь трафик, который не имеет исходного адреса, ожидаемого на определенном интерфейсе. К примеру, если ISP предоставляет соединение с IP-адресом 15.1.1.0/24, он может настроить фильтр таким образом, чтобы с данного интерфейса на маршрутизатор ISP допускался только трафик, поступающий с адреса 15.1.1.0/24.

    Отметим, что до тех пор, пока все провайдеры не внедрят этот тип фильтрации, его эффективность будет намного ниже возможной. Кроме того, чем дальше от фильтруемых устройств, тем труднее проводить точную фильтрацию. Например , фильтрация RFC 2827 на уровне маршрутизатора доступа требует пропуска всего трафика с главного сетевого адреса (10.0.0.0/8), тогда как на уровне распределения (в данной архитектуре) можно ограничить трафик более точно (адрес - 10.1.5.0/24).

    Наиболее эффективный метод борьбы с IP-спуфингом - тот же, что и в случае со сниффингом пакетов: необходимо сделать атаку абсолютно неэффективной. IP-спуфинг может функционировать только при условии, что аутентификация происходит на базе IP-адресов.

    Поэтому внедрение дополнительных методов аутентификации делает подобные атаки бесполезными. Лучшим видом дополнительной аутентификации является криптографическая. Если она невозможна, хорошие результаты может дать двухфакторная аутентификация с использованием одноразовых паролей.

    Отказ в обслуживании

    Denial of Service (DoS) , без сомнения, является наиболее известной формой хакерских атак. Кроме того, против атак такого типа труднее всего создать стопроцентную защиту. Среди хакеров атаки DoS считаются детской забавой, а их применение вызывает презрительные усмешки, поскольку для организации DoS требуется минимум знаний и умений.

    Тем не менее именно простота реализации и огромные масштабы причиняемого вреда привлекают к DoS пристальное внимание администраторов, отвечающих за сетевую безопасность. Если вы хотите больше узнать об атаках DoS, вам следует рассмотреть их наиболее известные разновидности, а именно:

    • TCP SYN Flood;
    • Ping of Death;
    • Tribe Flood Network (TFN) и Tribe Flood Network 2000 (TFN2K);
    • Trinco;
    • Stacheldracht;
    • Trinity.

    Прекрасным источником информации по вопросам безопасности является группа экстренного реагирования на компьютерные проблемы (Computer Emergency Response Team, CERT), опубликовавшая отличную работу по борьбе с атаками DoS.

    Атаки DoS отличаются от атак других типов. Они не нацелены ни на получение доступа к вашей сети, ни на получение из этой сети какой-либо информации, но атака DoS делает вашу сеть недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения.

    В случае использования некоторых серверных приложений (таких как Web-сервер или FTP-сервер) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений, и держать их в занятом состоянии, не допуская обслуживания рядовых пользователей. В ходе атак DoS могут использоваться обычные Интернет-протоколы, такие как TCP и ICMP (Internet Control Message Protocol ).

    Большинство атак DoS рассчитано не на программные ошибки или бреши в системе безопасности, а на общие слабости системной архитектуры. Некоторые атаки сводят к нулю производительность сети, переполняя ее нежелательными и ненужными пакетами или сообщая ложную информацию о текущем состоянии сетевых ресурсов.

    Данный тип атак трудно предотвратить, так как для этого требуется координация действий с провайдером. Если не остановить у провайдера трафик, предназначенный для переполнения вашей сети, то сделать это на входе в сеть вы уже не сможете, поскольку вся полоса пропускания будет занята. Когда атака данного типа проводится одновременно через множество устройств, мы говорим о распределенной атаке DoS (distributed DoS, DDoS ).

    Угроза атак типа DoS может быть снижена тремя способами:

    • Функции антиспуфинга . Правильная конфигурация функций антиспуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции как минимум должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.
    • Функции анти-DoS . Правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах способна ограничить эффективность атак. Эти функции часто ограничивают число полуоткрытых каналов в любой момент времени.
    • Ограничение объема трафика (traffic rate limiting) . Организация может попросить провайдера (ISP) ограничить объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего по вашей сети. Типичным примером является ограничение объемов трафика ICMP, который используется только для диагностических целей. Атаки (D)DoS часто используют ICMP.

    Парольные атаки

    Хакеры могут проводить парольные атаки с помощью целого ряда методов, таких как простой перебор (brute force attack ), троянский конь, IP-спуфинг и сниффинг пакетов. Хотя логин и пароль зачастую можно получить при помощи IP-спуфинга и сниффинга пакетов, хакеры нередко пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название простого перебора (brute force attack ).

    Часто для такой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу). Если в результате хакеру предоставляется доступ к ресурсам, то он получает его на правах обычного пользователя, пароль которого был подобран.

    Если этот пользователь имеет значительные привилегии доступа, хакер может создать себе «проход » для будущего доступа, который будет действовать, даже если пользователь изменит свои пароль и логин.

    Еще одна проблема возникает, когда пользователи применяют один и тот же (пусть даже очень хороший) пароль для доступа ко многим системам: к корпоративной, персональной и к системам Интернета. Поскольку устойчивость пароля равна устойчивости самого слабого хоста, то хакер, узнавший пароль через этот хост, получает доступ ко всем остальным системам, где используется тот же пароль.

    Парольных атак можно избежать, если не пользоваться паролями в текстовой форме. Одноразовые пароли и/или криптографическая аутентификация могут практически свести на нет угрозу таких атак. К сожалению, не все приложения, хосты и устройства поддерживают вышеуказанные методы аутентификации.

    При использовании обычных паролей старайтесь придумать такой, который было бы трудно подобрать. Минимальная длина пароля должна быть не менее восьми символов. Пароль должен включать символы верхнего регистра, цифры и специальные символы (#, %, $ и т.д.).

    Лучшие пароли трудно подобрать и трудно запомнить, что вынуждает пользователей записывать их на бумаге. Чтобы избежать этого, пользователи и администраторы могут использовать ряд последних технологических достижений.

    Так, например, существуют прикладные программы, шифрующие список паролей, который можно хранить в карманном компьютере. В результате пользователю нужно помнить только один сложный пароль, тогда как все остальные будут надежно защищены приложением.

    Для администратора существует несколько методов борьбы с подбором паролей. Один из них заключается в использовании средства L0phtCrack , которое часто применяют хакеры для подбора паролей в среде Windows NT. Это средство быстро покажет вам, легко ли подобрать пароль, выбранный пользователем. Дополнительную информацию можно получить по адресу http://www.l0phtcrack.com/ .

    Атаки типа Man-in-the-Middle

    Для атаки типа Man-in-the-Middle хакеру нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера в любую другую сеть, может, к примеру, получить сотрудник этого провайдера. Для атак данного типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации.

    Атаки проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии.

    Эффективно бороться с атаками типа Man-in-the-Middle можно только с помощью криптографии. Если хакер перехватит данные зашифрованной сессии, у него на экране появится не перехваченное сообщение, а бессмысленный набор символов. Отметим, что если хакер получит информацию о криптографической сессии (например, ключ сессии), то это может сделать возможной атаку Man-in-the-Middle даже в зашифрованной среде.

    Атаки на уровне приложений

    Атаки на уровне приложений могут проводиться несколькими способами. Самый распространенный из них - использование хорошо известных слабостей серверного программного обеспечения (sendmail, HTTP, FTP ). Используя эти слабости, хакеры могут получить доступ к компьютеру от имени пользователя, работающего с приложением (обычно это бывает не простой пользователь, а привилегированный администратор с правами системного доступа).

    Сведения об атаках на уровне приложений широко публикуются, чтобы дать администраторам возможность исправить проблему с помощью коррекционных модулей (патчей). К сожалению, многие хакеры также имеют доступ к этим сведениям, что позволяет им совершенствоваться.

    Главная проблема при атаках на уровне приложений заключается в том, что хакеры часто пользуются портами, которым разрешен проход через межсетевой экран. К примеру, хакер, эксплуатирующий известную слабость Web-сервера, часто использует в ходе атаки ТСР порт 80. Поскольку web-сервер предоставляет пользователям Web-страницы, то межсетевой экран должен обеспечивать доступ к этому порту. С точки зрения межсетевого экрана атака рассматривается как стандартный трафик для порта 80.

    Полностью исключить атаки на уровне приложений невозможно. Хакеры постоянно открывают и публикуют в Интернете новые уязвимые места прикладных программ. Самое главное здесь - хорошее системное администрирование. Вот некоторые меры, которые можно предпринять, чтобы снизить уязвимость для атак этого типа:

    • читайте лог-файлы операционных систем и сетевые лог-файлы и/или анализируйте их с помощью специальных аналитических приложений;
    • подпишитесь на услуги по рассылке данных о слабых местах прикладных программ: Bugtrad (http://www.securityfocus.com ).

    Сетевая разведка

    Сетевой разведкой называется сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети хакер, как правило, пытается получить о ней как можно больше информации. Сетевая разведка проводится в форме запросов DNS, эхо-тестирования и сканирования портов.

    Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, хакер использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. И наконец, хакер анализирует характеристики приложений, работающих на хостах. В результате он добывает информацию, которую можно использовать для взлома.

    Полностью избавиться от сетевой разведки невозможно. Если, к примеру, отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, то вы избавитесь от эхо-тестирования, но потеряете данные, необходимые для диагностики сетевых сбоев.

    Кроме того, сканировать порты можно и без предварительного эхо-тестирования - просто это займет больше времени, так как сканировать придется и несуществующие IP-адреса. Системы IDS на уровне сети и хостов обычно хорошо справляются с задачей уведомления администратора о ведущейся сетевой разведке, что позволяет лучше подготовиться к предстоящей атаке и оповестить провайдера (ISP), в сети которого установлена система, проявляющая чрезмерное любопытство:

    1. пользуйтесь самыми свежими версиями операционных систем и приложений и самыми последними коррекционными модулями (патчами);
    2. кроме системного администрирования, пользуйтесь системами распознавания атак (IDS) - двумя взаимодополняющими друг друга технологиями ID:
      • сетевая система IDS (NIDS) отслеживает все пакеты, проходящие через определенный домен. Когда система NIDS видит пакет или серию пакетов, совпадающих с сигнатурой известной или вероятной атаки, она генерирует сигнал тревоги и/или прекращает сессию;
      • система IDS (HIDS) защищает хост с помощью программных агентов. Эта система борется только с атаками против одного хоста.

    В своей работе системы IDS пользуются сигнатурами атак, которые представляют собой профили конкретных атак или типов атак. Сигнатуры определяют условия, при которых трафик считается хакерским. Аналогами IDS в физическом мире можно считать систему предупреждения или камеру наблюдения.

    Самым большим недостатком IDS является их способность генерировать сигналы тревоги. Чтобы минимизировать количество ложных сигналов тревоги и добиться корректного функционирования системы IDS в сети, необходима тщательная настройка этой системы.

    Злоупотребление доверием

    Собственно говоря, этот тип действий не является в полном смысле слова атакой или штурмом. Он представляет собой злонамеренное использование отношений доверия, существующих в сети. Классическим примером такого злоупотребления является ситуация в периферийной части корпоративной сети.

    В этом сегменте часто располагаются серверы DNS, SMTP и HTTP. Поскольку все они принадлежат к одному и тому же сегменту, взлом любого из них приводит к взлому всех остальных, так как эти серверы доверяют другим системам своей сети.

    Другим примером является установленная с внешней стороны межсетевого экрана система, имеющая отношения доверия с системой, установленной с его внутренней стороны. В случае взлома внешней системы хакер может использовать отношения доверия для проникновения в систему, защищенную межсетевым экраном.

    Риск злоупотребления доверием можно снизить за счет более жесткого контроля уровней доверия в пределах своей сети. Системы, расположенные с внешней стороны межсетевого экрана, ни при каких условиях не должны пользоваться абсолютным доверием со стороны защищенных экраном систем.

    Отношения доверия должны ограничиваться определенными протоколами и, по возможности, аутентифицироваться не только по IP-адресам, но и по другим параметрам.

    Переадресация портов

    Переадресация портов представляет собой разновидность злоупотребления доверием, когда взломанный хост используется для передачи через межсетевой экран трафика, который в противном случае был бы обязательно отбракован. Представим себе межсетевой экран с тремя интерфейсами, к каждому из которых подключен определенный хост.

    Внешний хост может подключаться к хосту общего доступа (DMZ), но не к тому, что установлен с внутренней стороны межсетевого экрана. Хост общего доступа может подключаться и к внутреннему, и к внешнему хосту. Если хакер захватит хост общего доступа, он сможет установить на нем программное средство, перенаправляющее трафик с внешнего хоста прямо на внутренний.

    Хотя при этом не нарушается ни одно правило, действующее на экране, внешний хост в результате переадресации получает прямой доступ к защищенному хосту. Примером приложения, которое может предоставить такой доступ, является netcat. Более подробную информацию можно получить на сайте http://www.avian.org .

    Основным способом борьбы с переадресацией портов является использование надежных моделей доверия (см. предыдущий раздел). Кроме того, помешать хакеру установить на хосте свои программные средства может хост-система IDS (HIDS).

    Несанкционированный доступ

    Несанкционированный доступ не может быть выделен в отдельный тип атаки, поскольку большинство сетевых атак проводятся именно ради получения несанкционированного доступа. Чтобы подобрать логин Тelnet, хакер должен сначала получить подсказку Тelnet на своей системе. После подключения к порту Тelnet на экране появляется сообщение «authorization required to use this resource» («Для пользования этим ресурсом нужна авторизация »).

    Если после этого хакер продолжит попытки доступа, они будут считаться несанкционированными. Источник таких атак может находиться как внутри сети, так и снаружи.

    Способы борьбы с несанкционированным доступом достаточно просты. Главным здесь является сокращение или полная ликвидация возможностей хакера по получению доступа к системе с помощью несанкционированного протокола.

    В качестве примера можно рассмотреть недопущение хакерского доступа к порту Telnet на сервере, который предоставляет Web-услуги внешним пользователям. Не имея доступа к этому порту, хакер не сможет его атаковать. Что же касается межсетевого экрана, то его основной задачей является предотвращение самых простых попыток несанкционированного доступа.

    Вирусы и приложения типа «троянский конь»

    Рабочие станции конечных пользователей очень уязвимы для вирусов и троянских коней. Вирусами называются вредоносные программы, которые внедряются в другие программы для выполнения определенной нежелательной функции на рабочей станции конечного пользователя. В качестве примера можно привести вирус, который прописывается в файле command.com (главном интерпретаторе систем Windows) и стирает другие файлы, а также заражает все другие найденные им версии command.com.

    Троянский конь - это не программная вставка, а настоящая программа, которая на первый взгляд кажется полезным приложением, а на деле исполняет вредную роль. Примером типичного троянского коня является программа, которая выглядит, как простая игра для рабочей станции пользователя.

    Однако пока пользователь играет в игру, программа отправляет свою копию по электронной почте каждому абоненту, занесенному в адресную книгу этого пользователя. Все абоненты получают по почте игру, вызывая ее дальнейшее распространение.

    Борьба с вирусами и троянскими конями ведется с помощью эффективного антивирусного программного обеспечения, работающего на пользовательском уровне и, возможно, на уровне сети. Антивирусные средства обнаруживают большинство вирусов и троянских коней и пресекают их распространение.

    Получение самой свежей информации о вирусах поможет бороться с ними более эффективно. По мере появления новых вирусов и троянских коней предприятие должно устанавливать новые версии антивирусных средств и приложений.

    При написании статьи использованы материалы, предоставленные компанией Cisco Systems.

    Хорошо Плохо