• Функциональная зависимость и реляционные базы данных

    Лекции № 8-9.

    Функциональная зависимость. Нормальные формы.

    Цель занятия: познакомить студентов с определением функциональной зависимости атрибутов, с понятием нормализации исходного отношения, рассказать о причинах, приводящих к необходимости нормализации файлов записи, ввести способы обеспечения требуемого уровня нормальности таблицы, определить нормальные формы на конкретном примере.

    Функциональные зависимости

    Теория нормализации, как и теория баз данных в целом, опирается на математический аппарат, основу которого составляют теория множеств и элементы алгебры.

    Одни и те же данные могут группироваться в таблицы (отношения) различными способами. Группировка атрибутов в отношениях должна быть рациональной (т. е. дублирование данных д.б. минимальным) и упрощающей процедуры их обработки и обновления. Устранение избыточности данных является одной из важнейших задач проектирования баз данных и обеспечивается нормализацией.

    Нормализация таблиц (отношений) - это формальный аппарат ограничений на формирование таблиц (отношений), который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение (ввод, корректировку) базы данных. Процесс нормализации заключается в разложении (декомпозиции) исходных отношений БД на более простые отношения. Каждая ступень этого процесса приводит схему отношений в последовательные нормальные формы. Для каждой ступени нормализации имеются наборы ограничений, которым должны удовлетворять отношения БД. Нормализация позволяет удалить из таблиц базы избыточную неключевую информацию.

    Вначале вспомним некоторые понятия:

    Простой атрибут - это атрибут, значения которого неделимы. Иными словами, в таблице нет полей типа ФИО или Адрес - они разложены на поля Фамилия, Имя, Отчество в первом случае и на поля Индекс, Город и т. д. во втором.

    Сложный (составной) атрибут получается путем соединения нескольких атомарных атрибутов, иначе его называют вектором или агрегатом данных.

    Определение функциональной зависимости: Пусть X и Y атрибуты некоторого отношения. Если в любой момент времени произвольному значению X соответствует единственное значение Y, то Y функционально зависит от X (X Y)

    Если ключ является составным, то любой атрибут должен зависеть от ключа в целом, но не может находиться в функциональной зависимости от какой-либо части составного ключа, т.е. функциональная зависимость имеет вид (X 1 , X 2 , ..., X) Y.

    Функциональная зависимость может быть полной или неполной.

    Неполной зависимостью называется зависимость неключевого атрибута от части составного ключа.


    Полной функциональной зависимостью называется зависимость неключевого атрибута от всего составного ключа, а не от его частей.

    Определение транзитивной функциональной зависимости: Пусть X, Y, Z - три атрибута некоторого отношения. При эtom X Y и Y Z, но обратное соответствие отсутствует, то есть Y не зависит от Z, а Х не зависит от Y. Тогда говорят, что Z транзитивно зависит от Х.

    Определение многозначной зависимости: Пусть Х и Y атрибуты некоторого отношения. Атрибут Y многозначно зависит от атрибута X, если. каждому значению X соответствует множество значений Y, не связанных с другими атрибутами из отношения. Многозначные зависимости могут носить характер «один ко многим» (1:М), «многие к одному» (М:1) или «многие ко многим» (М:М), обозначаемые соответственно: X=>Y, Y<=X и X<=>Y. Например, преподаватель ведет несколько предметов, а каждый предмет может вестись несколькими преподавателями, тогда имеет место зависимость ФИО <=> Предмет.

    Рассмотрим следующий пример: Предположим, что для учебной части факультета создается БД о преподавателях, которая включает следующие атрибуты:

    ФИО - фамилия и инициалы преподавателя (совпадения фамилий и инициалов исключаются).

    Должность - должность, занимаемая преподавателем.

    Оклад- оклад преподавателя.

    Стаж - преподавательский стаж. Д_Стаж - надбавка за стаж.

    Кафедра - номер кафедры, на которой числится преподаватель.

    Предмет - название предмета (дисциплины), читаемого преподавателем.

    Группа - номер группы, в которой преподаватель проводит занятия.

    Вид занятия - вид занятий, проводимых преподавателем в учебной группе.

    Исходное отношение ПРЕПОДАВАТЕЛЬ

    Выступает нормализация базы данных или функциональная зависимость — это ситуация, в которой значение позволяет выполнить плавный переход к следующему значению в последовательности без какого-либо перерыва. Для этого типа ситуации существует поток информации в базе данных который протекает без каких-либо задержек или проблем, а также сохраняется целостность самих данных. Функциональная зависимость имеет определяющее значение при создании и эксплуатации реляционных баз данных, поскольку в процесс вовлекаются легкие ассоциации с одним значением или типом данных с соответствующими значениями.

    Один из самых простых способов, чтобы понять, как функциональная зависимость выполняет работу является рассмотреть использование государственного идентификационного номера, такой как номер социального страхования, который регулярно издается на каждого гражданина России. С помощью этого номера в качестве средства идентификации, возможно, для работодателей получить доступ к информации о владельце этого номера; потенциальные кредиторы и другие кредиторы могут использовать номер доступа к соответствующей финансовой информации о заявителе, а также номер даёт возможность получить доступ к информации, такой как налоги, начисления и уплаченные налоги, доходы от одного года к следующему, и для расчета выхода на пенсию, когда человек будет в конечном итоге пользоваться заслуженной после выхода на пенсию. Во многих случаях, работодатели могут на самом деле использовать этот же номер, что и первичный идентификационный номер сотрудника или некоторые части числа реляционных инструментов для доступа к остальной части электронного файла работника.

    В рамках разработки баз данных и её работы, функциональная зависимость служит для того, чтобы позволить пользователям вводить некоторые значения, которые в очередь могут быть использованы для получения информации, которая является желательной. Например, продавец может ввести значение названия компании для того, чтобы извлечь все записи, связанные с контактами, связанными с корпоративным клиентом. Подобным образом, продавец, который планирует продажи может ввести название города в качестве значения и в качестве средства доступа по имени и контактной информации всех клиентов, находящихся рядом с его или ее пунктом назначения, что делает для него легче организовать встречи с этими клиентами.

    Пока точная структура, такая как система которая обеспечивает функциональную зависимость может варьироваться в зависимости от приложения, конечный результат будет всё тот же. Одно значение связано с другим, что позволяет получить доступ к необходимой информации с относительной легкостью. С таким количеством записей, которые хранятся в базах данных, а не полагаться на старый метод жесткого копирования файлов, этот тип реляционных зависимостей является очень важным для поиска и использования соответствующих данных.

    Информация всегда имела адекватный динамичный интерес. Развитие языков программирования, реляционных баз данных и информационных технологий кардинально изменило содержание и структуру интереса. Сложилась определенная строгая система представлений. Формализация, точная математика и бинарные отношения стали успешной и, стремительно развивающейся, областью знаний и опыта.

    Естественный мир информации не поменял своей динамики и, развивая содержание и структуру, поднялся на новую высоту. Он имеет плавные формы, и в природе нет ничего «прямоугольного» . Информация, безусловно, поддается формализации, но у нее есть динамика, меняются не только данные и алгоритмы их обработки, меняются сами задачи и области их применения.

    Информация > формализация >> данные

    Информация, превращается в информационная структура, база данных…) так, как это видит программист. Нет никакой гарантии, что это видение правильно, но если его программа решает поставленную задачу, значит данные были представлены возможно надлежащим образом.

    Вопрос о том, насколько была правильно формализована информация - вопрос времени. До сих пор понятие динамики (самоадаптации к изменяющимся условиям использования) - только лишь мечта программирования.

    Функциональная зависимость: «правильное решение = программа (программист)» и условие: «непрерывное соответствие задаче» действительны в большинстве случаев, но только совместно. Но это не та математическая основа, которая применяется при создании баз данных.

    Прямое утверждение: естественная и непрерывная динамика информации и алгоритмов решения задач действительно всегда. А это бинарные отношения + строгая математика + точные формальные конструкции, + ...

    и базы данных

    Как хранятся данные уже давно неважно: будь то оперативная память или внешнее устройство. Аппаратная составляющая достигла уверенных темпов развития и обеспечивает хорошее качество в больших объемах.

    Основные варианты хранения, отличающиеся вариантами использования данных:

    • файлы;
    • базы данных.

    Первое отдано на откуп программисту (что записывать, в каком формате, как это делать, как читать…), второе сразу приносит необходимость познания простой функциональной зависимости.

    Скорость выборки и записи информации при работе с файлами (разумного размера, а не астрономического) очень быстра, а скорость аналогичных операций с базой данных может порой быть заметно медленной.

    Личный опыт и коллективный разум

    В истории были попытки выйти за достигнутые пределы, но по сей день властвуют реляционные базы данных. Накоплен большой теоретический потенциал, практика применения обширная, а разработчики - высококвалифицированные.

    Понятие функциональной зависимости разработчики баз данных навязывают программисту, даже если тот не намерен использовать богатый математическо-логический опыт построения сложных информационных структур, процессов работы с ними, выборки и записи информации.

    Даже в самом простом случае программист зависит от логики базы данных, какую бы он ни выбрал для работы. Нет желания следовать канонам, можно использовать файлы, получится много файлов и много личного опыта. Будет потрачено много личного времени и задача будет решена за длительное время.

    Какими бы сложными ни казались примеры функциональной зависимости, вовсе не обязательно погружаться в глубины смысла и логики. Часто следует признать, что коллективный разум сумел создать отличные базы данных, различного размера и функциональности:

    • солидный Oracle;
    • требовательный MS SQL Server;
    • популярный MySQL.

    Прекрасные реляционные базы данных с хорошей репутацией, удобные в использовании, быстрые в умелых руках. Их применение экономит время и избавляет от необходимости писать очередные простыни вспомогательного кода.

    Особенности программирования и данных

    У программирования с давних пор болезнь что-то постоянно переписывать, повторять труд предшественников, чтобы как-то что-то адаптировать к изменившейся информации, задаче или условиями ее использования.

    Особенность функциональной зависимости в том, что, как и в программировании, ошибка может стоить очень дорого. Задача редко бывает простой. Обычно, в ходе формализации информации, получается сложное представление данных. Обычно выделяются их элементы, потом они увязываются ключами в определенные отношения, потом налаживаются алгоритмы формирования таблиц, запросы, алгоритмы выборки информации.

    Часто большое значение имеет привязка к кодировке. Не все базы данных предлагают мобильные решения, часто можно столкнуться с тем, как прекрасно настроенный MySQL, на котором лежит десяток баз данных, отлично и стабильно работающий, вынуждает разработчика делать одиннадцатую базу подобной тем, которые уже есть.

    Бывают случаи, когда общий хостинг ограничивает функциональность PHP и это накладывает отпечаток на программирование доступа к базе данных.

    В современном программировании ответственность за алгоритм программы эквивалентна ответственности за создание модели данных. Все должно работать, но не всегда следует погружаться в дебри теории.

    БД: простая зависимость в данных

    Прежде всего, понятие БД - это и база данных как система управления (например, MySQL), так и некая информационная структура, отражающая данные задачи и связи между ними. Одна база MySQL «держит» на себе сколько угодно информационных структур по различным сферам применения. Одна база Oracle, может обеспечивать информационные процессы крупной компании или банка, контролировать вопросы безопасности и сохранности данных на высочайшем уровне, располагаясь на множестве компьютеров, находящихся на различном удалении, в различных инструментальных средах.

    Принято полагать, что отношение есть основное в реляционной модели. Элементарное отношение - это множество колонок с именами и строк со значениями. Классический «прямоугольник» (таблица) - простое и эффективное достижение прогресса. Сложности и функциональная зависимость базы данных начинаются, когда «прямоугольники» начинают вступать в отношения друг с другом.

    Имя каждой колонки в каждой таблице должно быть уникальным в контексте задачи. Одно и то же данное не может быть в двух таблицах. Знать смысл понятий:

    • «определить сущности»;
    • «исключить избыточность»;
    • «зафиксировать взаимосвязи»;
    • «обеспечить достоверность».

    Элементарная необходимость для использования базы данных и построения модели данных для конкретной задачи.

    Нарушение любого из этих понятий - низкая эффективность алгоритма, медленная выборка данных, потеря данных, и другие неприятности.

    Функциональная зависимость: логика и смысл

    Можно не читать про кортежи отношений, про то что функция - это соответствие множества аргументов множеству значений, а функция - это не только формула или график, но может быть задана множеством значений - таблицей.

    Не обязательно, но вовсе не помешает представлять функциональную зависимость как:

    F(x1, x2, …, xN) = (y1, y2, …, yN).

    Но обязательно понимать, что на входе - таблица, на выходе тоже таблица или конкретное решение. Обычно функциональная зависимость устанавливает логику отношений между таблицами, запросами, привилегиями, триггерами, хранимыми процедурами и другими моментами (компонентами) базы данных.

    Обычно, таблицы преобразуются друг в друга, потом в результат. Но использование функциональной зависимости не ограничивается только такой идеей. Программист сам строит свое представление картины данных, информационной структуры… неважно, как это именовать, но если оно работает на конкретной базе данных, оно должно строиться по ее логике, учитывать ее смысл и диалект используемого языка, как правило, SQL.

    Можно утверждать, что свойства функциональных зависимостей базы данных доступны через диалект используемого языка SQL. Но гораздо важнее понимать: после всех перипетий развития, не так много баз данных выжило, но диалектов этого языка много и особенностей внутренних конструкций в базах тоже.

    О старом добром Excel

    Когда компьютер показал себя с положительной стороны, мир сразу разделился на программистов и пользователей. Как правило, первые используют:

    • PHP, Perl, JavaScript, C++, Delphi.
    • MySQL, Oracle, Visual FoxPro.
    • Word.
    • Excel.

    Некоторые пользователи умудряют делать самостоятельно (без помощи программистов) в Word базы данных - реальный нонсенс.

    Опыт работы пользователей в Excel по созданию баз данных - практичен и интересен. Важно то, что Excel, сам по себе, функционален, красочен и практичен.

    Табличная идея, определила понятие функциональной зависимости наглядно и доступно, но нюансы есть у каждой базы данных. У каждой свое «лицо», но все от Excel до Oracle манипулируют простыми квадратами, то есть таблицами.

    Если учесть, что Excel - это совсем не база данных, но многие юзеры (не программисты) его именно так используют, а Oracle - это сложнейшее и мощнейшее достижение большого коллектива разработчиков именно в области баз данных, то становится естественным признать - база данных это представление конкретного программиста (коллектива) о конкретной задаче и ее решении.

    Что такое функциональная зависимость, с чем, куда, почему… очевидно только автору или коллективу таковых.

    О том, куда реляционные отношения идут

    Научно-технический прогресс - весьма мучительная процедура, а местами жестокая. Если вспомнить с чего начинались базы данных, что такое *.dbf, как клеймили кибернетику, потом полюбили информатику и стали устраивать препоны перемещению высоких технологий на уровне стран, становится ясно почему реляционные базы данных так живучи и хороши. Почему классический стиль программирования по сей день живет, а объектно-ориентированное программирование просто ценится, но еще не властвует.

    Как бы ни была прекрасна функциональная зависимость в контексте математики:

    Это не бинарные отношения, точнее, это повод переосмыслить идею устанавливать отношения между множеством атрибутов, исследовать связи «один к многим», «многие к одному», «многие ко многим» или «многие вообще, а одни в частности».

    Вариантов отношений можно придумать великое множество. Это математика с логикой, и она строгая! Информация - это своя математика, особенная. В ней о формальности можно говорить только с очень большим минусом.

    Можно формализовать работу отдела кадров, написать АСУ для добычи нефти или производства молока, хлеба, сделать выборку в огромной базе гугла, яндекса или рамблера, но результат будет всегда статичен и каждый момент времени одинаков!

    Если функциональная зависимость = строгая логика и математика = основа для баз данных, то о какой динамике можно вести речь. Любое решение будет формальным, любая формальная модель данных + строгий алгоритм = точное и однозначное решение. Информация и область применения любой программы меняются всегда.

    Выборка поисковой системы на одной и той же поисковой фразе не может быть одной и той же через час или через два и, однозначно, через день - если поисковая фраза относится к области информации, в которой количество сайтов, ресурсов, знаний, прочих элементов непрерывно меняется.

    Даже если программа чисто математическая и ее база данных даже не мыслит о динамике, все всегда есть строки . А у строки есть длинна. И бесконечной она быть не может. Она не может быть даже переменной, только условно-переменной. Помимо всего прочего, любая база данных своим математическим и бинарным-бюрократическим аппаратом накладывает массу формальностей, а это скорость+качество выборки и обработки информации.

    А если те или иные поля в базе данных числа, особенно вещественные то в ограничения добавятся: разрядность числа, наличие буквы "е", формата представления - короче везде и всегда имеем важные свойства функциональных зависимостей базы данных: строки условно-переменной длины с массой бинарных формальностей и строгих математических ограничений.

    Если сменить тон и прислушаться к пульсу динамики, то все можно расписать на объекты. В первом приближении имя колонки в таблице - это объект, список имен - тоже объект, короче таблица - это объект шапки и в нем имена колонок в шапке. И шапки может вовсе не быть...

    Но в таблице могут быть строки. И в строке могут быть значения. И почему их всегда должно быть одинаковое количество. Полная квадратная таблица - это частность, причем в большинстве случаев, частная.

    Если представить все конструкции в базе данных объектами, то, быть может, не придется выстраивать строгие бинарные отношения. В этом есть естественный и реальный смысл хотя бы потому, что это по объективной (однозначно не математической) логике отражает динамику информации и среды, в которой существуют задачи.

    Функциональные зависимости

    Функциональная зависимость описывает связь между атрибутами и является одним из основных понятий нормализации. Предположим, что реляционная схема имеет атрибуты (A, B, C,…, Z) и вся база может быть представлена в виде одного универсального отношения R=(A, B, C,…, Z). Следовательно, каждый атрибут в базе имеет уникальное имя.

    Если A и B – атрибуты некоторого отношения R, и каждое значение А связано с одним и только одним значением В (причем каждый из атрибутов может состоять из одного или нескольких атрибутов), то атрибут В функционально зависим от атрибута А (ВàА).

    Функциональная зависимость, справедливая при любых условиях, называется тривиальной . Нетривиальные зависимости определяют ограничения целостности для отношений.

    Транзитивная зависимость для атрибутов A, B и C некоторого отношения означает следующее: если АàВ и ВàС, то С транзитивно зависит от атрибута А через атрибут В (при условии, что А функционально не зависит от В или С).

    Для исключения избыточности данных, что может привести к потере целостности, необходимо использовать минимально достаточное множество зависимостей.

    Проектирование базы данных с помощью нормализации начинают с определения функциональных зависимостей, очевидных с точки зрения семантики, т.е. приведение к первой нормальной форме.

    Таблица, находящаяся в первой нормальной форме, должна отвечать следующим требованиям:

    1) таблица не должна иметь повторяющихся записей;

    2) в таблице должны отсутствовать повторяющиеся группы полей;

    3) каждое поле должно быть семантически неделимым.

    Таблица, находящаяся во второй нормальной форме, должна отвечать всем требованиям 1НФ, любое неключевое поле однозначно идентифицируется полным набором ключевых полей, то есть каждый атрибут отношения находится в полной или частичной функциональной зависимости от другого атрибута.

    Функциональная зависимость АàВ является полной функциональной зависимостью, если удаление какого либо атрибута из А приводит к утрате этой зависимости. Функциональная зависимость АàВ называется частичной , если в А есть некий атрибут при удалении которого эта зависимость сохраняется.

    Таблица, находящаяся в третьей нормальной форме, должна отвечать всем требованиям 2НФ, ни одно из неключевых полей не идентифицируется при помощи другого неключевого поля, то есть отношение, которое находится в первой и второй нормальных формах и не имеет атрибутов, не входящих в первичный ключ атрибутов, которые находились бы в транзитивной функциональной зависимости от этого первичного ключа.

    Нормальная форма Бойса-Кода (НФБК) основана на функциональных зависимостях, в которых учитываются все потенциальные ключи отношения, но с более строгими ограничениями.

    Детерминантом функциональной зависимости является атрибут (или группа атрибутов), от которого полностью функционально зависит некоторый другой атрибут.

    Для проверки принадлежности отношения к НФБК необходимо найти все его детерминанты и убедиться в том, что они являются потенциальными ключами.

    Различие между 3НФ и НФБК заключается в том, что функциональная зависимость АàВ допускается в отношении 3НФ, если атрибут В является первичным ключом, а атрибут А не обязательно является потенциальным ключом. В отношении НФБК эта зависимость допускается только тогда, когда атрибут А является потенциальным ключом. Следовательно, НФБК является более строгой версией 3НФ, поскольку каждое отношение НФБК является 3НФ, но не всякое отношение 3НФ является НФБК.

    Отношения находятся в НФБК только в том случае, если каждый его детерминант является потенциальным ключом.

    Четвертая нормальная форма (4НФ) – отношение в НФБК, которое не содержит нетривиальных многозначных зависимостей.

    Многозначная зависимость представляет такую зависимость между атрибутами отношения (например А, В и С), что каждое значение А представляет собой множество значений для В и множество значений для С. Однако множество значений В и С не зависят друг от друга.

    Многозначная зависимость может быть дополнительно определена как тривиальная или нетривиальная. Многозначная зависимость АàВ некоторого отношения R определяется как тривиальная, если атрибут В является подмножеством атрибута А или . И наоборот, многозначная зависимость определяется как нетривиальная, если ни то ни другое условие не выполняется. Тривиальная многозначная зависимость не накладывает никаких ограничений на данное отношение, а нетривиальная – накладывает.

    При разбиении отношения с помощью операции проекции используемый метод декомпозиции определяется точно. Необходимо, чтобы при обратном соединении полученных отношений можно было восстановить исходное отношение. Такая декомпозиция называется декомпозицией соединения без потерь (или беспроигрышным или неаддитивным соединением), поскольку при ее выполнении сохраняются все данные исходного отношения, а также исключается создание дополнительных фиктивных строк.

    Пятая нормальная форма (5НФ), которая также называется проективно-соединительной нормальной формой, означает, что отношение в такой форме не имеет зависимостей соединения. Отношение R с подмножеством атрибутов А,В,…,Z удовлетворяет зависимости соединения, если каждое допустимое значение R равно соединению его проекций на подмножества А,В,…,Z.

    Объединение нескольких атрибутов в одно отношение выполняется не случайным образом. Данные, которые будут храниться в этом отношении, взаимосвязаны между собой. Эта взаимосвязь определяется множеством функциональных зависимостей между атрибутами отношения. Это означает, что значения одного атрибута зависят от значений других атрибутов, т. е. допустимы не любые сочетания значений атрибутов. Зависимости эти вытекают из ограничений предметной области. Например, в отношении Поставки существуют следующие ограничения:

    · каждый поставщик имеет только один адрес,

    · каждый поставщик поставляет товар по определенной цене,

    · товары, поставленные разными поставщиками, могут быть распределены по разным складам, но товар одного наименования, поставляемый одним поставщиком, должен храниться только на одном складе,

    · каждый склад имеет свой объем.

    Эти ограничения являются зависимостями, которые можно сформулировать следующим образом:

    · адрес функционально зависит от поставщика,

    · цена функционально зависит от товара и поставщика,

    · номер склада функционально зависит от товара и поставщика,

    · объем функционально зависит от номера склада.

    Функциональная зависимость имеет место, когда значения кортежа на одном множестве атрибутов однозначно определяют значения кортежа на другом множестве атрибутов (или на одном атрибуте).

    Пусть отношение r имеет схему R , X и Y – подмножества R . Отношение r удовлетворяет функциональной зависимости X→Y , если π Y (σ X=x (r)) имеет не более чем один кортеж для каждого значения xÎX , т. е. значения атрибутов X однозначно определяют значения атрибутов Y.

    Функциональную зависимость будем обозначать следующим образом:

    · Поставщик → Адрес,

    · {Товар, Поставщик}→ Цена,

    · {Товар, Поставщик}→ Склад,

    · Склад → Объем.

    А читаются они так:

    · Поставщик определяет Адрес,

    · Товар и Поставщик определяют Цену,

    · Товар и Поставщик определяют Склад,

    · Склад определяет Объем.

    На языке функциональных зависимостей ключ для схемы R – это подмножество KÍR , такое, что K R , и никакое собственное подмножество K¢ÍK этим свойством не обладает.

    Нормальные формы

    Сформулируем правила, по которым следует проводить де­компо­­зицию отношения. Этот процесс называется нормализацией, т. е. при­­ведением отношения к нормальной форме.

    Нормальные формы представляют собой ограничения на схему отношения, избавляющие ее от нежелательных свойств, которые были перечислены выше. Прежде чем приводить отношения к нор­мальной форме, следует построить все функциональные зависимости между атрибутами, которые существуют в предметной области.

    Схема отношения R находится в первой нормальной форме (1НФ ), если значения всех атрибутов являются атомарными (не составными), т. е. значение каждого атрибута не является ни списком, ни множеством значений.

    Например, атрибут ФИО является составным, состоит из трех данных: фамилии, имени и отчества.

    Чтобы привести схему в 1НФ, нужно все составные атрибуты заменить простыми.

    Чтобы избавиться от избыточности информации, хранящейся в базе данных, существуют вторая и третья нормальные формы.

    Схема отношения R находится во второй нормальной форме (2НФ ), если она находится в первой нормальной форме, и каждый непервичный атрибут функционально полно зависит от первичного ключа.

    Что такое неполная функциональная зависимость от ключа? Такая зависимость присутствует в отношении, если какой-либо атрибут, не входящий в ключ, функционально зависит от части атрибутов, входящих в ключ. Любой непервичный атрибут обязательно функционально зависит от всех первичных атрибутов по определению ключа отношения. А если какой-либо непервичный атрибут, кроме того, функционально зависит не от всех, а от части первичных атрибутов, то это и есть неполная функциональная зависимость.

    Например, в отношении Поставка первичными атрибутами являются Товар и Поставщик . Атрибут Цена функционально полно зависит от ключа, а атрибут Адрес зависит от части ключа, т. е. только от атрибута Поставщик , это неполная функциональная зависимость. Значит, схема Поставки не находится во 2НФ.

    Чтобы привести схему, находящуюся в 1НФ, ко 2НФ, нужно разбить ее на несколько схем:

    · выполнить проекцию схемы R на первичные атрибуты и атрибуты, функционально полно зависящие от ключа, т. е. исключить непервичные атрибуты, которые неполно зависят от ключа,

    · для каждой неполной функциональной зависимости выполнить проекцию схемы R на атрибуты, входящие в эту зависимость, т. е. оставить часть ключа отношения R и атрибуты, функционально зависящие от этой части.

    В примере с отношением Поставки в результате приведения схемы ко 2НФ получатся два отношения:

    Поставки_1 (Товар , Поставщик , Цена, Склад, Объем ),

    Поставки_2 (Поставщик , Адрес ).

    Однако информация об объеме склада продолжает дублироваться. Для устранения этого недостатка схемы существует третья нормальная форма.

    Схема отношения R находится в третьей нормальной форме (3НФ ), если она находится во второй нормальной форме и в ней отсутствуют транзитивные зависимости непервичных атрибутов от ключа.

    Что такое транзитивные зависимости? Транзитивная зависимость имеет место, если какой-либо непервичный атрибут функционально зависит от другого непервичного атрибута, а тот в свою очередь функционально зависит от ключа.

    Схема отношения Поставки_1 (Товар , Поставщик , Цена, Склад, Объем ) не находится в 3НФ, так как в ней присутствует транзитивная зависимость:

    {Товар, Поставщик } → Склад , Склад Объем .

    Чтобы привести схему, находящуюся во 2НФ, в 3НФ, нужно:

    · выполнить проекцию схемы R на первичные атрибуты и атрибуты, транзитивно не зависящие от ключа, т. е. исключить непервичные атрибуты, которые транзитивно зависят от ключа,

    · для каждого транзитивно зависимого непервичного атрибута выполнить проекцию схемы R на атрибуты, входящие во вторую часть транзитивной зависимости, т. е. оставить только непервичные атрибуты отношения R , между которыми имеется функциональная зависимость.

    В примере с отношением Поставки_1 в результате приведения схемы к 3НФ получатся два отношения:

    Поставки_1_1 (Товар , Поставщик , Цена, Склад ),

    Поставки_1_2 (Склад , Объем ).

    Таким образом, последовательно выполняя разделение исходной схемы отношения на несколько других схем согласно рассмотренным правилам, получаем схему в 3НФ, свободную от аномалий обновления и дублирования информации, о чем говорилось в начале раздела.

    Процесс разделения схемы отношения на несколько других схем называется декомпозицией схемы отношения. Декомпозиция, приводящая отношение к одной из нормальных форм, называется нормализацией .

    В рассмотренном примере в результате декомпозиции вместо одного отношения Поставки мы получили три новых отношения:

    Поставки_1_1 (Товар , Поставщик , Цена, Склад ),

    Поставки_1_2 (Склад , Объем ),

    Поставки_2 (Поставщик , Адрес ).

    При такой схеме, состоящей из трех связанных внешними ключами отношений, не будет дублирования информации об адресе поставщика и объеме склада, если склад пуст, то объем его останется в базе данных, если поставщик не поставляет товары, то его адрес все равно будет храниться в базе данных.

    Как вы заметили, схема в 3НФ избавляет базу данных от дублирования информации и аномалий обновления, но не всегда.

    Рассмотрим отношение Лекции (Студент , Предмет , Преподаватель ), которое хранит информацию о том, какие предметы изучают студенты и кто ведет эти предметы. Предметная область накладывает следующие ограничения:

    · каждый студент, изучающий данный предмет, обучается только одним преподавателем,

    · каждый преподаватель ведет только один предмет, но каждый предмет может вести несколько преподавателей.

    Из этих ограничений вытекают следующие функциональные зависимости:

    · {Студент, Предмет} → Преподаватель;

    · Преподаватель → Предмет.

    Из функциональных зависимостей вытекает, что ключом отношения Лекции будет набор атрибутов {Студент , Предмет }.

    Отношение Лекции находится в 3НФ. Но оно страдает аномалиями обновления. Если требуется удалить информацию о том, что Петров изучает Физику, то утратится информация о том, что профессор Серов преподает Физику. В то же время информация о том, что профессор Белый ведет Алгебру, дублируется.

    Эти трудности вызваны тем, что существует функциональная зависимость первичного атрибута от непервичного. Эта проблема решается в нормальной форме Бойса–Кодда.

    Отношение находится в нормальной форме Бойса–Кодда (НФБК) , если оно находится в 3НФ и в нем отсутствуют зависимости первичных атрибутов от непервичных. Эквивалентное определение требует, чтобы все левые части функциональных зависимостей были потенциальными ключами.

    Приведя отношение к НФБК, мы получим два отношения: Лекции_1 (Студент, Преподаватель ) и Лекции_2 (Преподаватель, Предмет ).

    Многозначные зависимости

    Атрибут X многозначно определяет атрибут Y в R (или Y многозначно зависит от X ), если каждому значению атрибута X соответствует множество (возможно, пустое) значений атрибута Y , никак не связанных с другими атрибутами R . То есть для наличия в отношении многозначной зависимости необходимо иметь как минимум три атрибута.

    Многозначная зависимость обозначается двойной стрелкой: X→→Y .

    Рассмотрим отношение Преподаватель (Номер , Имя_ребенка , Предмет , Должность ). Предметная область накладывает следующие ограничения:

    · каждый преподаватель может иметь несколько детей,

    · каждый преподаватель может вести несколько предметов,

    · каждый преподаватель может занимать только одну должность,

    · каждый предмет могут вести несколько преподавателей.

    Тогда отношение Преподаватель имеет две многозначные зависимости и одну функциональную:

    · Номер→→Имя_ребенка,

    · Номер→→Предмет,

    · Номер→Должность.

    Отношение Преподаватель , во-первых, содержит избыточную информацию – должность преподавателя повторяется несколько раз. Во-вторых, оно не свободно от аномалий обновления: если у преподавателя появляется еще один ребенок, необходимо добавить в отношение не один кортеж, а столько, сколько предметов ведет этот преподаватель. Аналогично, при добавлении еще одного предмета требуется добавить столько кортежей, сколько детей имеет преподаватель. А если преподаватель не имеет детей, то информацию о том, какие предметы он ведет, вообще нельзя занести в отношение.

    Для избавления от этих аномалий необходимо привести отношение к четвертой нормальной форме.

    Отношение находится в четвертой нармальной форме (4НФ ), если оно находится в нормальной форме Бойса–Кодда и в нем отсутствуют многозначные зависимости, которые не являются функциональными.

    После приведения отношения Преподаватель к 4НФ мы получим три отношения:

    Преподаватель_1 (Номер , Должность ),

    Преподаватель_2 (Номер , Имя_ребенка ),

    Преподаватель_3 (Номер , Предмет ).

    Свойства декомпозиции