• Лекция: Меры информации (синтаксическая, семантическая, прагматическая). Метод количественной оценки информации: статистический, семантический, прагматический и структурный

    Информационное взаимодействие. Способы передачи информации. Классификация информации.

    Понятие информации. Свойства информации. Формы представления информации.

    Информация (от лат. informatio - «разъяснение, изложение, осведомлённость») - сведения о чём-либо, независимо от формы их представления.

    Информацию можно разделить на виды по различным критериям:

    по способу восприятия:

    Визуальная - воспринимаемая органами зрения.

    Аудиальная - воспринимаемая органами слуха.

    Тактильная - воспринимаемая тактильными рецепторами.

    Обонятельная - воспринимаемая обонятельными рецепторами.

    Вкусовая - воспринимаемая вкусовыми рецепторами.

    по форме представления:

    Текстовая - передаваемая в виде символов, предназначенных обозначать лексемы языка.

    Числовая - в виде цифр и знаков, обозначающих математические действия.

    Графическая - в виде изображений, предметов, графиков.

    Звуковая - устная или в виде записи и передачи лексем языка аудиальным путём.

    по назначению:

    Массовая - содержит тривиальные сведения и оперирует набором понятий, понятным большей части социума.

    Специальная - содержит специфический набор понятий, при использовании происходит передача сведений, которые могут быть не понятны основной массе социума, но необходимы и понятны в рамках узкой социальной группы, где используется данная информация.

    Секретная - передаваемая узкому кругу лиц и по закрытым (защищённым) каналам.

    Личная (приватная) - набор сведений о какой-либо личности, определяющий социальное положение и типы социальных взаимодействий внутри популяции.

    по значению:

    Актуальная - информация, ценная в данный момент времени.

    Достоверная - информация, полученная без искажений.

    Понятная - информация, выраженная на языке, понятном тому, кому она предназначена.

    Полная - информация, достаточная для принятия правильного решения или понимания.

    Полезная - полезность информации определяется субъектом, получившим информацию в зависимости от объёма возможностей её использования.

    по истинности:

    истинная

    В информатике предметом изучения информации являются именно данные: методы их создания, хранения, обработки и передачи.

    Передачей информации называется процесс её пространственного переноса от источника к получателю (адресату). Передавать и получать информацию человек научился даже раньше, чем хранить её. Речь является способом передачи, который использовали наши далекие предки в непосредственном контакте (разговоре) - ею мы пользуемся и сейчас. Для передачи информации на большие расстояния необходимо использовать значительно более сложные информационные процессы.



    Для осуществления такого процесса информация должна быть некоторым образом оформлена (представлена). Для представления информации используются различные знаковые системы - наборы заранее оговоренных смысловых символов: предметов, картинок, написанных или напечатанных слов естественного языка. Представленная с их помощью семантическая информация о каком-либо объекте, явлении или процессе называется сообщением.

    Очевидно, что для передачи сообщения на расстояние информация должна быть перенесена на какой-либо мобильный носитель. Носители могут перемещаться в пространстве с помощью транспортных средств, как это происходит с письмами, посылаемыми по почте. Такой способ обеспечивает полную достоверность передачи информации, поскольку адресат получает оригинал сообщения, однако требует значительного времени для передачи. С середины XIX века получили распространение способы передачи информации, использующие естественно распространяющийся носитель информации - электромагнитные колебания (электрические колебания, радиоволны, свет). Устройства, реализующие процесс передачи данных, образуют системы связи. В зависимости от способа представления информации системы связи можно подразделять на знаковые (телеграф, телефакс), звуковые (телефон), видео и комбинированные системы (телевидение). Наиболее развитой системой связи в наше время является Интернет.

    Единицы измерения информации служат для измерения различных характеристик, связанных с информацией.

    Чаще всего измерение информации касается измерения ёмкости компьютерной памяти (запоминающих устройств) и измерения объёма данных, передаваемых по цифровым каналам связи. Реже измеряется количество информации.

    Бит (англ. binary digit - двоичное число; также игра слов: англ. bit - кусочек, частица) - единица измерения количества информации, равная одному разряду в двоичной системе счисления. Обозначается по ГОСТ 8.417-2002

    Клод Шэннон в 1948 г предложил использовать слово bit для обозначения наименьшей единицы информации:

    Бит - это двоичный логарифм вероятности равновероятных событий или сумма произведений вероятности на двоичный логарифм вероятности при равновероятных событиях; см. информационная энтропия.

    Бит - базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равновероятных исхода; см. информационная энтропия. Это тождественно количеству информации в ответе на вопрос, допускающий ответы «да» либо «нет» и никакого другого (то есть такое количество информации, которое позволяет однозначно ответить на поставленный вопрос).

    Синтаксическая мера информации

    Возникновение информологии как науки можно отнести к концу 50-х годов нашего столетия, когда американским инженером Р. Хартли была сделана попытка ввести количественную меру информации, передаваемой по каналам связи. Рассмотрим простую игровую ситуацию. До получения сообщения о результате подбрасывания монеты человек находится в состоянии неопределенности относительно исхода очередного броска. Сообщение партнера дает информацию, снимающее эту неопределенность. Заметим, что число возможных исходов в описанной ситуации равно 2, они равноправны (равновероятны) и каждый раз передаваемая информация полностью снимала возникавшую неопределенность. Хартли принял «количество информации», передаваемое по каналу связи относительно двух равноправных исходов и снимающее неопределенность путем оказания на один из них, за единицу информации, получившую название «бит».

    Семантическая мера информации

    Новый этап теоретического расширения понятия информации связан с кибернетикой - наукой об управлении и связи в живых организмах, обществе и машинах. Оставаясь на позициях шенноновского подхода, кибернетика формулирует принцип единства информации и управления, который особенно важен для анализа сути процессов, протекающих в самоуправляющихся, самоорганизующихся биологических и социальных системах. Развитая в работах Н. Винера концепция предполагает, что процесс управления в упомянутых системах является процессом переработки (преобразования) некоторым центральным устройством информации, получаемой от источников первичной информации (сенсорных рецепторов) и передачи ее в те участки системы, где она воспринимается ее элементами как приказ для выполнения того или иного действия. По совершении самого действия сенсорные рецепторы готовы к передаче информации об изменившейся ситуации для выполнения нового цикла управления. Так организуется циклический алгоритм (последовательность действий) управления и циркуляции информации в системе. При этом важно, что главную роль играет здесь содержание информации, передаваемой рецепторами и центральным устройством. Информация, по Винеру - это «обозначение содержания, полученного из внешнего мира в процессе нашего приспособления к нему и приспособления к нему наших чувств».

    Прагматическая мера информации

    В прагматических концепциях информации этот аспект является центральным, что приводит к необходимости учитывать ценность, полезность, эффективность, экономичность информации, т.е. те ее качества, которые определяющим образом влияют на поведение самоорганизующихся, самоуправляющихся, целенаправленных кибернетических систем (биологических, социальных, человеко-машинных).

    Одним из ярких представителей прагматических теорий информации является поведенческая модель коммуникации - бихевиористская модель Акоффа-Майлса. Исходным в этой модели является целевая устремленность получателя информации на решение конкретной проблемы. Получатель находится в «целеустремленном состоянии», если он стремится к чему-нибудь и имеет альтернативные пути неодинаковой эффективности для достижения цели. Сообщение, переданное получателю иформативно, если оно изменяет его «целеустремленное состояние».

    Так как «целеустремленное состояние» характеризуется последовательностью возможных действий (альтернатив), эффективностью действия и значимостью результата, то передаваемое получателю сообщение может оказывать воздействие на все три компонента в различной степени. В соответствии с этим передаваемая информация различается по типам на «информирующую», «инструктирующую» и «мотивирующую». Таким образом, для получателя прагматическая ценность сообщения состоит в том, что оно позволяет ему наметить стратегию поведения при достижении цели построением ответов на вопросы: что, как и почему делать на каждом очередном шаге? Для каждого типа информации бихевиористская модель предлагает свою меру, а общая прагматическая ценность информации определяется как функция разности этих количеств в «целеустремленном состоянии» до и после его изменения на новое «целеустремленное состояние».

    Термин "информация " происходит от латинского "informatio ", что означает разъяснение, осведомление, изложение. С позиции материалистической философии информация есть отражение реального мира с помощью сведений (сообщений). Сообщение - это форма представления информации в виде речи, текста, изображения, цифровых данных, графиков, таблиц и т.п. В широком смысле информация - это общенаучное понятие, включающее в себя обмен сведениями между людьми, обмен сигналами между живой и неживой природой, людьми и устройствами.

    Информатика рассматривает информацию как концептуально связанные между собой сведения, данные, понятия, изменяющие наши представления о явлении или объекте окружающего мира. Наряду с информацией в информатике часто употребляется понятие “данные ”. Покажем в чем их отличие.

    Данные могут рассматриваться как признаки или записанные наблюдения, которые по каким-то причинам не используются, а только хранятся. В том случае, если их используют для уменьшения неопределенности (получения сведений) о каком-либо объекте, данные превращаются в информацию. Данные существуют объективно и не зависят от человека и объема его знаний. Одни и те же данные для одного человека могут превратиться в информацию, т.к. они способствовали уменьшению неопределенности знаний человека, а для другого человека так и останутся данными.

    Пример 1

    Напишите на листе 10 номеров телефонов в виде последовательности 10-ти чисел и покажите их вашему сокурснику. Он воспримет эти цифры как данные, т.к. они не предоставляют ему никаких сведений.

    Затем напротив каждого номера укажите название фирмы и род деятельности. Непонятные ранее цифры для вашего сокурсника обретут определенность и превратятся из данных в информацию, которую он в дальнейшем мог бы использовать.

    Данные можно разделить на факты, правила и текущие сведения. Факты отвечают на вопрос "я знаю, что…". Примеры фактов:

    • Москва - столица России;
    • Дважды два равно четыре;
    • Квадрат гипотенузы равен сумме квадратов катетов.

    Правила отвечают на вопрос "я знаю, как…". Примеры правил:

    • Правила вычисления корней квадратного уравнения;
    • Инструкция пользования банкоматом;
    • Правила дорожного движения.

    Факты и правила представляют достаточно данные длительного использования. Они достаточно статичны, т.е. не изменчивы во времени.

    Текущие сведения представляют данные, употребляемые в относительно короткий промежуток времени - курс доллара, цена товара, новости.

    Одной из важнейших разновидностей информации является информация экономическая. Ее отличительная черта - связь с процессами управления коллективами людей, организацией. Экономическая информация сопровождает процессы производства, распределения, обмена и потребления материальных благ и услуг. Значительная часть ее связана с общественным производством и может быть названа производственной информацией.

    При работе с информацией всегда имеется ее источник и потребитель (получатель). Пути и процессы, обеспечивающие передачу сообщений от источника информации к ее потребителю называются информационными коммуникациями.

    1.2.2. Формы адекватности информации

    Для потребителя информации очень важной характеристикой является ее адекватность .

    В реальной жизни вряд ли возможна ситуация, когда вы сможете ориентироваться на полную адекватность информации. Всегда присутствует некоторая степень неопределенности. От степени адекватности информации реальному состоянию объекта или процесса зависит правильность принятия решений потребителем.

    Пример 2

    Вы успешно окончили школу и хотите продолжить образование по экономическому направлению. Поговорив с друзьями, вы узнаете, что подобную подготовку можно получить в разных вузах. В результате таких бесед вы получаете весьма разноречивые сведения, которые не позволяют вам принять решение в пользу того или иного варианта, т.е. полученная информация неадекватна реальному состоянию дел.

    Для того чтобы получить более достоверные сведения, вы покупаете справочник для поступающих в вузы, из которого получаете исчерпывающую информацию. В этом случае можно говорить, что информация, полученная вами из справочника, адекватно отражает направления обучения в вузах и помогает вам определиться в окончательном выборе.

    Адекватность информации может выражаться в трех формах: семантической, синтаксической, прагматической.

    Синтаксическая адекватность

    Синтаксическая адекватность отображает формально-структурные характеристики информации и не затрагивает смыслового содержания. На синтаксическом уровне учитываются тип носителя и способ представления информации, скорость передачи и обработки, размеры кодов представления информации, надежность и точность преобразования этих кодов и т.п. Информацию, рассматриваемую только с синтаксических позиций, обычно называют данными, т.к. при этом не имеет значения смысловая сторона. Эта форма способствует восприятию внешних структурных характеристик, т.е. синтаксической стороны информации.

    Семантическая (смысловая) адекватность

    Семантическая адекватность определяет степень соответствия образа объекта и самого объекта. Семантический аспект имеет в виду учет смыслового содержания информации. На этом уровне анализируются те сведения, которые отражает информация, рассматриваются смысловые связи. В информатике устанавливаются смысловые связи между кодами представления информации. Эта форма служит для формирования понятий и представлений, выявления смысла, содержания информации и ее обобщения.

    Прагматическая (потребительская) адекватность

    Прагматическая адекватность отражает отношение информации и ее потребителя, соответствие информации цели управления, которое на ее основе реализуется. Проявляются прагматические свойства информации только при наличии единства информации (объекта), пользователя и цели управления. Прагматический аспект рассмотрения связан с ценностью, полезностью использования информации для выработки потребителем решения для достижения своей цели. С этой точки зрения анализируются потребительские свойства информации. Эта форма адекватности непосредственно связана с практическим использованием информации, с соответствием ее целевой функции деятельности системы.

    1.2.3. Измерение информации

    Для измерения информации вводятся два параметра:

    Эти параметры имеют разные выражения и интерпретацию в зависимости от рассматриваемой формы адекватности. Каждой форме адекватности соответствует своя мера количества информации и объема данных (рис. 1).

    Рис. 1. Меры информации

    Синтаксические меры информации

    Синтаксические меры количества информации имеют дело с обезличенной информацией, не выражающей смыслового отношения к объекту.

    Объем данных в сообщении измеряется количеством символов (разрядов) в этом сообщении. В различных системах счисления один разряд имеет различный вес, и соответственно меняется единица измерения данных:

    • в двоичной системе счисления единица измерения - бит (binary digit - двоичный разряд). Наряду с этой единицей измерения широко используется укрупненная единица измерения “байт”, равная 8 бит.
    • в десятичной системе счисления единица измерения - дит (десятичный разряд).

    Пример 3

    Сообщение в двоичной системе в виде восьмиразрядного двоичного кода 10111011 имеет объем данных Сообщение в десятичной системе в виде шестиразрядного числа 275903имеетобъемданных

    Определение количества информации I на синтаксическом уровне невозможно без рассмотрения понятия неопределенности состояния системы (энтропии системы). Действительно, получение информации о какой-либо системе всегда связано с изменением степени неосведомленности получателя о состоянии этой системы. Рассмотрим это понятие.

    Пусть до получения информации потребитель имеет некоторые предварительные (априорные) сведения о системе a . Мерой его неосведомленности о системе является функция Н(a), которая в тоже время служит и мерой неопределенности состояния системы. Эта мера получила название энтропия . Если потребитель имеет полную информацию о системе, то энтропия равна 0. Если потребитель имеет полную неопределенность о какой-то системе, то энтропия является положительным числом. По мере получения новой информации энтропия уменьшается.

    После получения некоторого сообщения b получатель приобрел некоторую дополнительную информацию , уменьшившую его априорную неосведомленность так, что апостериорная (после получения сообщения b ) неопределенность состояния системы стала .

    Тогда количество информации о системе, полученное в сообщении b , определится как , т. е. количество информации измеряется изменением (уменьшением) неопределенности состояния системы.

    Если конечная неопределенность обратится в нуль, то первоначальное неполное знание заменится полным знанием и количество информации . Иными словами, энтропия системы Н(a) может рассматриваться как мера недостающей информации.

    Энтропия системы Н(a) , имеющая N возможных состояний, согласно формуле Шеннона, равна

    (1)

    где - вероятность того, что система находится в i -м состоянии.

    Для случая, когда все состояния системы равновероятны, т.е. их вероятности равны , ее энтропия определяется соотношением

    (2)

    Энтропия системы в двоичной системе счисления измеряется в битах. Исходя из формулы (2) можно сказать, что в системе в равновероятными состояниями 1 бит равен количеству информации, которая уменьшает неопределенность знаний в два раза.

    Пример 4

    Система, которая описывает процесс бросания монеты, имеет два равновероятных состояния. Если вам нужно угадать, какая сторона выпала сверху, то вы сначала имеете полную неопределенность о состоянии системы. Что бы получить информацию о состоянии системы, вы задаете вопрос: "Это орел?". Этим вопросом вы пытаетесь отбросить половину неизвестных состояний, т.е. уменьшить неопределенность в 2 раза. Какой бы ответ ни последовал "Да" или "Нет", вы получите полную ясность о состоянии системы. Таким образом, ответ на вопрос содержит 1 бит информации. Поскольку после 1-го вопроса наступила полня ясность, то энтропия системы равна 1. Этот же ответ дает формула (2), т.к. log2 2=1.

    Пример 5.

    Игра "Отгадай число". Вам надо угадать задуманное число от 1 до 100. В начале отгадывания вы имеете полную неопределенность о состоянии системы. При отгадывании надо задавать вопросы не хаотично, а так, чтобы ответ уменьшал неопреденность знаний в 2 раза, получая таким образом примерно 1 бит информации после каждого вопроса. Например, сначала надо задать вопрос: "Число больше 50?". "Правильный" подход к отгадыванию дает возможность угадать число за 6-7 вопросов. Если применить формулу (2), то получится, что энтропия системы равна log2 100=6,64.

    Пример 6.

    Алфавит племени "тумбо-юмбо" содержит 32 различных символа. Какова энтропия системы? Другими словами надо определить, какое количество информации несет в себе каждый символ.
    Если считать, что каждый символ встречается в словах с равной вероятностью, то энтропия log2 32=5.

    Наиболее часто используются двоичные и десятичные логарифмы. Единицами измерения в этих случаях будут соответственно бит и дит.

    Коэффициент (степень) информативности (лаконичность) сообщения определяется отношением количества информации к объему данных, т.е.

    Чем больше коэффициент информативности Y, тем меньше объем работы по преобразованию информации (данных) в системе. Поэтому стремятся к повышению информативности, для чего разрабатываются специальные методы оптимального кодирования информации.

    Семантическая мера информации

    Для измерения смыслового содержания информации, т.е. ее количества на семантическом уровне наибольшее признание получила тезаурусная мера, предложенная Ю.И.Шнейдером. Он связывает семантические свойства информации прежде всего со способностью пользователя принимать поступившее сообщение. Для этого используется понятие "тезаурус пользователя ".

    В зависимости от соотношений между смысловым содержанием информации S и тезаурусом пользователя Sp изменяется количество семантической информации , воспринимаемой пользователем и включаемой им в дальнейшем в свой тезаурус. Характер такой зависимости показан на рис. 2. Рассмотрим два предельных случая, когда количество семантической информации равно 0:

    Максимальное количество семантической информации потребитель приобретает при согласовании ее смыслового содержания S со своим тезаурусом, когда поступающая информация понятна пользователю и несет ему ранее не известные (отсутствующие в его тезаурусе) сведения.

    Следовательно, количество семантической информации в сообщении, количество новых знаний, получаемых пользователем, является величиной относительной. Одно и то же сообщение может иметь смысловое содержание для компетентного пользователя и быть бессмысленным (семантический шум) для пользователя некомпетентного.

    о.

    Рис. 2. Зависимость количества семантической информации, воспринимаемой потребителем, от его тезауруса

    При оценке семантического (содержательного) аспекта информации надо стремиться к согласованию величин S и Sp.

    Относительной мерой количества семантической информации может служить коэффициент содержательности С , который определяется как отношение количества семантической информации к ее объему

    Прагматическая мера информации

    Прагматическая мера информации служит для определения ее полезности (ценности) для достижения пользователем поставленной цели. Эта мера также величина относительная, обусловленная особенностями использования этой информации в той или иной системе. Ценность информации целесообразно измерять в тех же самых единицах (или близких к ним), в которых измеряется целевая функция.

    Пример 7

    В экономической системе прагматические свойства (ценность) информации можно определить приростом экономического эффекта функционирования, достигнутым благодаря использованию этой информации для управления системой:

    где - ценность информационного сообщения для системы управления ;

    - априорный ожидаемый экономический эффект функционирования системы управления ;

    Ожидаемый эффект функционирования системы при условии, что для управления будет использована информация, содержащаяся в сообщении .

    Для сопоставления введенные меры информации представим в табл. 1.

    Таблица 1. Единицы измерения информации и примеры

    Меры информации

    Единицы измерения

    Примеры
    (для компьютерной области)

    Синтаксическая:

    а)Шенноновский подход

    б)компьютерный подход

    а)степень уменьшения неопределенности

    б)единицы представления информации

    а) вероятность события

    б) бит, байт, Кбайт и т.д.

    Семантическая

    а) тезаурус

    б) экономические показатели

    а)пакет прикладных программ, персональный компьютер, компьютерные сети и т.д.

    б)рентабельность, производительность, коэффициент амортизации и т.д.

    Прагматическая

    Ценность использования

    Емкость памяти, производительность компьютера, скорость передачи данных и т.д.

    Денежное выражение

    Время обработки информации и принятия решений

    1.2.4. Свойства информации

    Возможность и эффективность использования информации обуславливаются такими основными ее свойствами, как: репрезентативность, содержательность, достаточность, доступность, актуальность, своевременность, точность, достоверность, устойчивость.
    Репрезентативность информации связана с правильностью ее отбора и формирования с целью адекватного отражения свойств объекта.

    Важнейшее значение здесь имеют:

    • правильность концепции, на базе которой сформулировано исходное понятие;
    • обоснованность отбора существенных признаков и связей отображаемого явления.

    Нарушение репрезентативности информации приводит нередко к существенным ее погрешностям.

    Содержательность информации отражает семантическую емкость, равную отношению количества семантической информации в сообщении к объему обрабатываемых данных, т. е. . С увеличением содержательности информации растет семантическая пропускная способность информационной системы, так как для получения одних и тех же сведений требуется преобразовать меньший объем данных.

    Наряду с коэффициентом содержательности C , отражающим семантический аспект, можно использовать и коэффициент информативности, характеризующийся отношением количества синтаксической информации (по Шеннону) к объему данных .

    Достаточность (полнота) информации означает, что она содержит минимальный, но достаточный для принятия правильного решения состав (набор показателей). Понятие полноты информации связано с ее смысловым содержанием (семантикой) и прагматикой. Как неполная, т.е. недостаточная для принятия правильного решения, так и избыточная информация снижают эффективность принимаемых пользователем решений.

    Доступность информации восприятию пользователя обеспечивается выполнением соответствующих процедур ее получения и преобразования. Например, в информационной системе информация преобразовывается к доступной и удобной для восприятия пользователя форме. Это достигается, в частности, и путем согласования ее семантической формы с тезаурусом пользователя.

    Актуальность информации определяется степенью сохранения ценности информации для управления в момент ее использования и зависит от динамики изменения ее характеристик и от интервала времени, прошедшего с момента возникновения данной информации.

    Своевременность информации означает ее поступление не позже заранее назначенного момента времени, согласованного с временем решения поставленной задачи.

    Точность информации определяется степенью близости получаемой информации к реальному состоянию объекта, процесса, явления и т.п. Для информации, отображаемой цифровым кодом, известны четыре классификационных понятия точности:

    • формальная точность, измеряемая значением единицы младшего разряда числа;
    • реальная точность, определяемая значением единицы последнего разряда числа, верность которого гарантируется;
    • максимальная точность, которую можно получить в конкретных условиях функционирования системы;
    • необходимая точность, определяемая функциональным назначением показателя.

    Достоверность информации определяется ее свойством отражать реально существующие объекты с необходимой точностью. Измеряется достоверность информации доверительной вероятностью необходимой точности, т.е. вероятностью того, что отображаемое информацией значение параметра отличается от истинного значения этого параметра в пределах необходимой точности.

    Устойчивость информации отражает ее способность реагировать на изменения исходных данных без нарушения необходимой точности. Устойчивость информации, как и репрезентативность, обусловлены выбранной методикой ее отбора и формирования.

    В заключение следует отметить, что такие параметры качества информации, как репрезентативность, содержательность, достаточность, доступность, устойчивость целиком определяются на методическом уровне разработки информационных систем. Параметры актуальности, своевременности, точности и достоверности обусловливаются в большей степени также на методическом уровне, однако, на их величину существенно влияет и характер функционирования системы, в первую очередь, ее надежность. При этом параметры актуальности и точности жестко связаны, соответственно, с параметрами своевременности и достоверности.

    1.2.5. Общая характеристика информационных процессов

    В природе и в обществе постоянно происходит взаимодействие объектов, связанные с изменением информации. Изменение информации происходит в результате разнообразных воздействий. Совокупность действий с информацией называют информационным процессом . Информационная деятельность состоит из разнообразных действий, которые выполняются с информацией. Среди них можно выделить действия, связанные с поиском, приемом, обработкой, передачей, хранением и защитой информации.

    Обмен информацией между людьми, реакция человеческого организма на природные явления, взаимодействия человека и автоматизированной системы, - все это примеры информационных процессов.

    Процесс сбора включает в себя:

    • измерение параметров;
    • регистрацию параметров в виде данных для последующей обработки;
    • преобразование данных в форму, используемую в системе (кодирование, приведение к нужному виду и ввод в систему обработки).

    Для того, чтобы данные были измерены и зарегистрированы, необходимо наличие аппаратных средств, преобразующих сигналы в форму, воспринимаемую системой получателя (совместимую). Например, для регистрации температуры больного или влажности почвы для последующей их обработки нужны специальные датчики. Для записи этих данных на носитель или их передачи также нужны аппаратные средства.

    Хранение информации необходимо для того, чтобы можно было многократно воспользоваться одними и теми же данными. Для обеспечения хранения информации необходимы апапратные средства записи данных на материальный носитель и чтения с носителя.

    Процесс обмена информацией подразумевает наличие источника и потребителя (приемника) информации. Процесс выхода информации от источника называется передачей , а процесс получения информации потребителей называется приемом . Таким образом, процесс обмена подразумевает наличие двух взаимосвязанных процессов передачи-приема.

    Процессы передачи и приема могут быть односторонними, двусторонними, а также поочередно двусторонними.

    Пути и процессы, обеспечивающие передачу сообщений от источника информации к ее потребителю, называются информационными коммуникациями .

    Рис. 3. Информационный процесс обмена информацией

    Источниками и потребителями информации могут быть люди, животные, растения, автоматические устройства. От источника к потребителю информация передается в форме сообщений. Прием и передача сообщений осуществляется в виде сигналов. Сигнал - это изменение физической среды, отображающее сообщение. Сигнал может быть звуковой, световой, обонятельный (запах), электрический, электромагнитный и т.д.

    Кодирующее устройство преобразует сообщение из вида, понятного источнику, в сигналы физической среды, по которой передается сообщение. Декодирующее устройство выполняет обратную операцию и преобразует сигналы среды к виду, понятному потребителю.

    Материальными носителями передаваемых сообщений могут быть природные химические соединения (ощущаемые на запах и на вкус), механические колебания воздуха или мембраны телефона (при передаче звука), колебания электрического тока в проводах (телеграф, телефон), электромагнитные волны оптического диапазона (воспринимаемые человеческим глазом), электромагнитные волны радиодиапазона (для передачи звука и телеизображения).

    В организме человека и животных информация передается по нервной системе в виде слабых электрических токов или с помощью особых химических соединений (гормонов), переносимых кровью.

    Каналы связи характеризуются пропускной способностью - количеством данных, переданных в единицу времени. Она зависит от скорости преобразования информации в приемо-передающих устройствах, и от физических свойств самих каналов. Пропускная способность определяется возможностями физической природы канала.

    В вычислительной технике информационные процессы автоматизированы и используют аппаратные и программные методы, приводящие сигналы в совместимую форму.

    На всех этапах обработки и передачи необходимо передающее и принимающее устройства, имеющие соответствующие совместимые аппаратные средства. Данные после получения могут быть зафиксированы на носителях информации для хранения до следующего процесса.

    Следовательно, информационный процесс может состоять из серии преобразований данных и их сохранения в новой форме.
    Информационные процессы в современном мире имеют тенденцию автоматизации на компьютере. Появляется все большее количество информационных систем, которые реализуют информационные процессы, и удовлетворяют запросы потребителей информации.

    Хранение данных в компьютерных каталогах позволяет быстро копировать информацию, размещать на разных носителях, выдавать пользователям в разной форме. Претерпевают изменения и процессы передачи информации на большие расстояния. Человечество постепенно переходит на связь через глобальные сети.

    Обработка - это процесс преобразования информации из одного вида в другой.

    Чтобы осуществить обработку, необходимы следующие условия:

    • исходные данные - сырье для обработки;
    • среда и инструменты обработки;
    • технология, которая определяет правила (способы) преобразования данных

    Процесс обработки завершается получением новой информации (по форме, по содержанию, по смыслу), которую называют результирующей информацией.

    Процесс обработки информации напоминает процесс материального производства. При производстве товаров необходимо сырье (исходные материалы), среда и инструменты производства (цех и станки), технология изготовления товара.
    Все описанные выше отдельные стороны информационного процесса тесно взаимосвязаны.

    При выполнении информационного процесса на компьютере выделяют четыре группы действий с данными - ввод, хранение, обработку и вывод.

    Обработка предполагает преобразование данные в некоторой программной среде. Каждая программная среда обладает набором инструментов, с помощью которых можно опреровать данныи. Чтобы осуществить обработку надо знать технологию работы в среде, т.е. технологию работы с инструментами среды.

    Чтобы обработка стала возможной надо данные ввести, т.е. передать от пользователя в компьютер. Для этого предназначены разнообразные устройства ввода.

    Чтобы данные не пропали, и их можно было многократно использовать, осуществляется запись данных на разнообразные устройства хранения информациию.

    Чтобы увидеть результаты обработки информации, ее надо вывести, т.е. передать из компьютера пользователю, с помощью разнообразных устройств вывода.

    1.2.6. Кодирование числовой информации

    Общие понятия

    Система кодирования применяется для замены названия объекта на условное обозначение (код) с целью обеспечения удобной и более эффективной обработки информации.

    Система кодирования - совокупность правил кодового обозначения объектов.

    Код строится на базе алфавита, состоящего из букв, цифр и других символов. Код характеризуется:

    • длиной - число позиций в коде;
    • структурой - порядок расположения в коде символов, используемых для обозначения классификационного признака.

    Процедура присвоения объекту кодового обозначения называется кодированием.

    Представление о системах счисления

    Числа могут быть представлены в различных системах счисления.

    Для записи чисел могут использоваться не только цифры, но и буквы (например, запись римских цифр - XXI, MCMXCIX). В зависимости от способа изображения чисел системы счисления делятся на позиционные и непозиционные .

    В позиционной системе счисления количественное значение каждой цифры числа зависит от того, в каком месте (позиции или разряде) записана та или иная цифра этого числа. Позиции числа нумеруют от 0 справа налево. Например, меняя позицию цифры 2 в десятичной системе счисления, можно записать разные по величине десятичные числа, например, 2 (цифра 2 стоит на 0-й позиции и означает две единицы); 20 (цифра 2 стоит на 1-й позиции и означает два десятка); 2000 (цифра 2 стоит на 3-й позиции и означает две тысячи); 0,02 и т.д. Перемещение положения цифры в соседний разряд увеличивает (уменьшает) ее значение в 10 раз.

    В непозиционной системе счисления цифры не изменяют своего количественного значения при изменении их расположения (позиции) в числе. Примером непозиционной системы может служить римская система, в которой независимо от местоположения, одинаковый символ имеет неизменное значение (например, символ X в числе XVX означает десять, где бы он ни стоял).

    Количество (p) различных символов, используемых для изображения числа в позиционной системе счисления, называется основанием системы счисления. Значения цифр лежат в пределах от 0 до p-1.

    В десятичной системе счисления p=10 и для записи любого числа используется 10 цифр: 0, 1, 2, ... 9.

    Для компьютера наиболее подходящей и надежной оказалась двоичная система счисления (p=2), в которой для представления чисел используются последовательности цифр - 0 и 1. Кроме того, для работы компьютера оказалось удобным использовать представление информации с помощью еще двух систем счисления:

    • восьмеричной (p=8, т.е. любое число представляется с помощью 8 цифр - 0,1, 2,...7);
    • шестнадцатеричной (p=16, используемые символы - цифры - 0, 1, 2, ..., 9 и буквы - A, B, C, D, E, F, заменяющие числа 10,11, 12, 13, 14, 15 соответственно).

    Соответствие кодов десятичной, двоичной и шестнадцатеричной систем счисления представлено в таблице 2.

    Таблица 2. Соответствие кодов десятичной, двоичной и шестнадцатеричной систем счисления

    Десятичная

    Двоичная

    Шестнадцатеричная

    В общем случае любое число N в позиционной системе счисления можно представить в виде:

    где k - количество разрядов в целой частности числа N;

    - (k –1)-ая цифра целой части числа N, записанного в системе счисления с основанием p;

    N-ая цифра дробной части числа N, записанного в системе счисления с основанием p;

    n - количество разрядов в дробной части числа N;

    Максимальное число, которое может быть представлено в к разрядах .

    Минимальное число, которое может быть представлено в n разрядах .

    Имея в целой части числа к разрядов, а в дробной n разрядов, можно записать всего разных чисел.

    С учетом этих обозначений запись числа N в любой позиционной системе счисления с основанием p имеет вид:

    Пример 8

    При p = 10 запись числа в десятичной системе счисления – 2466,675 10 , где k = 4, n = 3.

    При p = 2 запись числа в двоичной системе – 1011,112 , где k = 4, n = 2.

    Двоичная и шестнадцатеричная системы счисления обладают такими же свойствами, что и десятичная, только для представления чисел используется не 10 цифр, а всего две в первом случае и 10 цифр и 6 букв во втором случае. Соответственно и разряд числа называют не десятичным, а двоичным или шестнадцатеричным. Основные законы выполнения арифметических действий в двоичной и шестнадцатеричной системах счисления соблюдаются точно также как и в десятичной.

    Для сравнения рассмотрим представление чисел в разных системах счисления, как сумму слагаемых, в которых учтен вес каждого разряда.

    Пример 9

    В десятичной системе счисления

    В двоичной системе счисления

    В шестнадцатеричной системе счисления

    Существуют правила перевода чисел из одной системы счисления в другую.

    Формы представления чисел в компьютере

    В компьютерах применяются две формы представления двоичных чисел:

    • естественная форма или форма с фиксированной запятой (точкой);
    • нормальная форма или форма с плавающей запятой (точкой).

    В естественной форме (с фиксированной запятой) все числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой, отделяющей целую часть от дробной.

    Пример 10

    В десятичной системе счисления имеются 5 разрядов в целой части числа и 5 разрядов в дробной части числа. Числа, записанные в такую разрядную сетку, например, имеют вид: +00564,24891; -10304,00674 и т.д. Максимальное число, которое можно представить в такой разрядной сетке будет 99999,99999.

    Форма представления чисел с фиксированной запятой наиболее проста, но имеет ограниченный диапазон представления чисел. Если в результате операции получится число, выходящее за допустимый диапазон, происходит переполнение разрядной сетки, и дальнейшие вычисления теряют смысл. Поэтому в современных компьютерах такая форма представления используется обычно только для целых чисел .

    Если используется система счисления с основанием p при наличии k разрядов в целой части и n разрядов в дробной части числа, то диапазон значащих чисел N при их представлении в форме с фиксированной запятой, определяется соотношением:

    Пример 11

    При p =2, k =10, n =6 диапазон значащих чисел будет определяться следующим соотношением:

    В нормальной форме (с плавающей запятой) каждое число изображается в виде двух групп цифр. Первая группа цифр называется мантиссой , вторая – порядком , причем абсолютная величина мантиссы должна быть меньше 1, а порядок – целым числом. В общем виде число в форме с плавающей запятой может быть представлено в виде:

    где M – мантисса числа (| M | < 1);

    r – порядок числа (r - целое число);

    p – основание системы счисления.

    Пример 12

    Приведенные в примере 3 числа +00564,24891; -10304,00674 будут представлены в форме с плавающей запятой следующими выражениями:

    Нормальная форма представления имеет огромный диапазон отображения чисел и является основной в современных компьютерах. Знак числа кодируется двоичной цифрой. При этом код 0 означает знак «+», код 1 - знак «-».

    Если используется система счисления с основанием p при наличии m разрядов у мантиссы и s разрядов у порядка (без учета знаковых разрядов порядка и мантиссы), то диапазон значащих чисел N при их представлении в нормальной форме, определяется соотношением:

    Пример 13

    При p =2, m =10, s =6 диапазон значащих чисел будет определяться примерно от до

    Форматы представления чисел в компьютере

    Последовательность нескольких битов или байтов часто называют полем данных. Биты в числе (в слове, в поле и т.п.) нумеруются справа налево, начиная с 0-го разряда.

    В компьютере могут обрабатываться поля постоянной и переменной длины.

    Поля постоянной длины:

    слово – 2 байта

    полуслово – 1 байт

    двойное слово – 4 байта

    расширенное слово – 8 байт.

    Поля переменной длины могут иметь размер от 0 до 256 байт, но обязательно равный целому числу байтов.

    Числа с фиксированной запятой чаще всего имеют формат слова и полуслова. Числа с плавающей запятой – формат двойного и расширенного слова.

    Пример 14

    Числу –193 в десятичной системе соответствует в двоичной системе число –11000001. Представим это число в двух форматах.

    Для естественной формы представления этого числа (с фиксированной запятой) потребуется слово емкостью 2 байта. (таблица 3).

    Таблица 3

    Знак числа

    Абсолютная величина числа

    № разряда

    В нормальной форме число -19310 в десятичной записи имеет вид -0,193х103, а в двоичной записи это же число имеет вид -0,11000001х21000. Мантисса, обозначающая число 193, записанная в двоичной форме имеет 8 позиций. Таким образом, порядок числа равен 8, поэтому степень числа 2 равна 8 (10002). Число 8 также записано в двоичной форме. Для нормальной формы представления этого числа (с плавающей запятой) потребуется двойное слово, т.е. 4 байта (таблица 4).

    Таблица 4

    Знак числа

    Порядок Мантисса

    № разряда

    Знак числа записывается в крайнем левом 31-м бите. На запись порядка числа отводится 7 бит (с 24-го по 30-й). В этих позициях записано число 8 в двоичной форме. Для записи мантиссы отводится 24 бита (с 0-го по 23-й). Мантисса записывается слева направо.

    Перевод из любой позиционной системы в десятичную систему счисления

    Перевод из любой позиционной системы счисления, например используемой в компьютере с основанием p = 2; 8; 16, в десятичную систему счисления производится по формуле (1).

    Пример 15

    Перевести в десятичную систему счисления двоичное число . Подставляя в формулу перевода (1) соответствующие двоичные разряды исходного числа, найдем:

    Пример 16

    Пример 17

    Перевести число в десятичную систему счисления.

    При переводе учтено, что в 16-ой системе счисления буква А заменяет значение 10.

    Перевод целого числа из десятичной в другую позиционную систему счисления

    Рассмотрим обратный перевод - из десятичной системы в другую систему счисления. Для простоты ограничимся переводом только целых чисел.

    Общее правило перевода следующее: необходимо разделить число N на p. Полученный при этом остаток даст цифру, стоящую в 1-ом разряде p-ричной записи числа N. Затем полученное частное снова разделить на p и снова запомнить полученный остаток - это будет цифра второго разряда и т.д. Такое последовательное деление продолжается до тех пор, пока частное не окажется меньше, чем основание системы счисления - p. Это последнее частное и будет цифрой старшего разряда.

    Пример 18

    Перевести десятичное число N = 20 (p = 10) в двоичную систему счисления (p = 2).

    Действуем по указанному выше правилу (рис. 4). Первое деление дает частное 10 и остаток, равный 0. Это цифра младшего разряда. Второе деление дает частное – 5 и остаток – 1. Третье деление дает частное – 2 и остаток – 0. Деление продолжается, пока частное не равно нулю. Пятое частное – 0. Остаток – 1. Этот остаток – старшая цифра полученного двоичного числа. На этом деление заканчивается. Теперь записываем результат, начиная с последнего частного, затем переписываем все остатки. В итоге получим:

    Рис. 4. Перевод десятичного числа в двоичное методом деления

    1.2.7. Кодирование текстовой данных

    Текстовые данные представляют собой совокупность алфавитных, цифровых и специальных символов, зафиксированных на некотором физическом носителе (бумага, магнитный диск, изображение на экране дисплея).

    Нажатие клавиши на клавиатуре приводит к тому, что сигнал посылается в компьютер в виде двоичного числа, которое хранится в кодовой таблице. Кодовая таблица – это внутреннее представление символов в компьютере. Во всем мире в качестве стандарта принята таблица ASCII (American Standard Code for Informational Interchange – Американский стандартный код информационного обмена).

    Для хранения двоичного кода одного символа выделен 1байт=8 бит. Учитывая, что каждый бит принимает значение 1 или 0, количество возможный сочетаний единиц и нулей равно . Значит, с помощью 1 байта можно получить 256 разных двоичных кодовых комбинаций и отобразить с их помощью 256 различных символа. Эти коды и составляют таблицу ASCII. Для сокращения записей и удобства пользования этими кодами символов в таблице используют шестнадцатеричную систему счисления, состоящую из 16 символов – 10-ти цифр и 6-ти латинских букв: A, B, C, D, E, F. При кодировании символов сначала записывается цифра столбца, а затем строки, на пересечении которых находится данный символ.

    Кодирование каждого символа 1-м байтом связано с расчетом энтропии системы символов (см. пример 6). При разработке системы кодирования символов учли, что необходимо закодировать 26 строчных букв латинского (английского) алфавита и 26 прописных букв, цифры от 0 до 9, знаки препинания, специальные символы, арифметические знаки. Это так называемые, международные, символы. Получается около 128 символов. Еще 128 кодов отводится для кодирования символов национального алфавита и некоторых дополнительных знаков. В русском языке это 33 строчных и 33 прописных буквы. Общее число символов, подлежащих кодированию больше и меньше . В предположении, что все символы встречаются с равной вероятностью, то энтропия системы будет 7 < H < 8. Поскольку для кодирования используется целое число бит, то 7 бит будет мало. Поэтому для кодирования каждого символа используется по 8 бит. Как было сказано выше, 8 бит позволяют закодировать символов. Это число дало название единице измерения объема данный «байт».

    Пример 19

    Латинская буква S в таблице ASCII представлена шестнадцатеричным кодом – 53. При нажатии на клавиатуре буквы S, в память компьютера записывается его эквивалент – двоичный код 01010011, который получается путем замены каждой шестнадцатеричной цифры на ее двоичный эквивалент.

    В данном случае цифра 5 заменена кодом 0101, а цифра 3 – кодом 0011. При выводе буквы S на экран в компьютере происходит декодирование – по этому двоичному коду строится его изображение.

    Обратите внимание! Любой символ в таблице ASCII кодируется с помощью 8-ми двоичных разрядов или 2-х шестнадцатеричных разрядов (1 разряд представлен 4-мя битами).

    Таблица (рис. 5) отображает кодировку символов в шестнадцатеричной системе счисления. Первые 32 символа являются управляющими и предназначены, в основном, для передачи команд управления. Они могут меняться в зависимости от программных и аппаратных средств. Вторая половина кодовой таблицы (от 128 до 255) не определена американским стандартом и предназначена для национальных символов, псевдографических и некоторых математических символов. В разных странах могут использоваться различные варианты второй половины кодовой таблицы для кодирования букв своего алфавита.

    Обратите внимание! Цифры кодируются по стандарту ASCII в двух случаях – при вводе-выводе и, если они встречаются в тексте.

    Для сравнения рассмотрим число 45 для двух вариантов кодирования.

    При использовании в тексте это число потребует для своего представления 2 байта, т.к. каждая цифра будет представлена своим кодом в соответствии с таблицей ASCII (рис. 4). В шестнадцатеричной системе код будет 34 35, в двоичной системе – 00110100 00110101, что потребует 2 байта.

    Рис. 5. Таблица кодов ASCII (фрагмент)

    1.2.8. Кодирование графической информации

    Представление о цвете в компьютере

    Графические данные – это различного рода графики, диаграммы, схемы, рисунки и т.д. Любое графическое изображение можно представить как некоторую композицию цветовых областей. Цвет определяет свойство видимых предметов, непосредственно воспринимаемое глазом.

    В компьютерной промышленности в основе отображения любого цвета лежат три так называемых первичных цвета: синий, зеленый, красный. Для их обозначения используется аббревиатура RGB (Red - Green - Blue).

    Все цвета, встречающиеся в природе, можно создавать, смешивая и варьируя интенсивность (яркость) этих трех цветов. Смесь, состоящая из 100% каждого цвета, дает белый цвет. Смесь 0% от каждого цвета дает черный цвет.

    Искусство воспроизведения цвета в компьютере путем сложения в различных пропорциях трех первичных RGB цветов называется аддитивным смешением.

    Человеческий глаз может воспринимать огромное количество цветов. Монитор и принтер в состоянии воспроизводить лишь ограниченную часть этого диапазона.

    В связи с необходимостью описания различных физических процессов воспроизведения цвета в компьютере, были разработаны различные цветовые модели. Диапазон воспроизводимых цветов и способ их отображения для монитора и принтера различны и зависит от используемых цветовых моделей.

    Цветовые модели описываются с помощью математического аппарата и позволяют представить различные цветовые оттенки путем смешивания нескольких основных цветов.

    Цвета на экране монитора могут выглядеть иначе, чем при их выводе на печать. Это отличие обусловлено тем, что для вывода на печать применяются иные, нежели для монитора цветовые модели.

    Среди цветовых моделей наиболее известны модели RGB, CMYK, HSB, LAB.

    Модель RGB

    Модель RGB называют аддитивной, поскольку по мере увеличения яркости составляющих цветов увеличивается яркость результирующего цвета.

    Цветовая модель RGB обычно используется для описания цветов, отображаемых мониторами, получаемых сканерами и цветовыми фильтрами. Для отображения цветовой гаммы на печатающем устройстве она не используется.

    Цвет в модели RGВ представляется как сумма трех базовых цветов – красного (Red), зеленого (Green) и синего (Blue) (рис. 6). RGB хорошо воспроизводит цвета в диапазоне от синего до зеленого и несколько хуже – желтые и оранжевые оттенки.

    В модели RGB каждый базовый цвет характеризуется яркостью (интенсивностью), которая может принимать 256 дискретных значений от 0 до 255. Поэтому можно смешивать цвета в различных пропорциях, варьируя яркость каждой составляющей. Таким образом, можно получить

    256x256x256 = 16 777 216 цветов.

    Каждому цвету можно сопоставить код, который содержит значения яркости трех составляющих. Используются десятичное и шестнадцатеричное представления кода.

    Рис. 6. Комбинации базовых цветов модели RGB

    Десятичное представление – это три группы из трех десятичных чисел, разделенных запятыми, например, 245,155,212. Первое число соответствует яркости красной составляющей, второе – зеленой, а третье – синей.

    Код цвета в шестнадцатеричном представлении имеет вид 0хХХХХХХ. Префикс 0х указывает на то, что мы имеем дело с шестнадцатеричным числом. За префиксом следуют шесть шестнадцатеричных цифр (0, 1, 2,...,9, А, В, С, D, E, F). Первые две цифры – шестнадцатеричное число, представляющее яркость красной составляющей, вторая и третья пары соответствуют яркости зеленой и синей составляющих.

    Пример 20

    Максимальная яркость базовых цветов позволяет отобразить белый цвет. Этому соответствует в десятичном представлении код 255,255,255, а в шестнадцатеричном представлении – код 0xFFFFFF.

    Минимальная яркость (или) соответствует черному цвету. Этому соответствует в десятичном представлении код 0,0,0, а в шестнадцатеричном представлении код 0x000000.

    Смешение красного, зеленого и синего цветов с различными, но одинаковыми яркостями дает шкалу из 256 оттенков (градаций) серого цвета – от черного до белого. Изображения в оттенках серого еще называют полутоновыми изображениями.

    Поскольку яркость каждой из базовых составляющих цвета может принимать только 256 целочисленных значений, каждое значение можно представить 8-разрядным двоичным числом (последовательностью из 8 нулей и единиц, () т.е. одним байтом. Таким образом, в модели RGB информация о каждом цвете требует 3 байта (по одному байту на каждый базовый цвет) или 24 бита памяти для хранения. Поскольку все оттенки серого цвета образуются смешением трех составляющих одинаковой яркости, то для представления любого из 256 оттенков серого требуется лишь 1 байт.

    Модель CMYK

    Модель CMYK описывает смешение красок на печатающем устройстве. В этой модели используются три базовых цвета: голубой (Cyan), пурпурный (Magenta) и желтый (Yellow). Кроме того, применяется черный цвет (blacK) (рис. 7). Прописные буквы, выделенные в словах, составляют аббревиатуру палитры.

    Рис. 7. Комбинации базовых цветов модели CMYK

    Каждый из трех базовых цветов модели CMYK получается в результате вычитания из белого цвета одного из базовых цветов модели RGB. Так, например, голубой (cyan) получается вычитанием красного из белого, а желтый (yellow) – вычитанием синего. Напомним, что в модели RGB белый цвет представляется как смесь красного, зеленого и синего максимальной яркости. Тогда базовые цвета модели CMYK можно представить с помощью формул вычитания базовых цветов модели RGB следующим образом:

    Cyan = RGB - R = GB = (0,255,255)

    Yellow = RGB - В = RG = (255,255,0)

    Magenta = RGB - G = RB = (255,0,255)

    В связи с тем, что базовые цвета CMYK получаются путем вычитания из белого базовых цветов RGB, их называют субтрактивными.

    Базовые цвета модели CMYK являются яркими цветами и не вполне годятся для воспроизведения темных цветов. Так, при их смешивании на практике получается не чисто черный, а грязно-коричневый цвет. Поэтому в цветовую модель CMYK включен еще и чистый черный цвет, который используется для создания темных оттенков, а также для печати черных элементов изображения.

    Краски субтрактивной модели CMYK не являются столь чистыми, как цвета аддитивной модели RGB.

    Не все цвета модели CMYK могут быть представлены в модели RGB и наоборот. В количественном отношении цветовой диапазон CMYK меньше цветового диапазона RGB. Это обстоятельство имеет принципиальное значение, а не обусловлено только физическими особенностями монитора или печатающего устройства.

    Модель HSB

    Модель HSB основана на трех параметрах: Н – оттенок или тон (Hue), S – насыщенность (Saturation) и В – яркость (Brightness). Она является вариантом модели RGB и также основана на использовании базовых цветов.

    Из всех используемых в настоящее время моделей эта модель наиболее точно соответствует способу восприятия цвета человеческим глазом. Она позволяет описывать цвета интуитивно ясным способом. Часто используются художниками.

    В модели HSB насыщенность характеризует чистоту цвета. Нулевая насыщенность соответствует серому цвету, а максимальная насыщенность – наиболее яркому варианту данного цвета. Яркость понимается как степень освещенности.

    Графически модель HSB можно представить в виде кольца, вдоль которого располагаются оттенки цветов (рис. 8).

    Рис. 8. Графическое представление модели HSB

    Модель Lab

    Модель Lab используется для печатающего устройства. Она более совершенна, чем модель CMYK, где не хватает очень многих оттенков. Графическое представление модели Lab представлено на рис. 9.

    Рис. 9. Графическое представление модели Lab

    Модель Lab основана на трех параметрах: L - яркость (Luminosity) и два цветовых параметра - а и b. Параметр а содержит цвета от темно-зеленого через серый до ярко-розового. Параметр b содержит цвета от светло-синего через серый до ярко-желтого.

    Кодирование графической информации

    Графические изображения хранятся в файлах графических форматов.

    Изображения представляют собой совокупность графических элементов (picture element) или, сокращенно, пикселов (pixel). Для того, чтобы описать изображение, необходимо определить способ описания одного пиксела.

    Описание цвета пиксела является, по существу, кодом цвета в соответствии с той или иной цветовой моделью. Цвет пиксела описывается несколькими числами. Эти числа еще называют каналами. В случае моделей RGB, CMYK и Lab эти каналы называют также цветовыми каналами.

    В компьютере количество бит, отводимое на каждый пиксел для представления цветовой информации, называют цветовой глубиной (color depth) или битовой глубиной цвета (bit depth). Цветовая глубина определяет, как много цветов может быть представлено пикселом. Чем больше цветовая глубина, тем больше объем файла, содержащего описание изображения.

    Пример 21

    Если цветовая глубина равна 1 бит, то пиксел может представлять только один из двух возможных цветов – белый или черный. Если цветовая глубина равна 8 бит, то количество возможных цветов равно 2. При глубине цвета 24 бит количество цветов превышает 16 млн.

    Изображения в системах RGB, CMYK, Lab и оттенках серого (gray scale) обычно содержат 8 бит на один цветовой канал. Поскольку в RGB и Lab три цветовых канала, глубина цвета в этих режимах равна 8?3 = 24. В CMYK четыре канала и поэтому цветовая глубина равна 8?4 = 32. В полутоновых изображениях только один канал, следовательно, его цветовая глубина равна 8.

    Форматы графических файлов

    Формат графического файла связан с методом кодирования графического изображения.

    В настоящее время существует более двух десятков форматов графических файлов, например, BMP, GIF, TIFF, JPEG, PCX, WMF и др. Есть файлы, которые кроме статических изображений, могут содержать анимационные клипы и/или звук, например, GIF, PNG, AVI, SWF, MPEG, MOV и др. Важной характеристикой этих файлов является способность представлять содержащиеся в них данные в сжатом виде.

    Формат ВМР (Bit Map Picture – Windows Device Independent Bitmap) – формат Windows, он поддерживается всеми графическими редакторами, работающими под ее управлением. Применяется для хранения растровых изображений, предназначенных для использования в Windows. Способен хранить как индексированный (до 256 цветов), так и RGB-цвет (16 млн. оттенков).

    Формат GIF (Graphics Interchange Format) – формат графического обмена использует алгоритм сжатия информации без потерь LZW и предназначен для сохранения растровых изображений с количеством цветов не более 256.

    Формат PNG (Portable Network Graphics) – формат переносимой графики для сети был разработан с целью заменить формат GIF. Формат PNG позволяет сохранять изображения с глубиной цвета 24 и даже 48 бит, он также позволяет включать каналы масок для управления градиентной прозрачностью, но не поддерживает слои. PNG не сжимает изображения с потерей качества подобно JPEG.

    Формат JPEG (Joint Photographic Experts Group) – формат объединенной группы экспертов по фотографии предназначен для компактного хранения многоцветных изображений с фотографическим качеством. Файлы этого формата имеют расширение jpg, jpe или jpeg.

    В отличие от GIF, в формате JPEG используется алгоритм сжатия с потерями информации, благодаря чему достигается очень большая степень сжатия (от единиц до сотен раз).

    1.2.9. Кодирование звуковой информации

    Представление о звуке

    С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.

    Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой (рис. 10).

    Рис. 10. Звуковая волна

    Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота (Т) сигнала, тем выше тон. Частота звуковой волны выражается в Герцах (Гц, Hz) или числом колебаний в секунду. Человеческое ухо воспринимает звуки в диапазоне (примерно) от 20 Гц до 20 кГц, который так и называется – звуковой диапазон частот.

    Характеристики качества звука

    "Глубина" кодирования звука - количество бит на один звуковой сигнал.

    Современные звуковые карты обеспечивают 16, 32 или 64-битную "глубину" кодирования звука. Количество уровней (градаций амплитуды) можно рассчитать по формуле

    Уровней сигнала (градаций амплитуды)

    Частота дискретизации – это количество измерений уровней сигнала за 1 секунду

    Одно измерение в 1 секунду соответствует частоте 1 Гц

    1000 измерений в 1 секунду - 1 кГц

    Количество измерений может лежать в диапазоне от 8000 до 48 000 (8 кГц – 48 кГц)

    8 кГц соответствует частоте радиотрансляции,

    48 кГц – качеству звучания аудио- CD.

    Методы кодирования звуковой информации

    Для того чтобы компьютер мог обрабатывать непрерывный звуковой сигнал, он должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц). Однако в отличие от числовых, текстовых и графических данных, у звукозаписей не было столь же длительной и проверенной истории кодирования. В итоге методы кодирования звуковой информации двоичным кодом далеки от стандартизации. Множество отдельных компаний разработали свои корпоративные стандарты, но если говорить обобщенно, то можно выделить два основных направления.

    Метод FM (Frequency Modulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, а, следовательно, может быть описан числовыми параметрами, то есть кодом. В природе звуковые сигналы имеют непрерывный спектр, то есть являются аналоговыми. Их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства – аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). Процесс преобразования звука представлен на рисунке 11.

    Рис. 11. Процесс преобразования звука

    При таких преобразованиях неизбежны потери информации, связанные с методом кодирования, поэтому качество звукозаписи обычно получается не вполне удовлетворительным. В то же время данный метод кодирования обеспечивает компактный код, и потому он нашел применение еще в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.

    Метод таблично-волнового (Wave-Table) синтеза лучше соответствует современному уровню развития техники. Если говорить упрощенно, то можно сказать, что где-то в заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментов (хотя не только для них). В технике такие образцы называют сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые параметры среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются "реальные" звуки, то качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

    Основные форматы звуковых файлов

    Формат MIDI (Musical Instrument Digital Interface) – цифровой интерфейс музыкальных инструментов. Создан в 1982 году ведущими производителями электронных музыкальных инструментов – Yamaha, Roland, Korg, E-mu и др. Изначально был предназначен для замены принятого в то время управления музыкальными инструментами при помощи аналоговых сигналов управлением при помощи информационных сообщений, передаваемых по цифровому интерфейсу. Впоследствии стал стандартом де-факто в области электронных музыкальных инструментов и компьютерных модулей синтеза.

    Формат аудио-файла WAV, представляющий произвольный звук как он есть – в виде цифрового представления исходного звукового колебания или звуковой волны (wave), отчего в ряде случаев технология создания таких файлов, именуется wave-технологией. Позволяет работать со звуками любого вида, любой формы и длительности.

    Графическое представление WAV-файла очень удобно и часто используется в звуковых редакторах и программах-секвенсорах для работы с ними и последующего преобразования (об этом речь пойдет в следующей главе). Данный формат был разработан компанией Microsoft, и все стандартные звуки Windows имеют расширение WAV.

    Формат MP3. Это один из цифровых форматов хранения аудио, разработанный Fraunhofer IIS и THOMPSON (1992г.), позднее утвержденный как часть стандартов сжатого видео и аудио MPEG1 и MPEG2. Данная схема является самой сложной из семейства MPEG Layer 1/2/3. Она требует больших затрат машинного времени для кодирования по сравнению с остальными и обеспечивает более высокое качество кодирования. Используется главным образом для передачи аудио в реальном времени по сетевым каналам и для кодирования CD Audio.

    1.2.10. Кодирование видео информации

    Принципы кодирования видео информации

    Video в переводе с латыни означает «смотрю, вижу». Когда говорят о видео, прежде всего, имеют ввиду движущееся изображение на экране телевизора или компьютерного монитора.

    Видеокамера преобразует оптическое изображение передаваемой сцены в последовательность электрических сигналов. Эти сигналы несут информацию о яркости и цветности отдельных участков изображения. С целью сохранения для последующего воспроизведения они могут быть записаны на магнитную ленту в аналоговой или цифровой форме.

    При аналоговой записи изменения намагниченности видеоленты аналогичны форме световой или звуковой волны. Аналоговые сигналы, в отличие от цифровых, являются непрерывными во времени.

    Цифровой сигнал представляет собой последовательность кодовых комбинаций электрических импульсов.

    Информация, представленная в цифровом виде, измеряется в битах. Процесс превращения непрерывного сигнала в набор кодовых слов называется аналого-цифровым преобразованием.

    Аналогово-цифровое преобразование сигнала проходит в три этапа. На этапе дискретизации (рис. 12) происходит представление непрерывного сигнала последовательностью отсчётов его мгновенных значений. Эти отсчёты берутся через равные промежутки времени.

    Рис. 12. Дискретизация

    Следующий этап – квантование (рис. 13). Весь диапазон значений сигнала делится на уровни. Величина каждого отсчёта заменяется округлённым значением ближайшего уровня квантования, его порядковым номером

    Рис. 13. Уровневое квантование

    Кодирование завершает процесс оцифровки аналогового сигнала (рис. 14), который теперь имеет конечное число значений. Каждое значение соответствует порядковому номеру уровня квантования. Этот номер выражается в двоичных единицах. В пределах одного интервала дискретизации передаётся одно кодовое слово.

    Рис. 14. Цифровое кодирование

    Таким образом, информация об изображении, представленная в цифровом виде, может быть передана на жёсткий диск компьютера для последующей обработки и монтажа без каких-либо дополнительных преобразований.

    Компьютерное видео характеризуется следующими параметрами:

    • количество кадров в секунду (15, 24, 25...);

    • поток данных (килобайт/с);

    • формат файла (avi, mov...);

    • способ сжатия (Microsoft Video for Windows, MPEG, MPEG-I, MPEG-2, Moution JPEG).

    Форматы видео информации

    • формат AVI – формат несжатого видео, создаваемый при оцифровке изображения. Это наиболее ресурсоемкий формат, но при этом при оцифровке в него потеря данных минимальна. Поэтому он предоставляет больше возможностей для редактирования, накладки эффектов и любой другой обработки файлов. Однако следует учитывать, что в среднем одна секунда цифруемого изображения занимает 1,5–2 Mбайт на жестком диске.

    • формат MPEG – сокращение названия экспертной группы ISO (Moving Picture Expert Group), которая занимается разработкой стандартов кодирования и сжатия видео- и аудиоданных. На сегодняшний день известно несколько разновидностей форматов MPEG.

    • MPEG-1 – для записи синхронизированных видеоизображения и звукового сопровождения на CD-ROM с учетом максимальной скорости считывания около 1,5 Мбит/с. Качественные параметры видеоданных, обработанных MPEG-1, во многом аналогичны обычному VHS-видео, поэтому такой формат применяется, в первую очередь, там, где неудобно или непрактично использовать стандартные аналоговые видеоносители;

    • MPEG-2 – для обработки видеоизображения, соизмеримого по качеству с телевизионным, при пропускной способности системы передачи данных в пределах от 3 до 15 Мбит/с. На технологиях, основанных на MPEG-2, работают многие телеканалы; сигнал, сжатый в соответствии с этим стандартом, транслируется через телевизионные спутники и используется для архивации больших объемов видеоматериала;

    • MPEG-3 – для использования в системах телевидения высокой четкости (high-defenition television, HDTV) со скоростью потока данных 20–40 Мбит/с; но позже он стал частью стандарта MPEG-2 и отдельно теперь не используется;

    • MPEG-4 – для работы с цифровым представлением медиаданных для трех областей: интерактивного мультимедиа (включая продукты, распространяемые на оптических дисках и через Сеть), графических приложений (синтетического контента) и цифрового телевидения

    Справочные сведения о представлении чисел в компьютере приведены в таблице (таблица 5).

    1.2.11. Таблица 5. Представление числовой, текстовой, графической информации в компьютере

    Выводы

    В данной теме рассмотрено понятие информации и различные способы ее кодирования в компьютере.

    Показаны различия информации и данных. Введено понятие адекватности информации и представлены основные ее формы: синтаксическая, семантическая и прагматическая. Для этих форм приведены меры количественной и качественной оценки. Рассмотрены основные свойства информации: репрезентативность, содержательность, достаточность, актуальность, своевременность, точность, достоверность, устойчивость. Информационный процесс представлен как совокупность основных этапов преобразования информации.

    Большое внимание в теме уделено вопросам кодирования разного вида информации в компьютере. Приведены основные форматы представления в компьютере числовой, текстовой, графической, звуковой и видео информации. Указаны особенности рассматриваемых форматов в зависимости от вида информации.

    Вопросы для самопроверки

    1. В чем различие информации и данных?
    2. Что такое адекватность и в каких формах она проявляется?
    3. Какие существуют меры информации и когда ими надо пользоваться?
    4. Расскажите о синтаксической мере информации.
    5. Расскажите о семантической мере информации.
    6. Расскажите о прагматической мере информации.
    7. Какие существуют показатели качества информации?
    8. Что такое система кодирования информации?
    9. Как можно представить информационный процесс?
    10. Что такое система кодирования и чем она характеризуется?
    11. Какие известны системы счисления и в чем их отличие?
    12. Какие системы счисления применяются в компьютере?
    13. Каким соотношением можно представить число в позиционной системе счисления?
    14. Какие формы представления чисел применяются в компьютере и в чем их отличие?
    15. Приведите на примерах форматы представления чисел для форм с фиксированной и плавающей запятой.
    16. Как осуществляется перевод из любой позиционной системы счисления в десятичную систему счисления? Приведите примеры.
    17. Как осуществляется перевод целого числа из десятичной в другую позиционную систему счисления? Приведите примеры.
    18. Как кодируется текстовая информация? Приведите примеры.
    19. В чем суть кодирования графической информации?
    20. Расскажите о модели RGB кодирования графической информации.
    21. Когда применяется модель кодирования CMYK графической информации? В чем ее отличие от модели RGB?
    22. Какие вы знаете форматы представления в компьютере графической информации и их особенности?
    23. Название практикума Аннотация

      Презентации

      Название презентации Аннотация
      Презентация

    Объем информации измеряется количеством символов (разрядов) в сообщении. В разных системах исчисления один разряд имеет различный вес и соответственно меняется единица измерения данных. К примеру, сообщение "10111011" в бинарной системе имеет объем данных а = 8 бит, а в десятичной - V = 8 дет.

    Для измерения содержания информации, т.е. ее количества на семантическом уровне, наибольшее признание получила степень тезауруса, что связывает семантические свойства информации со способностью пользователя воспринимать сообщение, которое поступило. Тезаурус - это совокупность справочников, которые применяет пользователь ИС

    Прагматическая мера информации - ценность информации для достижения пользователем поставленной цели. Эта мера - величина относительная, обусловленная особенностями использования информации в той или иной ИС.

    Ценность информации определяется ее количеством, необходимым для достижения поставленной пользователем цели.

    Если до получения информации вероятность достижения цели равна Р г, а после ее получения - Р 2 , то ценность информации определяется по формуле Ип(Г,/Г 2) за Клодом Шенноном.

    Способ определения вероятности меры ценности информации для достижения цели было предложено М. Бонгартом и А. Харкевичем. Это можно сформулировать так: если достижение цели вероятное и значение этой вероятности известно до получения информации, а также после получения информации, то меру ценности информации можно определить по формуле

    В=ош 2 (Г/г),

    где V - мера ценности информации; г - вероятность достижения цели до получения информации; Р - вероятность достижения цели после получения информации.

    Ценность информации всегда связано с ее конкретным получателем, с конкретной целью, которую он хочет реализовать, и с конкретными возможностями реализации этой цели.

    Следует отметить такие свойства информации через ее воспроизводственный жизненный цикл: способность к накоплению, обобщению, систематизации, копирование, кодирование, адресной направленности и т.д. (рис. 1.1).

    Рис. 1.1. Жизненный цикл информации через предоставление услуг в информационном обществе

    Перечислим некоторые свойства информации: полнота, достоверность, ценность, адекватность, актуальность, четкость, доступность, неисчерпаемость, кумулятивность, понятность, субъективность.

    Полнота информации характеризует качество информации и определяет достаточность данных для принятия решений. Понятие полноты информации связано с ее содержанием (семантикой) и прагматикой. Как неполная, т.е. недостаточная для принятия правильного решения, так и избыточная информация снижает эффективность принимаемых пользователем решений.

    Форма также является важным фактором в отражении информации. Информационные продукты подаются в типичной для определенных отрасли, корпорации, подразделения форме.

    Достоверность информации - ее свойство отражать реальные объекты с необходимой точностью. Достоверность информации измеряется вероятностью того, что отображаемое информацией значение параметра отличается от истинного значения этого параметра в пределах необходимой точности. Недостоверная информация характеризуется информационным шумом, и чем он выше, тем ниже достоверность информации.

    Ценность информации не может быть абстрактной. Информация должна быть полезной и ценной для определенной категории пользователей. Ценность информации зависит от того, какие задачи можно решать с ее помощью.

    Адекватность информации характеризует степень соответствия информации реалиям. Адекватная информация - это полная и достоверная информация.

    Актуальность информации - степень сохранения ценности информации для управления в момент ее использования и зависит от динамики изменения ее характеристик и от интервала времени, прошедшего с момента возникновения определенной информации. Актуальность является важным при работе в постоянно изменяющихся условиях. Своевременная подача информации в любой сфере человеческой деятельности является критическим моментом, потому что за определенный период времени она может терять свою ценность. На каждом уровне вырабатываются свои информационные продукты, связанные с определенными временными промежутками.

    Своевременность информации - ее поступление не позже заранее определенного времени, согласованного с временем решения поставленной перед пользователем задачи. К примеру, для бухгалтерии - это ежесуточные оперативные, ежемесячные, ежеквартальные и ежегодные отчеты.

    Четкость информации - информация должна быть понятна тому, кому она предназначена.

    Доступность информации - это возможность получения и преобразования информации. На это свойство информации влияют одновременно как доступность данных и возможность применения адекватных методов. К примеру, в информационной системе информация превращается в доступную и удобную для восприятия пользователем форме. Это достигается, в частности, и путем согласования ее семантической формы с тезаурусом пользователя.

    Точность информации - степень сходства полученной информации к реальному состоянию объекта, процесса, явления и т.д. Различают: формальная точность, измеряемая значением единицы младшего разряда числа; действительную точность, что обусловлено значением единицы последнего разряда числа; максимальную точность, которую можно получить в конкретных условиях функционирования системы; необходимую точность, что обусловлено функциональным назначением показателя.

    Субъективность информации. Информация имеет субъективный характер, поскольку ее ценность определяется степенью восприятия субъекта (получателя информации).

    Полезная информация - свойство, которое уменьшает неопределенность принятия решения.

    Качество - это характеристика информационных продуктов. Эффективность использования информации предопределяет репрезентативность, содержательность, достаточность, актуальность, своевременность, точность, достоверность, устойчивость.

    Репрезентативность информации - правильность ее отбора и формирования для адекватного отражения свойств объекта. Важнейшее значение здесь имеют: правильность концепции, на базе которой сформулировано исходное понятие; обоснованность отбора существенных признаков и связей отображаемого явления. Нарушение репрезентативности информации нередко приводит к существенным погрешностям.

    Наряду с коэффициентом содержательности, отражающим семантический аспект, можно использовать и коэффициент информативности, характеризующийся отношением количества синтаксической информации к объему данных.

    Постоянство информации - ее способность реагировать на изменения исходных данных без нарушения необходимой точности. Устойчивость информации, как и ее репрезентативность, связано с избранной методикой отбора и формирования. Актуальность, своевременность, точность и достоверность информации влияют на другие параметры функционирования ИС, среди которых такой, как ее надежность.

    Понятие информации, данных, знаний родственные. Во многих ситуациях часто бывает достаточно интуитивного понимания и интерпретации этих категорий. Сложность формального определения терминов "информация", "данные", "знания" заключается в общеупотребительности этих терминов. Другой причиной терминологической путаницы является тот факт, что граница между этими терминами для большинства специалистов достаточно условна.

    Данные - это элементарные описания предметов, событий, действий и транзакций, запоминающиеся, классифицируются и хранятся, но никак не организованы.

    Информация - это данные, которые организованы так, что они имеют определенное значение и ценность для пользователя.

    Знание состоят из данных или информации, организованы и обработаны с целью передачи определенного понимания, накопленного опыта, результатов обучения и экспертизы таким образом, что могут использоваться для решения проблем или выполнения действий.

    Данные можно рассматривать как базовое понятие. Попытка дать определение базовым понятиям приводит к необходимости дополнительно определять используемые термины.

    Данные - это сведения, показатели, необходимые для ознакомления с кем-, чем-либо, для характеристики кого -, чего-либо для определенных выводов и решений; их отношения, словосочетания и факты, путем преобразования и обработкой которых можно получить информацию о предметы, процессы или явления.

    В широком смысле данные являются фактами, текстом, графиками, картинками, звуками, аналоговыми или видеоматериалами. Они могут быть получены в результате измерений, экспериментов, арифметических и логических операций. Данные должны быть представлены в форме, пригодной для хранения, передачи и обработки. Они являются сырьем для создания информации.

    Данные разделяют на структурированные, неструктурированные, распределены. Итак, данные - это необработанный материал, предоставляется поставщиками данных и используется потребителями для формирования информации на основе данных.

    Данные с точки зрения программного кода - это часть, совокупность значений определенных ячеек памяти, преобразование которых осуществляет код. Контроль за доступом к данным в современных электронно-вычислительных машинах (ЭВМ) осуществляется аппаратно. По принципу фон Неймана одна и та же область памяти ЭВМ может выступать как данные и как исполняемый код.

    Данные представляются в персональном компьютере в виде файлов, которые бывают двух типов - двоичные (бинарные) и текстовые; бинарные обрабатываются специализированным программным обеспечением, а текстовые - стандартным.

    Модель данных в информационных технологиях и системах - это средства представления информации в информационных системах, методы и технологии обработки информации. Модель данных в языках программирования - это определенные структуры данных, ограничения целостности и операции манипулирования данными.

    Модель данных в базах данных (БД) - это совокупность методов и средств определения логической структуры БД и динамического моделирования состояний предметной области (ПрО) в БД.

    Традиционно структуры данных считают декларативными знаниями, которые отражают О. Над структурами данных может осуществляться упорядоченная последовательность операций - программа, которая реализует определенный алгоритм. Результатом работы программы всегда есть декларативные знания, а сама программа - процедурными знаниями. Тип данных является абстрактной концепцией, что определяется набором логических возможностей. Как только абстрактный тип данных и связанные с ним операции определены, можно реализовать этот тип данных. Реализация может быть аппаратной, когда для выполнения необходимых операций разрабатываются специальные электронные схемы, что является частью самой ЭВМ. Или же это может быть программная реализация, когда программа, состоящая из существующих аппаратных инструкций, интерпретирует битовые строки необходимым способом. Программная реализация включает спецификацию того, каким образом объект с данными нового типа представлен объектами уже существующих типов данных, а также спецификацию того, каким образом с помощью определенных для такого объекта операций осуществляется работа с ним.

    Переход от данных к знаниям - следствие развития и усложнения информационно-логических структур, обрабатываются на ЭВМ.

    Знание - форма существования и систематизации результатов познавательной деятельности человека. Это субъективный образ объективной реальности, т.е. отражение внешнего мира в деятельности человека, в формах его сознания и воли. Знания могут различаться по уровню представления (конкретные и абстрактные) и уровнем детализации данных, быть полными или неполными, достоверными или недостоверными.

    Знание - это закономерности предметной области (принципы, связи, законы), полученные в результате практически" деятельности и профессионального опыта, позволяющие специалистам решать задачи предметной области.

    Предметная область (О) - это та часть реальности, что вызывает у человека специальный интерес и ней выделяется из общей картины окружающей объективной действительности.

    Понятие "знания" имеет такие значения: 1) понимание, приобретаемое фактическим опытом; 2) состояние информированности о том или ином владение информацией, диапазон информированности; 3) акт понимания: ясное восприятие истины; 4) то, что можно понять и держать в голове (энциклопедический словарь Webster). Наблюдается значительный интерес к технологиям аккумуляции знаний и автоматизации интеллектуального анализа информации с целью выявления новых знаний. Свидетельством этого является, в частности, попытки вслед за понятиями "информационное общество", ввести термины "менеджмент знаний", "экономика знаний".

    Важнейшим ресурсом современного предприятия, способным значительно повлиять на повышение его конкурентоспособности являются корпоративные знания. Знания становятся весомым фактором производства наряду с ресурсами, капиталом, трудом.

    Сегодня нас окружают огромные объемы информации. Количество информационных потоков постоянно возрастает, но мы оказываемся неспособными использовать их. Знания приобретают различных форм, и поэтому ими становится сложнее управлять.

    Необходимо отметить разницу между неявными и явными знаниями. Неявные знания (их трудно определить) часто не формализуются и не поддаются анализу, не способствуют накоплению опыта, навыков и т.д. Неявными знаниями может обладать отдельный человек или группа людей. Явные знания пользуются четкими алгоритмами с соответствующими данными, сообщениями, словами и числами.

    Корпоративные знания разделяют на внешние и внутренние. К первой группе относятся, например, знания о клиенте (самое важное знание для большинства предприятий), независимая аналитическая информация (маркетинговые отчеты и рейтинги, цены на международных фондовых биржах, динамика изменения американских фондовых индексов и т.п.).

    Ко второй группе относят знания о главных процессы

    Накопление лучшего опыта при выполнении основных задач; о товарах/услугах; оптимальные решения, соответствующие текущим потребностям пользователей; знания сотрудников

    Выявление, накопление и использование интеллектуального капитала; имеющийся опыт; персональные знания, которые обеспечивают успешное сотрудничество; интеллектуальные активы (базы знаний)

    Опыт ведения проектов (образцы лучших практик).

    Управление знаниями - это совокупность процессов, которые связаны с созданием, распространением, обработкой и использованием знаний. Это технология поиска и получения новых знаний, их носителей, структуризации, систематизации, распространения и их генерации. Это не отдельный программный продукт, а комплексная стратегия управления государством, регионом, предприятием, орієно-вана на максимальное использование его интеллектуального потенциала.

    Управление знаниями (УЗ, англ. - knowledge management)

    Это стратегия предприятия, цель которой заключается в выявлении всей полезной информации, что есть на предприятии, изучении опыта и повышении квалификации сотрудников с целью улучшения качества обслуживания клиентов и сокращения времени реакции на динамику рынка. УЗ - это установленный в корпорации формальный порядок работы с информационными ресурсами для облегчения доступа к знаниям и повторного их использования с помощью современных ИКТ. При этом знания классифицируются и распределяются по категориям в соответствии с онтологии струк-турованих и полуструктурированных баз данных и баз знаний. Основная цель УЗ - сделать знания доступными и повторно используемыми на уровне всей корпорации.

    Ресурсы знаний различаются в зависимости от отраслей хозяйства и применения, но традиционно они включают руководства, письма, новости, информацию о заказчике, сведения о конкурентах и данные производства.

    Для применения систем УЗ используются разнообразные технологии: электронная почта; базы и хранилища данных; системы групповой поддержки; информационно-поисковые системы; корпоративные сети и Internet; экспертные системы и системы баз знаний; интеллектуальные системы и т.д. В системах искусственного интеллекта, базы знаний генерируются для экспертов и систем, базирующихся на знаниях, в которых компьютеры используют правила вывода для получения ответов на вопросы пользователя.

    Традиционно разработчики систем УЗ ориентировались лишь на отдельные группы потребителей, в частности менеджеров, которые работают с исполнительными информационными системами (Executive Information System). Современные системы управления знаниями ориентированы на поддержание работы предприятий.

    Предприятия сейчас переходят к использованию хранилищ данных, чтобы все сотрудники могли использовать распределенную информацию для своих знаний.

    Хранилища данных подробно рассмотрены в разделе 7. Они отличаются от традиционных БД тем, что проектируются для поддержки процессов принятия решений, а не для эффективного сбора и обработки данных. При условии, что все данные хранятся в едином хранилище, изучение связей между отдельными элементами данных может быть точным, а результатом анализа становятся новые знания. Альтернативный подход, что называется разведкой знаний, применяется для поиска в данных дополнительных, скрытых там знаний.

    Если хранилища данных содержат в основном количественные данные, то хранилища знаний ориентированы в основном на качественные данные. Системы управления знаниями генерируют знания широкого диапазона баз данных, хранилищ данных, бизнес-процессов, статей новостей, внешних баз, Web-страниц и др. Таким образом, хранилища знаний подобные виртуальных складов, где знания распределены среди большого количества серверов.

    Знания можно добывать из бизнес-процессов, обзоров и других источников. Базы знаний (БЗ) могут быть спроектированы из расчета на ведение хронологии деятельности предприятия, что касается, например, работы с клиентами. БЗ могут использоваться для поддержки операций или генерации информации о бизнесе в целом. Базы знаний оптимальных решений накапливают знания в процессе использования различных тестов при поиске эффективных путей решения задач. После того, как организация получила знания о наилучшем решения, доступ к ним может быть открыт для сотрудников корпорации.

    Разведка знаний является новым направлением, которое быстро развивается и использует методы искусственного интеллекта, математики и статистики для приобретения знаний из хранилищ данных. Г. Пятецкий-Шапиро и В. Фролей определяют срок "разведка знаний" как нетривиальная получение точной, ранее неизвестной и потенциально полезной информации из данных. Этот метод включает инструментарий и различные подходы к анализа как текста, так и цифровых данных.

    Основная цель систем разведки знаний - переход от традиционного метода интуитивного принятия решений на основе неполной информации управления, базирующиеся на знаниях.

    Разведка знаний в современных условиях осуществляется для достижения двух целей - снижения рисков и обеспечения безопасности операций, а также получения конкурентных преимуществ. Современная система разведки знаний позволяет не только осуществлять мониторинг информации, но и моделировать стратегию конкурентов, выявлять их партнеров, поставщиков, выяснять условия сотрудничества.

    Основные задачи систем разведки знаний заключаются в поиске и обобщении информации о конкурентах, рынки, товары, тенденции развития бизнеса и т.д. Например, система Odie (On demand Information Extractor) постоянно сканирует около тысячи статей с последними новостями для получения знаний об изменениях в управлении. Есть также возможность использования функции, отслеживает напівструктурований текст для сбора информации о других типах событий, связанных с бизнесом.

    Одним из важнейших и перспективных направлений в области формализации знаний, что дает возможность использования накопленных знаний для компьютерной обработки, являются онтологии, рассмотрены в главе 9.

    Задачи систем управления знаниями (СУЗ) - накапливать структурированные, формализованные знания: закономерности и принципы, которые помогают решать реальные производственные задачи. Основная цель СУЗ - сделать знания доступными и повторно используемыми на уровне всей корпорации. Функции СУЗ: 1) сбор знаний; 2) хранение и обработка знаний; 3) доставка знаний. Онтология - это точное описание концептуализации. В СУЗ корпораций онтологические спецификации могут ссылаться на таксономию задач, которые определяют знания для системы. Онтология формирует словарь, который совместно используется в СУЗ для упрощения общения, запоминания и представления. Разработка и поддержка онтологий в масштабе целого предприятия требует постоянных усилий для ее развития. Онтология, в частности, необходима для того, чтобы пользователь мог работать с базами данных оптимальных решений, которые касаются широкого круга проблем предприятия, и распознавать, какое решение может ему быть полезным в конкретной ситуации. Поскольку предприятия поддерживают различные виды деятельности, то для одной СУЗ необходимо использование нескольких онтологий. Для транснациональных компаний онтология должна быть переведена на разных языках, чтобы информация, которая хранится в базах знаний, была доступна всем сотрудникам. Со временем отрасли промышленности придут к колаборативних групп или формы подписки на централизованное обслуживание общей онтологии. Кроме онтологии для использования знаний огромное значение имеют дополнительные описательные атрибуты. Примерами описательных атрибутов могут служить сотрудник, предприятие, статус информации. Теоретически все базы знаний хранят информацию о контакт или сотрудника, включая имя, дату контакта, роль контактирующей лица в генерации знаний. Много баз знаний сохраняют организационную информацию, например отчеты о том, в каком подразделении разработан проект или собрано знания. Статус информации также является типичным описательным атрибутом и может включать, например, признак состояния определенного элемента: планируемый, применяемый сегодня или устаревший. Это может быть также запись о том, информация предназначена только для внутреннего использования или может быть распространена За пределы организации.

    Качество и актуальность знаний зависят от многих факторов, например от того, кто поставляет знания в систему. Поскольку качество знаний изменяется от источника к источнику, системы часто отбирают знания, чтобы они были полными и достоверными.

    Фильтрация не всегда выполняется сотрудниками компании. Чаще всего используется фильтрация сообщений электронной почты по приоритетам и категориям. Кроме того, применяются различные средства, позволяющие отслеживать качество баз данных. Обычно оценка зависит от потребностей конкретных сотрудников, рабочих групп или интересов всего предприятия.

    Базы знаний часто содержат огромное количество информации, поэтому поиск нужной информации становится экстремально критической функцией. Большинство современных методов поиска включают инструментальные средства, средства интеллектуального поиска и визуальные модели.

    Широкий диапазон хорошо известных инструментальных средств поиска (Google, AltaVista, Excite, Infoseek, Lycos, WebCrawler, Yahoo!) использовано для информационной навигации сетью Internet. Все они могут быть адаптированы к внутрішньокор-поративних потребностей при работе с системами управления знаниями.

    С помощью средств интеллектуального поиска можно найти нужные данные в информационной среде Internet или корпоративных сетях. Например, InfoFinder изучает интересы пользователей с наборами классифицированных ими сообщений или документов.

    Основываясь на синтаксисе сообщений, InfoFinder пытается определить ключевые фразы, которые помогают понять задачи пользователя. Среди новых тенденций в сфере проектирования систем поиска эффективных систем управления знаниями можно выделить метод визуальных моделей. Два инструментарии - Perspecta и InXight - представляют различные методы визуализации знаний.

    Компания Perspecta создает инт телектуальний контекст, используя метаинформацию, выделенную из исходных документов, включая структурированную информацию в БД и документах, или неструктурированные данные в офисных документах и Web-страницах,

    Для неструктурированных документов Perspecta имеет специальное средство Document Analysis Engine, который выполняет лингвистический анализ и автоматически помечает документы. Сервер интеллектуального контекста анализирует замеченную информацию, идентифицирует взаимосвязи между документами и строит многоразмерный информационное пространство, используя специальный язык отметок (Information Space Markup Language). Для экономии ресурсов данные выгружаются клиенту с помощью информационного потокового протокола (Information Streaming Transport Protocol), который является расширением HTTP.

    Компания InXight Software выпустила собственный средство визуализации - VizControl, что предлагает несколько форматов визуализации. Каждый из них развивает метод фокус-контекст. Данные выводятся на экран и в то же время сохраняется структура больших наборов данных.

    Эксплуатация систем управления знаниями требует информационной культуры совместного использования знаний.

    При использовании систем управления знаниями предприятия получают возможность обеспечить собственную конкурентоспособность, что упрощает повторное использование имеющихся знаний и дает возможность создавать новые знания с целью принятия качественных решений.

    Для создания СУЗ на предприятиях используют такие технологии и системы, как базы знаний и хранилища данных, интеллектуальные информационно-поисковые системы, системы получения данных, экспертные системы и т.д. Примером использования СУЗ на предприятии является система поддержки обслуживания клиентов менеджерами - система управления отношениями (Relation Management System). СУЗ подают знания как в форме, удобной для нашего восприятия, так и в цифровом виде. В первом случае доступ к знаниям можно получить используя броузеры и системы интеллектуального поиска. Но иногда знания, доступные в машинном формате, могут быть спроектированы как базы знаний экспертных систем для поддержки принятия решений.

    Модель представления знаний (МПЗ) - это система формализмов (понятий и правил), согласно которым информационная система подает знания в памяти ЭВМ и осуществляет операции над ними. МПЗ делятся на логические (индуктивные, исчисление предикатов и т.д.) и эвристические (сетевые, фреймові и продукционные).

    МПЗ могут быть условно разделены на концептуальные и эмпирические. Концептуальная модель использует эвристический метод для решения проблемы. Она делает возможным распознавание проблемы, позволяет уменьшать время для ее предварительного анализа. Практическое использование концептуальной модели вызывает необходимость преобразования ее в эмпирическую. Знания могут быть накоплены в виде эмпирических моделей, как правило, описательного характера. Эти модели могут варьировать от простого набора правил до полного описания того, как лицо, принимающее решение, решает задачу.

    МПЗ необходимые для создания специальных языков описания знаний и манипулирования ими, формализации процедур сопоставление новых знаний с уже имеющимися, для формализации механизмов логического вывода новых знаний из уже существующих.

    Знание Об содержат описание субъектов, их окружение и отношения между ними. Знания определяются как основные закономерности, позволяющие человеку решать конкретные производственные, научные и другие социально-экономические задачи, т.е. факты, понятия, взаимосвязи, оценки, правила, фактические знания, а также стратегии принятия решений. Традиционные 1С включают алгоритмические знания, содержащихся в программах. Эти знания являются неотъемлемой частью программ и вводятся разработчиками программ заранее.

    МПЗ часто бывает противоречивой, неполной и нечеткой и нуждается в формализации, которая осуществляется с использованием многозначительного логики, теории нечетких множеств, вероятностных и статистических методов.

    Необходимость повышения эффективности функционирования предприятий, совершенствование систем управления привело к осознанию того, что ценностями организации являются не только ЕЕ активы, продукция, имущество, но также и ее знания, опыт, кваліфінація работников, культура, т.е. все то, что входит в понятие "интеллектуальный капитал".

    Компания Gartner Group считает, что управление знаниями - это бизнес-процесс для управления интеллектуальными активами предприятия (рис 1.2), который связан со стратегией предприятия; требует организационной культуры и дисциплины, что поддерживает совместное использование знаний, сотрудничество специалистов и подразделений и стимулирует инновации; должно способствовать усовершенствованию бизнес-процессов и оптимизации производственных процессов.

    Рис. 1.2. Виды функций знаний в СУЗ

    Способность эффективно использовать и развивать знания, воплощать их в новые изделия и услуги превращается в важный фактор конкурентоспособности предприятия в условиях информационного общества.

    УЗ обеспечивает интегрированный подход к созданию, сбору, организации и использованию информационных ресурсов предприятия и доступу к ним. Эти ресурсы включают БД, БЗ, электронные документы, описывающие правила и процедуры функционирования бизнес-процессов, явные знания и опыт работников.

    Управление знаниями на предприятии состоит в оценке организационных процедур, людей, ресурсов и технологий и создании специализированных информационных систем.

    УЗ включает цель управления, тактические цели (решение текущих задач предприятия), стратегические цели (повышение интеллектуального потенциала предприятия и его устойчивое развитие) и методологию управления, получения и распространения знаний.

    Сегодня на стоимость большинства изделий и услуг прежде всего влияют "нематериальные активы", то есть те, что основываются на знаниях. К "нематериальных ценностей" эксперты относят информацию, бизнес-процессы, персональные способности специалистов и т.д.

    Интеллектуальные активы предприятия увеличивают его конкурентоспособность и рыночную стоимость. Предприятие должно не только охранять свои патенты, авторские права, но выявлять и охранять знания своих специалистов, знания о производстве товаров/услуг, покупателей, конкурентов и т.д.

    В процессе управления знаниями выделяют следующие его функции: создание - функция, результатом которой являются новые знания или модификации имеющихся знаний; выявление - функция, которая преобразует неявные знания в явные, то есть превращает индивидуальные знания в общедоступные; организации - функция классификации и категоризации знаний для навигации, запоминания, поиска и сопровождения знаний; доступа - функция передачи и распространения знаний между пользователями; использование - функция применения знаний для принятия решений.

    Основными составляющими управления знаниями есть люди, которые получают, генерируют и передают знания; процессы что используются для распространения знаний; информационные системы и технологии обеспечивающих эффективную работу людей и процессов.

    Базовые технологии СУЗ: инструментальные средства совместной работы людей, такие как программное обеспечение и системы управления документооборотом (groupware, workflow); системы, основанные на знаниях и прецедентах (Case-Based Reasoning); системы поиска, анализа и навигации знаний; системы, обеспечивающие взаимодействие ВД и БЗ путем естественно-языкового интерфейса.

    До основных компонентов СУЗ относят: архитектуру СУЗ; средства общения пользователей с базами данных; систему поиска документов; систему выработки и принятия решений; систему получения знаний из данных; экспертные системы, объединяющие все перечисленные выше компоненты в систему управления знаниями.

    Для предприятий является важной задача синхронного управления знаниями о микро - и макроэкономические показатели. Знания, которые должны быть представлены в экономической системе, могут отражать: структуру, форму, свойства, функции и возможные состояния производственной и распределительной подсистем; отношения между субъектами экономической деятельности, возможные события, в которых они могут участвовать; экономические законы и нормы; возможные эффекты действий и состояний, причины и условия возникновения рисковых событий и состояний; возможные намерения, цели, планы, соглашения и т.д.

    Значение интеллектуального уровня развития населения и глубина знаний страны подчеркивается введением ООН в начале 90-х годов индекса развития человека, где наряду с продолжительностью жизни и ВВП на душу населения вводится уровень образования населения.

    С этой точки зрения знания - это полный набор сведений для непосредственного решения задачи специалистами. Знание - это умение организовать процесс и направить его на достижение поставленной цели.

    Свойства знаний: интерпретируемость - возможность их интерпретации, что реализуется только через работу программ с этими данными; структурированность - декомпозиция сложных объектов на более простые и установление связей между объектами классификации; связность - свойство воспроизводить закономерности фактов, явлений и причинно-следственные связи между ними; ситуативная совместимость знаний; активность - знания обеспечивают целенаправленное использование информации (неполнота знаний предопределяет их пополнения).

    Информация и знания - это один из ценнейших ресурсов общества. Роль информационных ресурсов как важного ресурса развития производства, предпринимательства будет расти, поскольку они обеспечивают рост эффективности стратегического, тактического и оперативного управления на базе использования новейших технологий.

    Информационные ресурсы. Информационные ресурсы снижают потребность в земле, труде и капитале, уменьшает расход сырья и энергии, применяются для развития новых видов производства.

    К информационным ресурсам относят отдельные документы и массивы документов, документы в информационных системах (библиотеках, архивах, фондах, банках данных, базах знаний, других информационных системах). Информационные ресурсы являются объектами отношений физических, юридических лиц, государства.

    Информационные ресурсы на машинных носителях - это специализированные информационные массивы в виде автоматизированных баз данных, а также информационные ресурсы Web-сайтов в сети Internet.

    Информационные ресурсы могут быть государственными и негосударственными и как элемент имущества могут находиться в собственности граждан, органов государственной власти, органов местного самоуправления, предприятий. Можно рассматривать информационные ресурсы отдельного лица, подразделения, предприятия, страны, международной корпорации и т.д.

    (IP)- это информация, которая имеет ценность в определенной и может быть использована человеком в экономической деятельности для достижения определенной цели.

    Доступность информационного ресурса - это степень доступности данных и методов их обработки. Постоянство информационного ресурса отражает его способность реагировать на изменения исходных данных без нарушения необходимой точности.

    Адекватность информационного ресурса - это степень соответствия реальной действительности. Неадекватная информация может образоваться при создании новой информации на основе неполных или недостоверных данных.

    Правильность принятия решения потребителем информации зависит от того, насколько эта информация адекватна реальйому состояния объекта. В отличие от ресурсов, связанных с материальными предметами, информационные ресурсы являются неистощимыми и предполагают различные методы восстановления.

    В информационной экономике информационные ресурсы являются основным источником добавленной стоимости.

    Есть ряд особенностей, которые отличают информационные ресурсы от других видов ресурсов, а именно: они не имеют физического износа; по своей сути - нематериальные; их использование позволяет резко сократить потребление остальных видов ресурсов, что приводит к их экономии; процесс их создания и использования осуществляется с помощью ИКТ.

    К особенностям ИР следует отнести то, что они влияют на эффективность производства без физического увеличения традиционных ресурсов, ускоряют процесс воспроизводства за счет уменьшения периодов производства и обращения.

    Определение IP содержится в Законе Украины "О Национальной программе информатизации", которым "информационный ресурс - совокупность документов в информационных системах (библиотеках, архивах, банках данных и т.п.)".

    Однако это определение не охватывает всего спектра ИР. Рассматривая ИР как составляющую информационной инфраструктуры, следует заметить, что это определение неконкретное, поскольку из него не ясно, о каких именно документах идет речь и относятся к ним, в частности, знания человека, способные повлиять на хозяйственные процессы и никак не документированы.

    есть и другое мнение (А.В. Олейник, А.В. Соснин, Л.Е Німанський): "это отдельные документы и массивы документов, результаты интеллектуальной, творческой и информационной деятельности, базы и банки данных, все виды архивов, библиотеки, музейные фонды и другие, содержащие сведения и знания, зафиксированные на соответствующих носителях информации", являются объектами права собственности всех субъектов Украины и имеют потребительскую стоимость (политическую, экономическую, социокультурную, военную, историческую, рыночную,* информационную).

    Информационный ресурс - организованная совокупность документированной информации, включающая базы данных и знаний, хранилища данных, файлы в информационных системах (библиотеки, архивы, документы делопроизводства и т.п.). К ним относятся рукописные, печатные и электронные издания, содержащие нормативную, распорядительную, управленческую и другую информацию по различным направлениям общественной деятельности (законодательство, политика, социальная сфера и т.д.).

    Не всегда однозначно можно определить оптимальный размер необходимых ИР и их предельную цену соответственно обычных соотношений предельных издержек на получение информации и предельной выгоды от ее использования.

    На макроуровне ценность информации возрастает с увеличением количества субъектов экономической деятельности, вовлеченных в ее пользование. При этом может расти цена, обусловлена увеличением платежеспособного спроса на информацию.

    Выделяют организационные, научно-технические, экономические, маркетинговые, социальные, экологические ИР т.д. Важным вопросом развития теории ИР является методика их измерения, разработка критериев эффективности и оптимизации их использования.

    Классификация информационных ресурсов. По территориальному признаку выделят такие IP: международные - глобальные, что не имеют территориальных границ; национальные - используются на территории отдельного государства и принадлежат ей; региональные - используются в пределах региона; локальные (местные, предприятий, организаций) - обусловлены спецификой организации системы формирования, хранения и использования ИР в распределенных информационных системах.

    А. Хорошилов, С. Селетков мировые информационные ресурсы разделяют на такие: бизнес информацию; научно-техническую и специализированную информацию; массовую информацию для потребителей. Бизнес-информация подразделяется в свою очередь на следующие виды: бор жова и финансовая информация котировки ценных бумаг, валютные курсы, учетные ставки, рынок товаров и капиталов, предоставляемая биржами, специальными службами биржевой и финансовой информации, брокерскими компаниями и т.п.; статистическая информация - числовая, экономическая, демографическая, социальная информация в виде рядов динамики, прогнозных моделей и оценок, предоставляемая государственными службами, а также организациями, занятыми исследованиями, разработками и консалтингом; коммерческая информация о компаниях, фирмах, корпорациях, направлениях их работы, финансовом состоянии, ценах на продукцию и услуги, связях, операции, руководителей; бизнес-новости в сфере экономики и бизнеса.

    В связи с тем, что биржевая и финансовая информация постоянно меняется, предоставлять ее нужно в режиме реального времени. Предоставление биржевой и финансовой информации должен быть более оперативным, чем коммерческой. Значение коммерческой информации в условиях рынка и конкуренции также очень важно. Эта информация используется непосредственно предпринимателями при решении следующих задач: выбор поставщиков, партнеров и размещение заказов; выход на рынок с новым товаром; поиск покупателей; слияние и покупка компаний; маркетинговые исследования анализа рынков.

    Научно-техническая и специальная информация включает документальную библиографическую, реферативну и полнотекстовую информацию о фундаментальных и прикладных исследованиях, а также профессиональную информацию для юристов, врачей, инженеров и т.д.

    Организации, которые работают на рынке информационных услуг, предлагают потребителям различные виды услуг, а именно:

    а) доступ к предметно ориентированных баз, в том числе профессиональных, и хранилищ данных в интерактивном и периодическом режимах;

    б) базы данных на жестких носителях - дискетах и компакт-дисках;

    в) консультации предоставляются специалистами в области информационных ресурсов;

    г) обучение доступа к информационным ресурсам и т.д. Поставщиками IP выступают коммерческие структуры,

    государственные и общественные организации, частные лица, которые представляются информационными корпорациями, агентствами, службами, центрами, специализированными сайтами.

    Например, в роли информационных центров могут выступать: центры, где создаются и хранятся базы данных, а также производится постоянное накопление и редактирование информации; центры, распределяющие информацию на основе разных баз данных; службы телекоммуникации и передачи данных; специальные службы, куда попадает информация по конкретной сфере деятельности для ее анализа, обобщения, прогнозирования, например консалтинговые фирмы, банки, биржи; коммерческие фирмы; информационные брокеры и т.д.

    Мощным источником IP на сегодня является всемирная сеть Internet. По способам представления информации могут быть выделены следующие виды источников информации в Internet:

    1) Web - сайты (порталы), на которых через ссылки на web-страницы пользователи получают доступ к информационным ресурсам;

    2) телеконференции - важный источник информации; они делятся на рубрики по определенной тематике;

    3) базы данных или хранилища данных, - охватывают мощные объемы различной информации;

    По форме собственности информационные ресурсы бывают:

    1) национальные - ресурсы независимо от их содержания, формы, времени и места создания, формы собственности, предназначенные для удовлетворения потребностей гражданина, общества, государства, включающие в свою очередь:

    2) государственные - объект права государственной собственности;

    3) коммунальные - объект права коммунальной собственности;

    4) частные - объект права частной собственности.

    По возможностям использования информационные ресурсы являются:

    1) одноразовые - используются при получении в течение короткого срока для одноразового принятия решения;

    2) постоянного использования - приобретаются один раз и повторно используются;

    3) периодические - поступают через определенный промежуток времени и используются однократно.

    Одноразовые ИР используются для решения конкретно поставленной задачи в ограниченный период времени, поэтому их создание может потребовать дополнительного финансирования. Например, информация о состоянии рынка на момент выпуска новой продукции может быть сформирована специалистами предприятия, а может быть куплена у специализированного предприятия, однако эта информация будет использована единовременно только при принятии решения об условиях выхода на рынок в указанный период.

    В процессе организации сферы обработки периодических ИР следует учесть, что на основе первичных ИР формируется большое количество аналитической информации, необходимой для принятия решений менеджерами различных функциональных участков на всех уровнях управления.

    Относительно систем управления информация бывает: входной - получаемую извне; выходной - поставляется предприятием в окружающую среду; внутренней - производится и используется в пределах предприятия, подразделения.

    Основной задачей этого критерия классификации является распределение ролей по созданию и управлению ИР и информационными потоками.

    в Зависимости от этапов жизненного цикла ИР бывают:

    а) разрабатываемые - характеризуются высоким уровнем текущих расходов;

    б) первичные - распространяются впервые, в течение определенного промежутка времени, характеризуются высокой цене, обусловленной затратами на разработку;

    в) тиражируемые - используются при повторном распространении, характеризуются низким уровнем затрат на производство копий, функциональные характеристики информационных ресурсов определяют уровень цены;

    г) архивные - хранятся и используются в производственном процессе нерегулярно.

    Особую актуальность этот классификационный критерий приобретает в условиях, когда ИР является информационным продуктом.

    Информационный продукт - документированная информация, подготовленная в соответствии с потребностями пользователей и представленная в виде товара. Информационными продуктами являются программные продукты, базы и банки данных и т.д. Продуктом информационной системы является ИР, для которых характерны некоторые черты классического материального товара.

    Стадия жизненного цикла продукта определяет материальные и временные затраты на его производство, состав работ, возможный эффект от использования на конкретный момент времени, состояние в производственной системе. На каждом этапе жизненного цикла ИР необходимы индивидуальные подходы к управлению.

    По степени прагматизма они делятся на: обязательные - ресурсы, без которых невозможно принять решение; желательные - способствуют повышению качества принимаемых решений, снижая уровень неопределенности; избыточные - существенно не влияют на принятое решение или затрудняют принятие решения за чрезмерно большой объем информации. Избыточные ИР приводят к снижению эффективности их использования.

    Рост влияния ИКТ на экономическую деятельность предприятий привело к созданию на предприятиях Украины подразделений, в функции которых входит управление информационными потоками как внутри организации, так и за ее пределами, - отделов информационных технологий (информационно-аналитического обеспечения), роль которых будет возрастать.

    По стоимости получения ИР являются: платные - требуют целевого вложения средств; бесплатные - получают как вспомогательный продукт деятельности предприятия или распространяются бесплатно.

    Эта классификационный признак обусловлена необходимостью управления финансированием создания, обеспечения и пользования ИР, особое внимание необходимо уделить вопросу о ценности информации.

    По способу получения IP бывают: специализированные - их получение планируется заранее; могут быть заказаны в сторонних организациях или подразделениях предприятия и полученные за определенный период; вспомогательные (неспециализированные) - полученные как дополнительный продукт в процессе хозяйственной деятельности предприятия или из окружающей среды; их получение предусматривается заранее и проводится целенаправленно по необходимости; случайные - их получение заранее не предполагается и не планируется.

    причастностью к субъекту управления ИР являются: функциональные - формирование, обработка и использование которых предполагается перечнем работ, который выполняется в соответствии с рабочими характеристиками; дополнительно - формирование, обработка и использование которых предполагается перечнем работ, выполняемых в соответствии с дополнительными рабочими характеристиками.

    Последние два критерия характеризуют ИР учитывая их создания и предназначены для выделения основной и вторичной информации с учетом ресурсов, затраченных на ее получение.

    За отражением на материальных носителях ИР бывают электронные; на жестких носителях (на бумаге, дискете, диске, флешах и т.д.); традиционные. Проводятся исследования с принципиально новых видов носителей: голографических, молекулярных, кристаллографических и т.д. Очень быстро совершенствуются технологии связи, рассчитанные на передачу через интегральные каналы различных видов информации (данные, звук, изображение), полученные с различных носителей.

    По способу использования ИР бывают: для узкого пользования, ценность которых растет при монопольном володійні; для широкого пользования, увеличивают ценность при их распространении.

    Согласно Закону Украины "Об информации" (ст. 53), "к информационным ресурсам Украины входит вся принадлежащая ей информация, независимо от содержания, форм, времени и места создания", формы собственности, предназначенных для удовлетворения потребностей гражданина, общества, государства (рис. 1.3).

    ИР, поданные с помощью электронных носителей, приобретают качественно нового состояния, становятся доступными для оперативного воспроизводства необходимой информации и превращаются в важнейший фактор социально-экономического развития общества.

    Формирование ИР и их системное использование становятся объектом политических и экономических интересов как на национальном, так и на международном уровнях. Огромные средства выделяются ежегодно на разработку технологий поддержки ИР.

    Следует определить проблемы обеспечения информационными ресурсами управления экономическими процессами, национальной безопасностью, социальной и общественно-политической сферами. Информационные ресурсы в управлении экономическими процессами охватывают: общегосударственный уровень, отраслевой уровень, региональный уровень, уровень субъектов экономической деятельности. Задачи и цели управления на каждом из уровней определяют состав и объем необходимых ИР и способы их использования.

    общегосударственном уровне управления решаются задачи макроэкономического мониторинга, анализа и прогнозирования; обеспечение экономической безопасности; контроля за деятельностью органов государственной, региональной, местной власти. Мониторинг за хозяйственной деятельностью предприятий требует оперативного доступа к соответствующим IP. Система контроля за деятельностью органов государственного, местного и отраслевого управления обеспечивает анализ качества выполнения возложенных на них функций, расходование бюджетных средств, выявление нарушений.

    отраслевом уровне управления решаются задачи обеспечения научно-технического прогресса, повышение производительности труда, качества продукции, роста объема производства. Научно-техническим, маркетинговым и нормативно-справочным типами ИР обеспечивается решения этих задач.

    региональном уровне управления и требования к информационным ресурсам аналогичные задачей общегосударственного уровня.

    ИР сфере национальной безопасности должны предотвращать таким угрозам национальной безопасности: кризисы в важных отраслях экономики (энергетике, транспорте, банковской системе и т.д.); социальным невзгодам, обусловленных ростом безработицы и падением жизненного уровня; прихода к власти криминальных группировок; перехода под контроль иностранного капитала важной части национальных ресурсов; разрушение национальной науки и культуры, снижению образовательного и культурного уровня населения, распространению идеологии насилия, различных сектантских религиозных течений; оттока за границу финансовых, интеллектуальных и информационных ресурсов; банкротство на государственном уровне, вызванного резким ростом внутреннего и внешнего долга; потери стратегических интересов на международной арене.

    Информационные ресурсы в управлении социальной и общественно-политической сферами должны обеспечивать решение следующих задач:

    1) социальное регулирование и уменьшение социальной расслоенности и напряженности в обществе;

    2) социальная защита населения (пенсионное, социальное страхование, страхование на случай безработицы, страхование от несчастных случаев на производстве);

    3) анализ и управление общественным мнением;

    4) защита национального единого информационного пространства;

    5) развитие культурно-образовательного уровня населения. Основным ресурсом общественной системы являются люди. Основное

    назначение информационного ресурса в этой сфере - обеспечить социальную защиту, а также необходим для развития общества культурный, образовательный и политический уровень населения. Основными источниками информации о состоянии ИР человека являются: данные индивидуального учета в системе государственного социального страхования; данные переписи населения; выборочное обследование домохозяйств; опросы общественного мнения; социальные данные (уровень потребления, доходов и сбережений по категориям населения, индексы цен потребления, прожиточный минимум, стоимость корзины потребления).

    Исследование сущности ИР на макроуровне помогает систематизировать их основные свойства, к которым относятся: простота тиражирования и распространения; актуальность; отсутствие количественных ограничений; фиксированность; вимірюваність; неизменность при использовании; действенность (способность достигать материальных изменений); репрезентативность; содержательность; достаточность; своевременность; точность; достоверность; структурированность; системность и т.д.

    Под информационными ресурсами на микроуровне понимают информацию, которая является ценностью для предприятия и оценивается, как и другие материальные ресурсы. Если рассматривать IP на микроуровне, то они являются непосредственным продуктом интеллектуальной деятельности квалифицированной части трудоспособного населения страны.

    Иначе говоря, ИР отождествляются, по сути, со всей полезной информацией, что ее производит общество или мировое сообщество.

    Основу интеллектуальных ИР составляют результаты творческой деятельности, научных исследований и опытно-конструкторских разработок (НИОКР), которые позволяют создавать наукоемкие изделия, использовать технические и научные идеи, зафиксированные в различных документах и изданиях. Как особую часть выделяют активные ИР, т.е. информация, доступная для автоматизированного поиска, хранения, обработки (программы, базы данных, базы знаний, хранилища данных, документы и т.д) и для широкого пользования.

    Эффективность использования ИР определяется отношением их активной части до общего объема информационных ресурсов.

    В информационном обществе ИР рассматривается как важный фактор качественных изменений в жизни общества. При этом вполне в соответствии с реалиями современной цивилизации выделяют два варианта эксплуатации ИР: с одной стороны, использование информатизации в промышленности и социальной сфере, а с другой - переход к высокоорганизованных постиндустриальных методов осуществления самих информационных процессов.

    Для измерения смыслового содержания информации, т.е. ее количества на семантическом уровне, наибольшее признание получила тезаурусная мера (предложена Ю. И. Шрейдером), которая связывает семантические свойства информации со способностью пользователя принимать поступившее сообщение. Для этого используется понятие тезаурус пользователя .

    Тезаурус - это совокупность сведений, которыми располагает пользователь или система.

    В зависимости от соотношений между смысловым содержанием информации S и тезаурусом пользователя S p изменяется количество семантической информации 1 С, воспринимаемой пользователем и включаемой им в дальнейшем в свой тезаурус. Характер такой зависимости показан на рис. 1.5. Рассмотрим два предельных случая, когда количество семантической информации 1 С равно 0:

    • при S p ->0 пользователь не воспринимает, не понимает поступающую информацию;
    • при S p ->1 пользователь все знает, и поступающая информация ему не нужна.

    Рис. 1.5.

    Максимальное количество семантической информации / с потребитель приобретает при согласовании ее смыслового содержания S со своим тезаурусом S p (S p = S popt), когда поступающая информация понятна пользователю и несет ему ранее не известные (отсутствующие в его тезаурусе) сведения. Следовательно, количество семантической информации в сообщении, количество новых знаний, получаемых пользователем, является величиной относительной. Одно и то же сообщение может иметь смысловое содержание для компетентного пользователя и быть бессмысленным для пользователя некомпетентного. Относительной мерой количества семантической информации может служить коэффициент содержательности С, рассмотренный выше.

    Прагматический (аксиологический) подход к информации базируется на анализе ее ценности, с точки зрения потребителя. Например, информация, имеющая несомненную ценность для биолога, будет иметь ценность, близкую к нулевой, для программиста. Ценность информации связывают со временем, поскольку с течением времени она стареет и ценность ее, а следовательно, и «количество» уменьшаются. Таким образом, прагматический подход оценивает содержательный аспект информации. Он имеет особое значение при использовании информации для управления, поскольку ее количество тесно связано с эффективностью управления в системе.

    Прагматическая мера информации определяет полезность информации (ценность) для достижения пользователем поставленной цепи. Эта мера - также величина относительная, обусловленная особенностями использования этой информации в той или иной системе.

    Ценность информации целесообразно измерять в тех же самых единицах (или близких к ним), в которых измеряется целевая функция.

    Алгоритмический подход связан с желанием внедрения универсальной меры информации. Количественная характеристика, отражающая сложность (размер) программы и позволяющая произвести какое- либо сообщение, была предложена А. Н. Колмогоровым.

    Так как существуют разные способы задания и реализации алгоритма с использованием различных вычислительных машин и языков программирования, то для определенности задается некоторая конкретная машина, например машина Тьюринга. В этом случае в качестве количественной характеристики сообщения можно взять минимальное число внутренних состояний машины, требующихся для воспроизведения данного сообщения.

    Разные подходы к оценке количества информации заставляют, с одной стороны, использовать разнотипные единицы информации для характеристики различных информационных процессов, а с другой - увязывать эти единицы между собой как на логическом, так и на физическом уровнях. Например, процесс передачи информации, измеряемой в одних единицах, сопрягается с процессом хранения информации, где она измеряется в других единицах, и т.д., а поэтому выбор единицы информации является весьма актуальной задачей.

    В табл. 1.3 сопоставлены введенные меры информации.

    Таблица 1.3

    Сопоставление мер информации

    Как уже отмечалось, понятие информации можно рассматривать при различных ограничениях, накладываемых на ее свойства, т.е. при различных уровнях рассмотрения. В основном выделяют три уровня – синтаксический, семантический и прагматический. Соответственно на каждом из них для определения количества информации применяют различные оценки.

    На синтаксическом уровне для оценки количества информации используют вероятностные методы, которые принимают во внимание только вероятностные свойства информации и не учитывают другие (смысловое содержание, полезность, актуальность и т.д.). Разработанные в середине XXв. математические и, в частности, вероятностные методы позволили сформировать подход к оценке количества информации как к мере уменьшения неопределенности знаний.

    Такой подход, называемый также вероятностным, постулирует принцип: если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно утверждать, что такое сообщение содержит информацию. При этом сообщения содержат информацию о каких-либо событиях, которые могут реализоваться с различными вероятностями.

    Формулу для определения количества информации для событий с различными вероятностями и получаемых от дискретного источника информации предложил американский ученый К. Шеннон в 1948г. Согласно этой формуле количество информации может быть определено следующим образом:

    Где I – количество информации; N – количество возможных событий (сообщений); p i – вероятность отдельных событий (сообщений).

    Определяемое с помощью формулы (2.1) количество информации принимает только положительное значение. Поскольку вероятность отдельных событий меньше единицы, то соответственно выражение log 2 ,- является отрицательной величиной и для получения положительного значения количества информации в формуле (2.1) перед знаком суммы стоит знак «минус».

    Если вероятность появления отдельных событий одинаковая и они образуют полную группу событий, т. е.:

    то формула (2.1) преобразуется в формулу Р. Хартли:

    В формулах (2.1) и (2.2) отношение между количеством информации I и соответственно вероятностью (или количеством) отдельных событий выражается с помощью логарифма.

    Применение логарифмов в формулах (2.1) и (2.2) можно объяснить следующим образом. Для простоты рассуждений воспользуемся соотношением (2.2). Будем последовательно присваивать аргументу N значения, выбираемые, например, из ряда чисел: 1, 2, 4, 8, 16, 32, 64 и т.д. Чтобы определить, какое событие из N равновероятных событий произошло, для каждого числа ряда необходимо последовательно производить операции выбора из двух возможных событий.

    Так, при N = 1 количество операций будет равно 0 (вероятность события равна 1), при N = 2, количество операций будет равно 1, при N = 4 количество операций будет равно 2, при N = 8, количество операций будет равно 3 и т.д. Таким образом, получим следующий ряд чисел: 0, 1, 2, 3, 4, 5, 6 и т.д., который можно считать соответствующим значениям функции I в соотношении (2.2).

    Последовательность значений чисел, которые принимает аргумент N , представляет собой ряд, известный в математике как ряд чисел, образующих геометрическую прогрессию, а последовательность значений чисел, которые принимает функция I , будет являться рядом, образующим арифметическую прогрессию. Таким образом, логарифм в формулах (2.1) и (2.2) устанавливает соотношение между рядами, представляющими геометрическую и арифметическую прогрессии, что достаточно хорошо известно в математике.

    Для количественного определения (оценки) любой физической величины необходимо определить единицу измерения, которая в теории измерений носит название меры .


    Как уже отмечалось, информацию перед обработкой, передачей и хранением необходимо подвергнуть кодированию.

    Кодирование производится с помощью специальных алфавитов (знаковых систем). В информатике, изучающей процессы получения, обработки, передачи и хранения информации с помощью вычислительных (компьютерных) систем, в основном используется двоичное кодирование, при котором используется знаковая система, состоящая из двух символов 0 и 1. По этой причине в формулах (2.1) и (2.2) в качестве основания логарифма используется цифра 2.

    Исходя из вероятностного подхода к определению количества информации эти два символа двоичной знаковой системы можно рассматривать как два различных возможных события, поэтому за единицу количества информации принято такое количество информации, которое содержит сообщение, уменьшающее неопределенность знания в два раза (до получения событий их вероятность равна 0,5, после получения – 1, неопределенность уменьшается соответственно: 1/0,5 = 2, т.е. в2 раза). Такая единица измерения информации называется битом (от англ. слова binary digit – двоичная цифра). Таким образом, в качестве меры для оценки количества информации на синтаксическом уровне, при условии двоичного кодирования, принят один бит.

    Следующей по величине единицей измерения количества информации является байт, представляющий собой последовательность, составленную из восьми бит, т.е.:

    1 байт = 2 3 бит = 8 бит.

    В информатике также широко используются кратные байту единицы измерения количества информации, однако в отличие от метрической системы мер, где в качестве множителей кратных единиц применяют коэффициент 10n, где n = 3, 6, 9 и т.д., в кратных единицах измерения количества информации используется коэффициент 2n. Выбор этот объясняется тем, что компьютер в основном оперирует числами не в десятичной, а в двоичной системе счисления.

    Кратные байту единицы измерения количества информации вводятся следующим образом:

    1 килобайт (Кбайт) = 210 байт = 1024 байт;

    1 мегабайт (Мбайт) = 210 Кбайт = 1024 Кбайт;

    1 гигабайт (Гбайт) = 210 Мбайт = 1024 Мбайт;

    1 терабайт (Тбайт) = 210 Гбайт = 1024 Гбайт;

    1 петабайт (Пбайт) = 210 Тбайт = 1024 Тбайт;

    1 экзабайт (Эбайт) = 210 Пбайт = 1024 Пбайт.

    Единицы измерения количества информации, в названии которых есть приставки «кило», «мега» и т.д., с точки зрения теории измерений не являются корректными, поскольку эти приставки используются в метрической системе мер, в которой в качестве множителей кратных единиц используется коэффициент 10 n , где n = 3, 6, 9 и т.д. Для устранения этой некорректности международная организация International Electrotechnical Commission , занимающаяся созданием стандартов для отрасли электронных технологий, утвердила ряд новых приставок для единиц измерения количества информации: киби (kibi), меби (mebi), гиби (gibi), теби (tebi), пети (peti), эксби (exbi). Однако пока используются старые обозначения единиц измерения количества информации, и требуется время, чтобы новые названия начали широко применяться.

    Вероятностный подход используется и при определении количества информации, представленной с помощью знаковых систем. Если рассматривать символы алфавита как множество возможных сообщений N, то количество информации, которое несет один знак алфавита, можно определить по формуле (2.1). При равновероятном появлении каждого знака алфавита в тексте сообщения для определения количества информации можно воспользоваться формулой (2.2).

    Количество информации, которое несет один знак алфавита, тем больше, чем больше знаков входит в этот алфавит. Количество знаков, входящих в алфавит, называется мощностью алфавита. Количество информации (информационный объем), содержащееся в сообщении, закодированном с помощью знаковой системы и содержащем определенное количество знаков (символов), определяется с помощью формулы:

    где V – информационный объем сообщения; I = log 2 N , информационный объем одного символа (знака); К – количество символов (знаков) в сообщении; N – мощность алфавита (количество знаков в алфавите).