• A simple amplifier based on transistors with unipolar power supply. Transistor amplifier: types, circuits, simple and complex. Power supply for umzc

    Nikolay Troshin

    A simple germanium power amplifier.

    Recently, there has been a noticeable increase in interest in power amplifiers based on germanium transistors. There is an opinion that the sound of such amplifiers is softer, reminiscent of “tube sound”.
    I bring to your attention two simple circuits of low-frequency power amplifiers using germanium transistors, which I tested some time ago.

    More modern circuit solutions are used here than those used in the 70s, when “germanium” was in use. This made it possible to obtain decent power with good sound quality.
    The circuit in the figure below is a modified version of the low-frequency amplifier for “germanium” from my article in the magazine Radio No. 8, 1989 (pp. 51-55).

    The output power of this amplifier is 30 W with a speaker load impedance of 4 ohms, and approximately 18 W with a load impedance of 8 ohms.
    The amplifier supply voltage (U supply) is bipolar ±25 V;

    A few words about the details:

    When assembling an amplifier, it is advisable to use mica capacitors as constant capacitors (in addition to electrolytic ones). For example, the CSR type, such as below in the figure.

    MP40A transistors can be replaced with MP21, MP25, MP26 transistors. Transistors GT402G - on GT402V; GT404G - to GT404V;
    The GT806 output transistors can be assigned any letter indices. I do not recommend using lower-frequency transistors such as P210, P216, P217 in this circuit, since at frequencies above 10 kHz they work rather poorly here (distortion is noticeable), apparently due to a lack of current amplification at high frequencies.

    The area of ​​radiators for output transistors must be at least 200 cm2, for pre-terminal transistors - at least 10 cm2.
    For transistors of the GT402 type, it is convenient to make radiators from a copper (brass) or aluminum plate, 0.5 mm thick, 44x26.5 mm in size.

    The plate is cut along the lines, then this workpiece is shaped into a tube, using for this purpose any suitable cylindrical mandrel (for example, a drill).
    After this, the workpiece (1) is tightly placed on the transistor body (2) and pressed with a spring ring (3), having previously bent the side mounting ears.

    The ring is made of steel wire with a diameter of 0.5-1.0 mm. Instead of a ring, you can use a copper wire bandage.
    Now all that remains is to bend the side ears from below to attach the radiator to the transistor body and bend the cut feathers to the desired angle.

    A similar radiator can also be made from a copper tube with a diameter of 8 mm. Cut a piece of 6...7 cm, cut the tube along the entire length on one side. Next, we cut the tube into 4 parts half the length and bend these parts in the form of petals and place them tightly on the transistor.

    Since the diameter of the transistor body is about 8.2 mm, due to the slot along the entire length of the tube, it will fit tightly onto the transistor and will be held on its body due to its springing properties.
    Resistors in the emitters of the output stage are either wirewound with a power of 5 W, or type MLT-2 3 Ohm, 3 pieces in parallel. I do not recommend using imported films - they burn out instantly and imperceptibly, which leads to the failure of several transistors at once.

    Setting:

    Setting up an amplifier correctly assembled from serviceable elements comes down to setting the quiescent current of the output stage to 100 mA using a trimming resistor (it is convenient to control the 1 Ohm emitter resistor - voltage 100 mV).
    It is advisable to glue or press the VD1 diode to the heatsink of the output transistor, which promotes better thermal stabilization. However, if this is not done, the quiescent current of the output stage from cold 100mA to hot 300mA changes, in general, not catastrophically.

    Important: Before turning on for the first time, you must set the trimming resistor to zero resistance.
    After tuning, it is advisable to remove the trimming resistor from the circuit, measure its real resistance and replace it with a constant one.

    The most scarce part for assembling an amplifier according to the above diagram is the GT806 output germanium transistors. Even in the bright Soviet times it was not so easy to acquire them, and now it is probably even more difficult. It is much easier to find germanium transistors of types P213-P217, P210.
    If for some reason you cannot purchase GT806 transistors, then we offer you another amplifier circuit, where you can use the aforementioned P213-P217, P210 as output transistors.

    This scheme is a modernization of the first scheme. The output power of this amplifier is 50W into a 4-ohm load and 30W into an 8-ohm load.
    The supply voltage of this amplifier (U supply) is also bipolar and is ±27 V;
    Operating frequency range 20Hz…20kHz:

    What changes have been made to this scheme;
    Added two current sources to the “voltage amplifier” and another stage to the “current amplifier”.
    The use of another amplification stage on fairly high-frequency P605 transistors made it possible to somewhat unload the GT402-GT404 transistors and boost the very slow P210.

    It turned out pretty good. With an input signal of 20 kHz and an output power of 50 W, distortion is practically not noticeable under the load (on the oscilloscope screen).
    Minimal, barely noticeable distortions of the output signal shape with P210 type transistors occur only at frequencies of about 20 kHz at a power of 50 watts. At frequencies below 20 kHz and powers below 50 W, distortion is not noticeable.
    In a real music signal, such powers at such high frequencies usually do not exist, so I did not notice any differences in the sound (auditory) of the amplifier with GT806 transistors and P210 transistors.
    However, with transistors like GT806, if you look at it with an oscilloscope, the amplifier still works better.

    With an 8 Ohm load in this amplifier, it is also possible to use output transistors P216...P217, and even P213...P215. In the latter case, the amplifier supply voltage will need to be reduced to ±23V. The output power will, of course, also drop.
    Increasing the power supply leads to an increase in output power, and I think that the amplifier circuit in the second option has such potential (reserve), however, I did not tempt fate with experiments.

    The following radiators are required for this amplifier - for output transistors with a dissipation area of ​​at least 300 cm2, for pre-output P605 - at least 30 cm2, and even for GT402, GT404 (with a load resistance of 4 Ohms) are also needed.
    For transistors GT402-404, you can do it easier;
    Take copper wire (without insulation) with a diameter of 0.5-0.8, wind the wire turn to turn on a round mandrel (4-6 mm in diameter), bend the resulting winding into a ring (with an internal diameter less than the diameter of the transistor body), connect the ends by soldering and put the resulting “donut” on the transistor body.

    It will be more efficient to wind the wire not on a round, but on a rectangular mandrel, since this increases the area of ​​contact of the wire with the transistor body and, accordingly, increases the efficiency of heat removal.
    Also, to increase the efficiency of heat removal for the entire amplifier, you can reduce the area of ​​the radiators and use a 12V cooler from the computer for cooling, powering it with a voltage of 7...8V.

    Transistors P605 can be replaced with P601...P609.
    The setup of the second amplifier is similar to that described for the first circuit.
    A few words about acoustic systems. It is clear that to obtain good sound they must have the appropriate power. It is also advisable, using a sound generator, to go through the entire frequency range at different powers. The sound should be clear, without wheezing or rattling. Especially, as my experience has shown, this is especially true for the high-frequency speakers of S-90 type speakers.

    If anyone has any questions about the design and assembly of amplifiers, ask, I will try to answer if possible.

    Good luck to all of you in your creativity and all the best!

    – The neighbor stopped knocking on the radiator. I turned the music up so I couldn't hear him.
    (From audiophile folklore).

    The epigraph is ironic, but the audiophile is not necessarily “sick in the head” with the face of Josh Ernest at a briefing on relations with the Russian Federation, who is “thrilled” because his neighbors are “happy.” Someone wants to listen to serious music at home as in the hall. For this purpose, the quality of the equipment is needed, which among lovers of decibel volume as such simply does not fit where sane people have a mind, but for the latter it goes beyond reason from the prices of suitable amplifiers (UMZCH, audio frequency power amplifier). And someone along the way has a desire to join useful and exciting areas of activity - sound reproduction technology and electronics in general. Which in the age of digital technology are inextricably linked and can become a highly profitable and prestigious profession. The optimal first step in this matter in all respects is to make an amplifier with your own hands: It is UMZCH that allows, with initial training on the basis of school physics on the same table, to go from the simplest designs for half an evening (which, nevertheless, “sing” well) to the most complex units, through which a good rock band will play with pleasure. The purpose of this publication is highlight the first stages of this path for beginners and, perhaps, convey something new to those with experience.

    Protozoa

    So, first, let's try to make an audio amplifier that just works. In order to thoroughly delve into sound engineering, you will have to gradually master quite a lot of theoretical material and not forget to enrich your knowledge base as you progress. But any “cleverness” is easier to assimilate when you see and feel how it works “in hardware.” In this article further, too, we will not do without theory - about what you need to know at first and what can be explained without formulas and graphs. In the meantime, it will be enough to know how to use a multitester.

    Note: If you haven’t soldered electronics yet, keep in mind that its components cannot be overheated! Soldering iron - up to 40 W (preferably 25 W), maximum allowable soldering time without interruption - 10 s. The soldered pin for the heat sink is held 0.5-3 cm from the soldering point on the side of the device body with medical tweezers. Acid and other active fluxes cannot be used! Solder - POS-61.

    On the left in Fig.- the simplest UMZCH, “which just works.” It can be assembled using both germanium and silicon transistors.

    This baby is convenient for learning the basics of setting up a UMZCH with direct connections between cascades that give the clearest sound:

    • Before turning on the power for the first time, turn off the load (speaker);
    • Instead of R1, we solder a chain of a constant resistor of 33 kOhm and a variable resistor (potentiometer) of 270 kOhm, i.e. first note four times less, and the second approx. twice the denomination compared to the original according to the scheme;
    • We supply power and, by rotating the potentiometer, at the point marked with a cross, we set the indicated collector current VT1;
    • We remove the power, unsolder the temporary resistors and measure their total resistance;
    • As R1 we set a resistor with a value from the standard series closest to the measured one;
    • We replace R3 with a constant 470 Ohm chain + 3.3 kOhm potentiometer;
    • Same as according to paragraphs. 3-5, V. and we set the voltage equal to half the supply voltage.

    Point a, from where the signal is removed to the load, is the so-called. midpoint of the amplifier. In UMZCH with unipolar power supply, it is set to half its value, and in UMZCH with bipolar power supply - zero relative to the common wire. This is called adjusting the amplifier balance. In unipolar UMZCHs with capacitive decoupling of the load, it is not necessary to turn it off during setup, but it is better to get used to doing this reflexively: an unbalanced 2-polar amplifier with a connected load can burn out its own powerful and expensive output transistors, or even a “new, good” and very expensive powerful speaker.

    Note: components that require selection when setting up the device in the layout are indicated on the diagrams either with an asterisk (*) or an apostrophe (‘).

    In the center of the same fig.- a simple UMZCH on transistors, already developing power up to 4-6 W at a load of 4 ohms. Although it works like the previous one, in the so-called. class AB1, not intended for Hi-Fi sound, but if you replace a pair of these class D amplifiers (see below) in cheap Chinese computer speakers, their sound improves noticeably. Here we learn another trick: powerful output transistors need to be placed on radiators. Components that require additional cooling are outlined in dotted lines in the diagrams; however, not always; sometimes - indicating the required dissipative area of ​​the heat sink. Setting up this UMZCH is balancing using R2.

    On the right in Fig.- not yet a 350 W monster (as was shown at the beginning of the article), but already quite a solid beast: a simple amplifier with 100 W transistors. You can listen to music through it, but not Hi-Fi, operating class is AB2. However, it is quite suitable for scoring a picnic area or an outdoor meeting, a school assembly hall or a small shopping hall. An amateur rock band, having such a UMZCH per instrument, can perform successfully.

    There are 2 more tricks in this UMZCH: firstly, in very powerful amplifiers, the drive stage of the powerful output also needs to be cooled, so VT3 is placed on a radiator of 100 kW or more. see. For output VT4 and VT5 radiators from 400 sq.m. are needed. see. Secondly, UMZCHs with bipolar power supply are not balanced at all without load. First one or the other output transistor goes into cutoff, and the associated one goes into saturation. Then, at full supply voltage, current surges during balancing can damage the output transistors. Therefore, for balancing (R6, guessed it?), the amplifier is powered from +/–24 V, and instead of a load, a wirewound resistor of 100...200 Ohms is switched on. By the way, the squiggles in some resistors in the diagram are Roman numerals, indicating their required heat dissipation power.

    Note: A power source for this UMZCH needs a power of 600 W or more. Anti-aliasing filter capacitors - from 6800 µF at 160 V. In parallel with the electrolytic capacitors of the IP, 0.01 µF ceramic capacitors are included to prevent self-excitation at ultrasonic frequencies, which can instantly burn out the output transistors.

    On the field workers

    On to the next rice. - another option for a fairly powerful UMZCH (30 W, and with a supply voltage of 35 V - 60 W) on powerful field-effect transistors:

    The sound from it already meets the requirements for entry-level Hi-Fi (if, of course, the UMZCH works on the corresponding acoustic systems, speakers). Powerful field drivers do not require a lot of power to drive, so there is no pre-power cascade. Even more powerful field-effect transistors do not burn out the speakers in the event of any malfunction - they themselves burn out faster. Also unpleasant, but still cheaper than replacing an expensive loudspeaker bass head (GB). This UMZCH does not require balancing or adjustment in general. As a design for beginners, it has only one drawback: powerful field-effect transistors are much more expensive than bipolar transistors for an amplifier with the same parameters. Requirements for individual entrepreneurs are similar to previous ones. case, but its power is needed from 450 W. Radiators – from 200 sq. cm.

    Note: there is no need to build powerful UMZCHs on field-effect transistors for switching power supplies, for example. computer When trying to “drive” them into the active mode required for UMZCH, they either simply burn out, or the sound produces a weak sound and “no quality at all.” The same applies to powerful high-voltage bipolar transistors, for example. from line scan of old TVs.

    Straight up

    If you have already taken the first steps, then it is quite natural to want to build Hi-Fi class UMZCH, without going too deep into the theoretical jungle. To do this, you will have to expand your instrumentation - you need an oscilloscope, an audio frequency generator (AFG) and an AC millivoltmeter with the ability to measure the DC component. It is better to take as a prototype for repetition the E. Gumeli UMZCH, described in detail in Radio No. 1, 1989. To build it, you will need a few inexpensive available components, but the quality meets very high requirements: power up to 60 W, band 20-20,000 Hz, frequency response unevenness 2 dB, nonlinear distortion factor (THD) 0.01%, self-noise level –86 dB. However, setting up the Gumeli amplifier is quite difficult; if you can handle it, you can take on any other. However, some of the currently known circumstances greatly simplify the establishment of this UMZCH, see below. Bearing in mind this and the fact that not everyone is able to get into the Radio archives, it would be appropriate to repeat the main points.

    Schemes of a simple high-quality UMZCH

    The Gumeli UMZCH circuits and specifications for them are shown in the illustration. Radiators of output transistors – from 250 sq. see for UMZCH in Fig. 1 and from 150 sq. see for option according to fig. 3 (original numbering). Transistors of the pre-output stage (KT814/KT815) are installed on radiators bent from 75x35 mm aluminum plates with a thickness of 3 mm. There is no need to replace KT814/KT815 with KT626/KT961; the sound does not noticeably improve, but setup becomes seriously difficult.

    This UMZCH is very critical to power supply, installation topology and general, so it needs to be installed in a structurally complete form and only with a standard power source. When trying to power it from a stabilized power supply, the output transistors burn out immediately. Therefore, in Fig. Drawings of original printed circuit boards and setup instructions are provided. We can add to them that, firstly, if “excitement” is noticeable when you first turn it on, they fight it by changing the inductance L1. Secondly, the leads of parts installed on boards should be no longer than 10 mm. Thirdly, it is extremely undesirable to change the installation topology, but if it is really necessary, there must be a frame shield on the side of the conductors (ground loop, highlighted in color in the figure), and the power supply paths must pass outside it.

    Note: breaks in the tracks to which the bases of powerful transistors are connected - technological, for adjustment, after which they are sealed with drops of solder.

    Setting up this UMZCH is greatly simplified, and the risk of encountering “excitement” during use is reduced to zero if:

    • Minimize interconnect installation by placing the boards on radiators of powerful transistors.
    • Completely abandon the connectors inside, performing all installation only by soldering. Then there will be no need for R12, R13 in a powerful version or R10 R11 in a less powerful version (they are dotted in the diagrams).
    • Use oxygen-free copper audio wires of minimum length for internal installation.

    If these conditions are met, there are no problems with excitation, and setting up the UMZCH comes down to the routine procedure described in Fig.

    Wires for sound

    Audio wires are not an idle invention. The need for their use at present is undeniable. In copper with an admixture of oxygen, a thin oxide film is formed on the faces of metal crystallites. Metal oxides are semiconductors and if the current in the wire is weak without a constant component, its shape is distorted. In theory, distortions on myriads of crystallites should compensate each other, but very little (apparently due to quantum uncertainties) remains. Sufficient to be noticed by discerning listeners against the background of the purest sound of modern UMZCH.

    Manufacturers and traders shamelessly substitute ordinary electrical copper instead of oxygen-free copper - it is impossible to distinguish one from the other by eye. However, there is an area of ​​application where counterfeiting is not clear: twisted pair cable for computer networks. If you put a grid with long segments on the left, it will either not start at all or will constantly glitch. Momentum dispersion, you know.

    The author, when there was just talk about audio wires, realized that, in principle, this was not idle chatter, especially since oxygen-free wires by that time had long been used in special-purpose equipment, with which he was well acquainted by his line of work. Then I took and replaced the standard cord of my TDS-7 headphones with a homemade one made from “vitukha” with flexible multi-core wires. The sound, aurally, has steadily improved for end-to-end analogue tracks, i.e. on the way from the studio microphone to the disc, never digitized. Vinyl recordings made using DMM (Direct Metal Mastering) technology sounded especially bright. After this, the interconnect installation of all home audio was converted to “vitushka”. Then completely random people, indifferent to the music and not notified in advance, began to notice the improvement in sound.

    How to make interconnect wires from twisted pair, see next. video.

    Video: do-it-yourself twisted pair interconnect wires

    Unfortunately, the flexible “vitha” soon disappeared from sale - it did not hold well in the crimped connectors. However, for the information of readers, flexible “military” wire MGTF and MGTFE (shielded) is made only from oxygen-free copper. Fake is impossible, because On ordinary copper, fluoroplastic tape insulation spreads quite quickly. MGTF is now widely available and costs much less than branded audio cables with a guarantee. It has one drawback: it cannot be done in color, but this can be corrected with tags. There are also oxygen-free winding wires, see below.

    Theoretical Interlude

    As we can see, already in the early stages of mastering audio technology, we had to deal with the concept of Hi-Fi (High Fidelity), high fidelity sound reproduction. Hi-Fi comes in different levels, which are ranked according to the following. main parameters:

    1. Reproducible frequency band.
    2. Dynamic range - the ratio in decibels (dB) of the maximum (peak) output power to the noise level.
    3. Self-noise level in dB.
    4. Nonlinear distortion factor (THD) at rated (long-term) output power. The SOI at peak power is assumed to be 1% or 2% depending on the measurement technique.
    5. Unevenness of the amplitude-frequency response (AFC) in the reproducible frequency band. For speakers - separately at low (LF, 20-300 Hz), medium (MF, 300-5000 Hz) and high (HF, 5000-20,000 Hz) sound frequencies.

    Note: the ratio of absolute levels of any values ​​of I in (dB) is defined as P(dB) = 20log(I1/I2). If I1

    You need to know all the subtleties and nuances of Hi-Fi when designing and building speakers, and as for a homemade Hi-Fi UMZCH for the home, before moving on to these, you need to clearly understand the requirements for their power required to sound a given room, dynamic range (dynamics), noise level and SOI. It is not very difficult to achieve a frequency band of 20-20,000 Hz from the UMZCH with a roll off at the edges of 3 dB and an uneven frequency response in the midrange of 2 dB on a modern element base.

    Volume

    The power of the UMZCH is not an end in itself; it must provide the optimal volume of sound reproduction in a given room. It can be determined by curves of equal loudness, see fig. There are no natural noises in residential areas quieter than 20 dB; 20 dB is the wilderness in complete calm. A volume level of 20 dB relative to the threshold of audibility is the threshold of intelligibility - a whisper can still be heard, but music is perceived only as the fact of its presence. An experienced musician can tell which instrument is being played, but not what exactly.

    40 dB - the normal noise of a well-insulated city apartment in a quiet area or a country house - represents the intelligibility threshold. Music from the threshold of intelligibility to the threshold of intelligibility can be listened to with deep frequency response correction, primarily in the bass. To do this, the MUTE function (mute, mutation, not mutation!) is introduced into modern UMZCHs, including, respectively. correction circuits in UMZCH.

    90 dB is the volume level of a symphony orchestra in a very good concert hall. 110 dB can be produced by an extended orchestra in a hall with unique acoustics, of which there are no more than 10 in the world, this is the threshold of perception: louder sounds are still perceived as distinguishable in meaning with an effort of will, but already annoying noise. The volume zone in residential premises of 20-110 dB constitutes the zone of complete audibility, and 40-90 dB is the zone of best audibility, in which untrained and inexperienced listeners fully perceive the meaning of the sound. If, of course, he is in it.

    Power

    Calculating the power of equipment at a given volume in the listening area is perhaps the main and most difficult task of electroacoustics. For yourself, in conditions it is better to go from acoustic systems (AS): calculate their power using a simplified method, and take the nominal (long-term) power of the UMZCH equal to the peak (musical) speaker. In this case, the UMZCH will not noticeably add its distortions to those of the speakers; they are already the main source of nonlinearity in the audio path. But the UMZCH should not be made too powerful: in this case, the level of its own noise may be higher than the threshold of audibility, because It is calculated based on the voltage level of the output signal at maximum power. If we consider it very simply, then for a room in an ordinary apartment or house and speakers with normal characteristic sensitivity (sound output) we can take the trace. UMZCH optimal power values:

    • Up to 8 sq. m – 15-20 W.
    • 8-12 sq. m – 20-30 W.
    • 12-26 sq. m – 30-50 W.
    • 26-50 sq. m – 50-60 W.
    • 50-70 sq. m – 60-100 W.
    • 70-100 sq. m – 100-150 W.
    • 100-120 sq. m – 150-200 W.
    • More than 120 sq. m – determined by calculation based on on-site acoustic measurements.

    Dynamics

    The dynamic range of the UMZCH is determined by curves of equal loudness and threshold values ​​for different degrees of perception:

    1. Symphonic music and jazz with symphonic accompaniment - 90 dB (110 dB - 20 dB) ideal, 70 dB (90 dB - 20 dB) acceptable. No expert can distinguish a sound with a dynamics of 80-85 dB in a city apartment from ideal.
    2. Other serious music genres – 75 dB excellent, 80 dB “through the roof”.
    3. Pop music of any kind and movie soundtracks - 66 dB is enough for the eyes, because... These opuses are already compressed during recording to levels of up to 66 dB and even up to 40 dB, so that you can listen to them on anything.

    The dynamic range of the UMZCH, correctly selected for a given room, is considered equal to its own noise level, taken with the + sign, this is the so-called. signal-to-noise ratio.

    SOI

    Nonlinear distortions (ND) of UMZCH are components of the output signal spectrum that were not present in the input signal. Theoretically, it is best to “push” the NI under the level of its own noise, but technically this is very difficult to implement. In practice, they take into account the so-called. masking effect: at volume levels below approx. At 30 dB, the range of frequencies perceived by the human ear narrows, as does the ability to distinguish sounds by frequency. Musicians hear notes, but find it difficult to assess the timbre of the sound. In people without a hearing for music, the masking effect is observed already at 45-40 dB of volume. Therefore, an UMZCH with a THD of 0.1% (–60 dB from a volume level of 110 dB) will be assessed as Hi-Fi by the average listener, and with a THD of 0.01% (–80 dB) can be considered not distorting the sound.

    Lamps

    The last statement will probably cause rejection, even fury, among adherents of tube circuitry: they say, real sound is produced only by tubes, and not just some, but certain types of octal ones. Calm down, gentlemen - the special tube sound is not a fiction. The reason is the fundamentally different distortion spectra of electronic tubes and transistors. Which, in turn, are due to the fact that in the lamp the flow of electrons moves in a vacuum and quantum effects do not appear in it. A transistor is a quantum device, where minority charge carriers (electrons and holes) move in the crystal, which is completely impossible without quantum effects. Therefore, the spectrum of tube distortions is short and clean: only harmonics up to the 3rd - 4th are clearly visible in it, and there are very few combinational components (sums and differences in the frequencies of the input signal and their harmonics). Therefore, in the days of vacuum circuitry, SOI was called harmonic distortion (CH). In transistors, the spectrum of distortions (if they are measurable, the reservation is random, see below) can be traced up to the 15th and higher components, and there are more than enough combination frequencies in it.

    At the beginning of solid-state electronics, designers of transistor UMZCHs used the usual “tube” SOI of 1-2% for them; Sound with a tube distortion spectrum of this magnitude is perceived by ordinary listeners as pure. By the way, the very concept of Hi-Fi did not yet exist. It turned out that they sound dull and dull. In the process of developing transistor technology, an understanding of what Hi-Fi is and what is needed for it was developed.

    Currently, the growing pains of transistor technology have been successfully overcome and side frequencies at the output of a good UMZCH are difficult to detect using special measurement methods. And lamp circuitry can be considered to have become an art. Its basis can be anything, why can’t electronics go there? An analogy with photography would be appropriate here. No one can deny that a modern digital SLR camera produces an image that is immeasurably clearer, more detailed, and deeper in the range of brightness and color than a plywood box with an accordion. But someone, with the coolest Nikon, “clicks pictures” like “this is my fat cat, he got drunk like a bastard and is sleeping with his paws outstretched,” and someone, using Smena-8M, uses Svemov’s b/w film to take a picture in front of which there is a crowd of people at a prestigious exhibition.

    Note: and calm down again - not everything is so bad. Today, low-power lamp UMZCHs have at least one application left, and not the least important, for which they are technically necessary.

    Experimental stand

    Many audio lovers, having barely learned to solder, immediately “go into tubes.” This in no way deserves censure, on the contrary. Interest in the origins is always justified and useful, and electronics has become so with tubes. The first computers were tube-based, and the on-board electronic equipment of the first spacecraft was also tube-based: there were already transistors then, but they could not withstand extraterrestrial radiation. By the way, at that time, lamp microcircuits were also created under the strictest secrecy! On microlamps with a cold cathode. The only known mention of them in open sources is in the rare book by Mitrofanov and Pickersgil “Modern receiving and amplifying tubes”.

    But enough of the lyrics, let's get to the point. For those who like to tinker with the lamps in Fig. – diagram of a bench lamp UMZCH, intended specifically for experiments: SA1 switches the operating mode of the output lamp, and SA2 switches the supply voltage. The circuit is well known in the Russian Federation, a minor modification affected only the output transformer: now you can not only “drive” the native 6P7S in different modes, but also select the screen grid switching factor for other lamps in ultra-linear mode; for the vast majority of output pentodes and beam tetrodes it is either 0.22-0.25 or 0.42-0.45. For the manufacture of the output transformer, see below.

    Guitarists and rockers

    This is the very case when you can’t do without lamps. As you know, the electric guitar became a full-fledged solo instrument after the pre-amplified signal from the pickup began to be passed through a special attachment - a fuser - which deliberately distorted its spectrum. Without this, the sound of the string was too sharp and short, because the electromagnetic pickup reacts only to the modes of its mechanical vibrations in the plane of the instrument soundboard.

    An unpleasant circumstance soon emerged: the sound of an electric guitar with a fuser acquires full strength and brightness only at high volumes. This is especially true for guitars with a humbucker-type pickup, which gives the most “angry” sound. But what about a beginner who is forced to rehearse at home? You can’t go to the hall to perform without knowing exactly how the instrument will sound there. And rock fans just want to listen to their favorite things in full juice, and rockers are generally decent and non-conflict people. At least those who are interested in rock music, and not shocking surroundings.

    So, it turned out that the fatal sound appears at volume levels acceptable for residential premises, if the UMZCH is tube-based. The reason is the specific interaction of the signal spectrum from the fuser with the pure and short spectrum of tube harmonics. Here again an analogy is appropriate: a b/w photo can be much more expressive than a color one, because leaves only the outline and light for viewing.

    Those who need a tube amplifier not for experiments, but due to technical necessity, do not have time to master the intricacies of tube electronics for a long time, they are passionate about something else. In this case, it is better to make the UMZCH transformerless. More precisely, with a single-ended matching output transformer that operates without constant magnetization. This approach greatly simplifies and speeds up the production of the most complex and critical component of a lamp UMZCH.

    “Transformerless” tube output stage of the UMZCH and pre-amplifiers for it

    On the right in Fig. a diagram of a transformerless output stage of a tube UMZCH is given, and on the left are pre-amplifier options for it. At the top - with a tone control according to the classic Baxandal scheme, which provides fairly deep adjustment, but introduces slight phase distortion into the signal, which can be significant when the UMZCH is operating on a 2-way speaker. Below is a preamplifier with simpler tone control that does not distort the signal.

    But let's get back to the end. In a number of foreign sources, this scheme is considered a revelation, but an identical one, with the exception of the capacitance of the electrolytic capacitors, is found in the Soviet Radio Amateur Handbook of 1966. A thick book of 1060 pages. There was no Internet and disk-based databases back then.

    In the same place, on the right in the figure, the disadvantages of this scheme are briefly but clearly described. An improved one, from the same source, is given on the trail. rice. right. In it, the screen grid L2 is powered from the midpoint of the anode rectifier (the anode winding of the power transformer is symmetrical), and the screen grid L1 is powered through the load. If, instead of high-impedance speakers, you turn on a matching transformer with regular speakers, as in the previous one. circuit, the output power is approx. 12 W, because the active resistance of the primary winding of the transformer is much less than 800 Ohms. SOI of this final stage with transformer output - approx. 0.5%

    How to make a transformer?

    The main enemies of the quality of a powerful signal low-frequency (sound) transformer are the magnetic leakage field, the lines of force of which are closed, bypassing the magnetic circuit (core), eddy currents in the magnetic circuit (Foucault currents) and, to a lesser extent, magnetostriction in the core. Because of this phenomenon, a carelessly assembled transformer “sings,” hums, or beeps. Foucault currents are combated by reducing the thickness of the magnetic circuit plates and additionally insulating them with varnish during assembly. For output transformers, the optimal plate thickness is 0.15 mm, the maximum allowable is 0.25 mm. You should not take thinner plates for the output transformer: the fill factor of the core (the central rod of the magnetic circuit) with steel will fall, the cross-section of the magnetic circuit will have to be increased to obtain a given power, which will only increase distortions and losses in it.

    In the core of an audio transformer operating with constant bias (for example, the anode current of a single-ended output stage) there must be a small (determined by calculation) non-magnetic gap. The presence of a non-magnetic gap, on the one hand, reduces signal distortion from constant magnetization; on the other hand, in a conventional magnetic circuit it increases the stray field and requires a core with a larger cross-section. Therefore, the non-magnetic gap must be calculated at the optimum and performed as accurately as possible.

    For transformers operating with magnetization, the optimal type of core is made of Shp plates (cut), pos. 1 in Fig. In them, a non-magnetic gap is formed during core cutting and is therefore stable; its value is indicated in the passport for the plates or measured with a set of probes. The stray field is minimal, because the side branches through which the magnetic flux is closed are solid. Transformer cores are often assembled from Shp plates without magnetization, because Shp plates are made from high-quality transformer steel. In this case, the core is assembled across the roof (the plates are laid with a cut in one direction or the other), and its cross-section is increased by 10% against the calculated one.

    It is better to wind transformers without bias on USH cores (reduced height with widened windows), pos. 2. In them, a decrease in the stray field is achieved by reducing the length of the magnetic path. Since USh plates are more accessible than Shp, transformer cores with magnetization are often made from them. Then the core assembly is carried out cut to pieces: a package of W-plates is assembled, a strip of non-conducting non-magnetic material is placed with a thickness equal to the size of the non-magnetic gap, covered with a yoke from a package of jumpers and pulled together with a clip.

    Note:“sound” signal magnetic circuits of the ShLM type are of little use for output transformers of high-quality tube amplifiers; they have a large stray field.

    At pos. 3 shows a diagram of the core dimensions for calculating the transformer, at pos. 4 design of the winding frame, and at pos. 5 – patterns of its parts. As for the transformer for the “transformerless” output stage, it is better to make it on the ShLMm across the roof, because the bias is negligible (the bias current is equal to the screen grid current). The main task here is to make the windings as compact as possible in order to reduce the stray field; their active resistance will still be much less than 800 Ohms. The more free space left in the windows, the better the transformer turned out. Therefore, the windings are wound turn to turn (if there is no winding machine, this is terrible) from the thinnest possible wire; the laying coefficient of the anode winding for the mechanical calculation of the transformer is taken 0.6. The winding wire is PETV or PEMM, they have an oxygen-free core. There is no need to take PETV-2 or PEMM-2; due to double varnishing, they have an increased outer diameter and a larger scattering field. The primary winding is wound first, because it is its scattering field that most affects the sound.

    You need to look for iron for this transformer with holes in the corners of the plates and clamping brackets (see figure on the right), because “for complete happiness,” the magnetic circuit is assembled as follows. order (of course, the windings with leads and external insulation should already be on the frame):

    1. Prepare acrylic varnish diluted in half or, in the old fashioned way, shellac;
    2. Plates with jumpers are quickly coated with varnish on one side and placed into the frame as quickly as possible, without pressing too hard. The first plate is placed with the varnished side inward, the next one with the unvarnished side to the first varnished, etc.;
    3. When the frame window is filled, staples are applied and bolted tightly;
    4. After 1-3 minutes, when the squeezing of varnish from the gaps apparently stops, add the plates again until the window is filled;
    5. Repeat paragraphs. 2-4 until the window is tightly packed with steel;
    6. The core is pulled tightly again and dried on a battery, etc. 3-5 days.

    The core assembled using this technology has very good plate insulation and steel filling. Magnetostriction losses are not detected at all. But keep in mind that this technique is not applicable for permalloy cores, because Under strong mechanical influences, the magnetic properties of permalloy irreversibly deteriorate!

    On microcircuits

    UMZCHs on integrated circuits (ICs) are most often made by those who are satisfied with the sound quality up to average Hi-Fi, but are more attracted by the low cost, speed, ease of assembly and the complete absence of any setup procedures that require special knowledge. Simply, an amplifier on microcircuits is the best option for dummies. The classic of the genre here is the UMZCH on the TDA2004 IC, which has been on the series, God willing, for about 20 years now, on the left in Fig. Power – up to 12 W per channel, supply voltage – 3-18 V unipolar. Radiator area – from 200 sq. see for maximum power. The advantage is the ability to work with a very low-resistance, up to 1.6 Ohm, load, which allows you to extract full power when powered from a 12 V on-board network, and 7-8 W when supplied with a 6-volt power supply, for example, on a motorcycle. However, the output of the TDA2004 in class B is not complementary (on transistors of the same conductivity), so the sound is definitely not Hi-Fi: THD 1%, dynamics 45 dB.

    The more modern TDA7261 does not produce better sound, but is more powerful, up to 25 W, because The upper limit of the supply voltage has been increased to 25 V. The lower limit, 4.5 V, still allows it to be powered from a 6 V on-board network, i.e. The TDA7261 can be started from almost all on-board networks, except for the aircraft 27 V. Using attached components (strapping, on the right in the figure), the TDA7261 can operate in mutation mode and with the St-By (Stand By) function, which switches the UMZCH to the minimum power consumption mode when there is no input signal for a certain time. Convenience costs money, so for a stereo you will need a pair of TDA7261 with radiators from 250 sq. see for each.

    Note: If you are somehow attracted to amplifiers with the St-By function, keep in mind that you should not expect speakers wider than 66 dB from them.

    “Super economical” in terms of power supply TDA7482, on the left in the figure, operating in the so-called. class D. Such UMZCHs are sometimes called digital amplifiers, which is incorrect. For real digitization, level samples are taken from an analog signal with a quantization frequency no less than twice the highest of the reproduced frequencies, the value of each sample is recorded in a noise-resistant code and stored for further use. UMZCH class D – pulse. In them, the analogue is directly converted into a sequence of high-frequency pulse-width modulated (PWM), which is fed to the speaker through a low-pass filter (LPF).

    Class D sound has nothing in common with Hi-Fi: SOI of 2% and dynamics of 55 dB for class D UMZCH are considered very good indicators. And TDA7482 here, it must be said, is not the optimal choice: other companies specializing in class D produce UMZCH ICs that are cheaper and require less wiring, for example, D-UMZCH of the Paxx series, on the right in Fig.

    Among the TDAs, the 4-channel TDA7385 should be noted, see the figure, on which you can assemble a good amplifier for speakers up to medium Hi-Fi, inclusive, with frequency division into 2 bands or for a system with a subwoofer. In both cases, low-pass and mid-high-frequency filtering is done at the input on a weak signal, which simplifies the design of the filters and allows deeper separation of the bands. And if the acoustics are subwoofer, then 2 channels of the TDA7385 can be allocated for a sub-ULF bridge circuit (see below), and the remaining 2 can be used for MF-HF.

    UMZCH for subwoofer

    A subwoofer, which can be translated as “subwoofer” or, literally, “boomer,” reproduces frequencies up to 150-200 Hz; in this range, human ears are practically unable to determine the direction of the sound source. In speakers with a subwoofer, the “sub-bass” speaker is placed in a separate acoustic design; this is the subwoofer as such. The subwoofer is placed, in principle, as conveniently as possible, and the stereo effect is provided by separate MF-HF channels with their own small-sized speakers, for the acoustic design of which there are no particularly serious requirements. Experts agree that it is better to listen to stereo with full channel separation, but subwoofer systems significantly save money or labor on the bass path and make it easier to place acoustics in small rooms, which is why they are popular among consumers with normal hearing and not particularly demanding ones.

    The “leakage” of mid-high frequencies into the subwoofer, and from it into the air, greatly spoils the stereo, but if you sharply “cut off” the sub-bass, which, by the way, is very difficult and expensive, then a very unpleasant sound jumping effect will occur. Therefore, channels in subwoofer systems are filtered twice. At the input, electric filters highlight midrange-high frequencies with bass “tails” that do not overload the midrange-high frequency path, but provide a smooth transition to sub-bass. Bass with midrange “tails” are combined and fed to a separate UMZCH for the subwoofer. The midrange is additionally filtered so that the stereo does not deteriorate; in the subwoofer it is already acoustic: a sub-bass speaker is placed, for example, in the partition between the resonator chambers of the subwoofer, which do not let the midrange out, see on the right in Fig.

    A UMZCH for a subwoofer is subject to a number of specific requirements, of which “dummies” consider the most important to be as high a power as possible. This is completely wrong, if, say, the calculation of the acoustics for the room gave a peak power W for one speaker, then the power of the subwoofer needs 0.8 (2W) or 1.6W. For example, if S-30 speakers are suitable for the room, then a subwoofer needs 1.6x30 = 48 W.

    It is much more important to ensure the absence of phase and transient distortions: if they occur, there will definitely be a jump in the sound. As for SOI, it is permissible up to 1%. Intrinsic bass distortion of this level is not audible (see curves of equal volume), and the “tails” of their spectrum in the best audible midrange region will not come out of the subwoofer.

    To avoid phase and transient distortions, the amplifier for the subwoofer is built according to the so-called. bridge circuit: the outputs of 2 identical UMZCHs are switched on back-to-back through a speaker; signals to the inputs are supplied in antiphase. The absence of phase and transient distortions in the bridge circuit is due to the complete electrical symmetry of the output signal paths. The identity of the amplifiers forming the arms of the bridge is ensured by the use of paired UMZCHs on ICs, made on the same chip; This is perhaps the only case when an amplifier on microcircuits is better than a discrete one.

    Note: The power of a bridge UMZCH does not double, as some people think, it is determined by the supply voltage.

    An example of a bridge UMZCH circuit for a subwoofer in a room up to 20 sq. m (without input filters) on the TDA2030 IC is given in Fig. left. Additional midrange filtering is carried out by circuits R5C3 and R’5C’3. Radiator area TDA2030 – from 400 sq. see. Bridged UMZCHs with an open output have an unpleasant feature: when the bridge is unbalanced, a constant component appears in the load current, which can damage the speaker, and the sub-bass protection circuits often fail, turning off the speaker when not needed. Therefore, it is better to protect the expensive oak bass head with non-polar batteries of electrolytic capacitors (highlighted in color, and the diagram of one battery is given in the inset.

    A little about acoustics

    The acoustic design of a subwoofer is a special topic, but since a drawing is given here, explanations are also needed. Case material – MDF 24 mm. The resonator tubes are made of fairly durable, non-ringing plastic, for example, polyethylene. The internal diameter of the pipes is 60 mm, the protrusions inward are 113 mm in the large chamber and 61 in the small chamber. For a specific loudspeaker head, the subwoofer will have to be reconfigured for the best bass and, at the same time, the least impact on the stereo effect. To tune the pipes, they take a pipe that is obviously longer and, by pushing it in and out, achieve the required sound. The protrusions of the pipes outward do not affect the sound; they are then cut off. The pipe settings are interdependent, so you will have to tinker.

    Headphone amplifier

    A headphone amplifier is most often made by hand for two reasons. The first is for listening “on the go”, i.e. outside the home, when the power of the audio output of the player or smartphone is not enough to drive “buttons” or “burdocks”. The second is for high-end home headphones. A Hi-Fi UMZCH for an ordinary living room is needed with dynamics of up to 70-75 dB, but the dynamic range of the best modern stereo headphones exceeds 100 dB. An amplifier with such dynamics is more expensive than some cars, and its power will be from 200 W per channel, which is too much for an ordinary apartment: listening at a power that is much lower than the rated power spoils the sound, see above. Therefore, it makes sense to make a low-power, but with good dynamics, a separate amplifier specifically for headphones: the prices for household UMZCHs with such an additional weight are clearly absurdly inflated.

    The circuit of the simplest headphone amplifier using transistors is given in pos. 1 pic. The sound is only for Chinese “buttons”, it works in class B. It is also no different in terms of efficiency - 13 mm lithium batteries last for 3-4 hours at full volume. At pos. 2 – TDA’s classic for on-the-go headphones. The sound, however, is quite decent, up to average Hi-Fi depending on the track digitization parameters. There are countless amateur improvements to the TDA7050 harness, but no one has yet achieved the transition of sound to the next level of class: the “microphone” itself does not allow it. TDA7057 (item 3) is simply more functional; you can connect the volume control to a regular, not dual, potentiometer.

    The UMZCH for headphones on the TDA7350 (item 4) is designed to drive good individual acoustics. It is on this IC that headphone amplifiers in most middle and high-class household UMZCHs are assembled. The UMZCH for headphones on KA2206B (item 5) is already considered professional: its maximum power of 2.3 W is enough to drive such serious isodynamic “mugs” as TDS-7 and TDS-15.

    A simple transistor amplifier can be a good tool for studying the properties of devices. The circuits and designs are quite simple; you can make the device yourself and check its operation, take measurements of all parameters. Thanks to modern field-effect transistors, it is possible to make a miniature microphone amplifier from literally three elements. And connect it to a personal computer to improve sound recording parameters. And the interlocutors during conversations will hear your speech much better and more clearly.

    Frequency characteristics

    Low (audio) frequency amplifiers are found in almost all household appliances - stereo systems, televisions, radios, tape recorders, and even personal computers. But there are also RF amplifiers based on transistors, lamps and microcircuits. The difference between them is that the ULF allows you to amplify the signal only at the audio frequency that is perceived by the human ear. Transistor audio amplifiers allow you to reproduce signals with frequencies in the range from 20 Hz to 20,000 Hz.

    Consequently, even the simplest device can amplify the signal in this range. And it does this as evenly as possible. The gain depends directly on the frequency of the input signal. The graph of these quantities is almost a straight line. If a signal with a frequency outside the range is applied to the amplifier input, the quality of operation and efficiency of the device will quickly decrease. ULF cascades are assembled, as a rule, using transistors operating in the low and mid-frequency ranges.

    Classes of operation of audio amplifiers

    All amplifying devices are divided into several classes, depending on the degree of current flow through the cascade during the period of operation:

    1. Class “A” - current flows non-stop during the entire period of operation of the amplifier stage.
    2. In work class "B" current flows for half a period.
    3. Class "AB" means that current flows through the amplifier stage for a time equal to 50-100% of the period.
    4. In mode “C”, electric current flows for less than half the operating time.
    5. ULF mode “D” has been used in amateur radio practice quite recently - a little over 50 years. In most cases, these devices are implemented on the basis of digital elements and have a very high efficiency - over 90%.

    The presence of distortion in various classes of low-frequency amplifiers

    The working area of ​​a class “A” transistor amplifier is characterized by fairly small nonlinear distortions. If the incoming signal spits out higher voltage pulses, this causes the transistors to become saturated. In the output signal, higher ones begin to appear near each harmonic (up to 10 or 11). Because of this, a metallic sound appears, characteristic only of transistor amplifiers.

    If the power supply is unstable, the output signal will be modeled in amplitude near the mains frequency. The sound will become harsher on the left side of the frequency response. But the better the stabilization of the amplifier's power supply, the more complex the design of the entire device becomes. ULFs operating in class “A” have a relatively low efficiency - less than 20%. The reason is that the transistor is constantly open and current flows through it constantly.

    To increase (albeit slightly) efficiency, you can use push-pull circuits. One drawback is that the half-waves of the output signal become asymmetrical. If you transfer from class “A” to “AB”, nonlinear distortions will increase by 3-4 times. But the efficiency of the entire device circuit will still increase. ULF classes “AB” and “B” characterize the increase in distortion as the signal level at the input decreases. But even if you turn up the volume, this will not help completely get rid of the shortcomings.

    Work in intermediate classes

    Each class has several varieties. For example, there is a class of amplifiers “A+”. In it, the input transistors (low voltage) operate in mode “A”. But high-voltage ones installed in the output stages operate either in “B” or “AB”. Such amplifiers are much more economical than those operating in class “A”. There is a noticeably lower number of nonlinear distortions - no higher than 0.003%. Better results can be achieved using bipolar transistors. The operating principle of amplifiers based on these elements will be discussed below.

    But there is still a large number of higher harmonics in the output signal, causing the sound to become characteristically metallic. There are also amplifier circuits operating in class “AA”. In them, nonlinear distortions are even less - up to 0.0005%. But the main drawback of transistor amplifiers still exists - the characteristic metallic sound.

    "Alternative" designs

    This is not to say that they are alternative, but some specialists involved in the design and assembly of amplifiers for high-quality sound reproduction increasingly prefer tube designs. Tube amplifiers have the following advantages:

    1. Very low level of nonlinear distortion in the output signal.
    2. There are fewer higher harmonics than in transistor designs.

    But there is one huge disadvantage that outweighs all the advantages - you definitely need to install a device for coordination. The fact is that the tube stage has a very high resistance - several thousand Ohms. But the speaker winding resistance is 8 or 4 Ohms. To coordinate them, you need to install a transformer.

    Of course, this is not a very big drawback - there are also transistor devices that use transformers to match the output stage and the speaker system. Some experts argue that the most effective circuit is a hybrid one - which uses single-ended amplifiers that are not affected by negative feedback. Moreover, all these cascades operate in ULF class “A” mode. In other words, a power amplifier on a transistor is used as a repeater.

    Moreover, the efficiency of such devices is quite high - about 50%. But you should not focus only on efficiency and power indicators - they do not indicate the high quality of sound reproduction by the amplifier. The linearity of the characteristics and their quality are much more important. Therefore, you need to pay attention primarily to them, and not to power.

    Single-ended ULF circuit on a transistor

    The simplest amplifier, built according to a common emitter circuit, operates in class “A”. The circuit uses a semiconductor element with an n-p-n structure. A resistance R3 is installed in the collector circuit, limiting the flow of current. The collector circuit is connected to the positive power wire, and the emitter circuit is connected to the negative wire. If you use semiconductor transistors with a p-n-p structure, the circuit will be exactly the same, you just need to change the polarity.

    Using a decoupling capacitor C1, it is possible to separate the alternating input signal from the direct current source. In this case, the capacitor is not an obstacle to the flow of alternating current along the base-emitter path. The internal resistance of the emitter-base junction together with resistors R1 and R2 represent the simplest supply voltage divider. Typically, resistor R2 has a resistance of 1-1.5 kOhm - the most typical values ​​for such circuits. In this case, the supply voltage is divided exactly in half. And if you power the circuit with a voltage of 20 Volts, you can see that the value of the current gain h21 will be 150. It should be noted that HF ​​amplifiers on transistors are made according to similar circuits, only they work a little differently.

    In this case, the emitter voltage is 9 V and the drop in the “E-B” section of the circuit is 0.7 V (which is typical for transistors on silicon crystals). If we consider an amplifier based on germanium transistors, then in this case the voltage drop in the “E-B” section will be equal to 0.3 V. The current in the collector circuit will be equal to that flowing in the emitter. You can calculate it by dividing the emitter voltage by the resistance R2 - 9V/1 kOhm = 9 mA. To calculate the value of the base current, you need to divide 9 mA by the gain h21 - 9 mA/150 = 60 μA. ULF designs usually use bipolar transistors. Its operating principle is different from field ones.

    On resistor R1, you can now calculate the drop value - this is the difference between the base and supply voltages. In this case, the base voltage can be found using the formula - the sum of the characteristics of the emitter and the “E-B” transition. When powered from a 20 Volt source: 20 - 9.7 = 10.3. From here you can calculate the resistance value R1 = 10.3 V/60 μA = 172 kOhm. The circuit contains capacitance C2, which is necessary to implement a circuit through which the alternating component of the emitter current can pass.

    If you do not install capacitor C2, the variable component will be very limited. Because of this, such a transistor-based audio amplifier will have a very low current gain h21. It is necessary to pay attention to the fact that in the above calculations the base and collector currents were assumed to be equal. Moreover, the base current was taken to be the one that flows into the circuit from the emitter. It occurs only if a bias voltage is applied to the base output of the transistor.

    But it must be taken into account that collector leakage current absolutely always flows through the base circuit, regardless of the presence of bias. In common emitter circuits, the leakage current is amplified by at least 150 times. But usually this value is taken into account only when calculating amplifiers based on germanium transistors. In the case of using silicon, in which the current of the “K-B” circuit is very small, this value is simply neglected.

    Amplifiers based on MOS transistors

    The field-effect transistor amplifier shown in the diagram has many analogues. Including using bipolar transistors. Therefore, we can consider, as a similar example, the design of an audio amplifier assembled according to a circuit with a common emitter. The photo shows a circuit made according to a common source circuit. R-C connections are assembled on the input and output circuits so that the device operates in class “A” amplifier mode.

    The alternating current from the signal source is separated from the direct supply voltage by capacitor C1. The field-effect transistor amplifier must necessarily have a gate potential that will be lower than the same source characteristic. In the diagram shown, the gate is connected to the common wire via resistor R1. Its resistance is very high - resistors of 100-1000 kOhm are usually used in designs. Such a large resistance is chosen so that the input signal is not shunted.

    This resistance almost does not allow electric current to pass through, as a result of which the gate potential (in the absence of a signal at the input) is the same as that of the ground. At the source, the potential turns out to be higher than that of the ground, only due to the voltage drop across resistance R2. From this it is clear that the gate has a lower potential than the source. And this is exactly what is required for the normal functioning of the transistor. It is necessary to pay attention to the fact that C2 and R3 in this amplifier circuit have the same purpose as in the design discussed above. And the input signal is shifted relative to the output signal by 180 degrees.

    ULF with transformer at the output

    You can make such an amplifier with your own hands for home use. It is carried out according to the scheme that works in class “A”. The design is the same as those discussed above - with a common emitter. One feature is that you need to use a transformer for matching. This is a disadvantage of such a transistor-based audio amplifier.

    The collector circuit of the transistor is loaded by the primary winding, which develops an output signal transmitted through the secondary to the speakers. A voltage divider is assembled on resistors R1 and R3, which allows you to select the operating point of the transistor. This circuit supplies bias voltage to the base. All other components have the same purpose as the circuits discussed above.

    Push-pull audio amplifier

    It cannot be said that this is a simple transistor amplifier, since its operation is a little more complicated than those discussed earlier. In push-pull ULFs, the input signal is split into two half-waves, different in phase. And each of these half-waves is amplified by its own cascade, made on a transistor. After each half-wave has been amplified, both signals are combined and sent to the speakers. Such complex transformations can cause signal distortion, since the dynamic and frequency properties of two transistors, even of the same type, will be different.

    As a result, the sound quality at the amplifier output is significantly reduced. When a push-pull amplifier operates in class “A”, it is not possible to reproduce a complex signal with high quality. The reason is that an increased current constantly flows through the amplifier's shoulders, the half-waves are asymmetrical, and phase distortions occur. The sound becomes less intelligible, and when heated, signal distortion increases even more, especially at low and ultra-low frequencies.

    Transformerless ULF

    A transistor-based bass amplifier made using a transformer, despite the fact that the design may have small dimensions, is still imperfect. Transformers are still heavy and bulky, so it's better to get rid of them. A circuit made on complementary semiconductor elements with different types of conductivity turns out to be much more effective. Most modern ULFs are made precisely according to such schemes and operate in class “B”.

    The two powerful transistors used in the design operate according to an emitter follower circuit (common collector). In this case, the input voltage is transmitted to the output without loss or gain. If there is no signal at the input, then the transistors are on the verge of turning on, but are still turned off. When a harmonic signal is applied to the input, the first transistor opens with a positive half-wave, and the second one is in cutoff mode at this time.

    Consequently, only positive half-waves can pass through the load. But the negative ones open the second transistor and completely turn off the first. In this case, only negative half-waves appear in the load. As a result, the signal amplified in power appears at the output of the device. Such an amplifier circuit using transistors is quite effective and can provide stable operation and high-quality sound reproduction.

    ULF circuit on one transistor

    Having studied all the features described above, you can assemble the amplifier with your own hands using a simple element base. The transistor can be used domestic KT315 or any of its foreign analogues - for example BC107. As a load, you need to use headphones with a resistance of 2000-3000 Ohms. A bias voltage must be applied to the base of the transistor through a 1 MΩ resistor and a 10 μF decoupling capacitor. The circuit can be powered from a source with a voltage of 4.5-9 Volts, a current of 0.3-0.5 A.

    If resistance R1 is not connected, then there will be no current in the base and collector. But when connected, the voltage reaches a level of 0.7 V and allows a current of about 4 μA to flow. In this case, the current gain will be about 250. From here you can make a simple calculation of the amplifier using transistors and find out the collector current - it turns out to be equal to 1 mA. Having assembled this transistor amplifier circuit, you can test it. Connect a load to the output - headphones.

    Touch the amplifier input with your finger - a characteristic noise should appear. If it is not there, then most likely the structure was assembled incorrectly. Double-check all connections and element ratings. To make the demonstration more clear, connect a sound source to the ULF input - the output from the player or phone. Listen to music and evaluate the sound quality.

    The circuits of low-frequency amplifiers differ little from each other, except in the capacity of the capacitors used. Despite the fact that usually a low-frequency amplifier has at least a couple of stages, to gain experience you can try to assemble a simple amplifier with just one transistor (and, accordingly, with one cascade).

    The single-stage amplifier circuit proposed below is extremely simple, and can be equally well executed using either wall-mounted (based on conventional wires and leads) or printed circuit (based on printed wires, electrically conductive strips) installation.

    Fig. 1: Single-stage transistor circuit

    Circuits for assembling transistors have a number of symbols:

    • R1 (2, 3, 4...) – resistors;
    • C1 (2, 3, 4...) – capacitors;
    • B1 (2, 3, 4...) – speaker, telephone, etc.;
    • T1 (2, 3, 4…) – .

    The feasibility of assembling a single-stage amplifier is justified solely by the need to gain experimental experience, and its practical use will demonstrate rather low sound quality, similar to that observed in modern Chinese technology.

    To assemble a simple amplifier you will need a number of parts:

    • Transistor KT 817 (or similar);
    • 5 kOhm resistor, 0.25 Watt;
    • Film capacitor 0.22 - 1 microfarad;
    • A speaker delivering a load of 4-8 Ohms (1 - 3 Watts);
    • 9 Volt power supply;
    • Signal source (1 channel and ground).

    The value of the bias resistor R1 reaches tens of kOhms and is determined experimentally. The fact is that this indicator is calculated taking into account the supply voltage of the device, the resistance of the telephone capsule, and the transmission coefficient characteristic of the selected type of transistor. The starting point can be a load resistance increased by at least a hundred times.

    The capacitor (in the diagram is designated as C1) and the level of its capacitance varies in the range from 1 to 100 microfarads, with increasing capacitance the device gains the ability. The purpose of a capacitor (also called a decoupling capacitor) is to pass alternating current and filter out direct current, preventing the circuit from shorting out.

    For this circuit, it is appropriate to use a bipolar transistor with an n-p-n structure and medium and high power levels. It is advisable to use a film capacitor. The received signal can be received through the output of the MP3 player. The device assembled according to this scheme can be equipped with a potentiometer (50,000 Ohms), which allows you to adjust the volume.

    If there is no electrolytic capacitor with a large capacity in the power supply unit, you will need to install an electrolyte of 1000 - 2200 microfarads, which has an operating voltage greater than in the circuit.

    Anyone who has no experience working with electronics should know that when soldering, components can very easily overheat. To prevent this from happening, it is best to use 25 Watt soldering irons, and you need to stop soldering after every 10 seconds of continuous exposure.

    Compared to the given circuit of a single-stage low-frequency amplifier, a two-stage one has much better characteristics, but its assembly is not much more complicated. To construct it you only need to connect two simple cascades in series. However, different types of connections can be used, which, of course, affect the quality and characteristics of signal transmission. But in the simplest version, you can simply connect the output of the first stage to the input of the second stage directly or through a resistor. A connection of this type is respectively called direct or resistor. The degree of signal amplification in this case is equal to the multiplied gain factors of each of the stages. Unfortunately, a subsequent increase in the number of stages in the amplifier does not give a similar effect. The problem is that the gain value is determined in a complex manner and depends quite strongly on the time delay, that is, the phase change.

    Modern modifications of low-frequency amplifiers, usually listed in magazines for radio amateurs, are designed to reduce the level of nonlinear distortion and increase output power, as well as modify other parameters in order to increase the efficiency of the device.

    But at the same time, if the task is to establish the operation of certain devices, as well as to resolve some controversial issues experimentally, then the simplest version of the amplifier, assembled in literally a quarter of an hour, may be necessary. The main requirement for such a device will be a minimum number of scarce components, as well as the ability to operate with a wide range of voltage and resistance levels.

    When operating a low-frequency amplifier, do not forget that its performance is highly dependent on temperature conditions, especially for home-made devices.

    Write comments, additions to the article, maybe I missed something. Take a look at, I will be glad if you find something else useful on mine.

    Circuit of a simple transistor audio amplifier, which is implemented on two powerful composite transistors TIP142-TIP147 installed in the output stage, two low-power BC556B in the differential path and one BD241C in the signal pre-amplification circuit - a total of five transistors for the entire circuit! This UMZCH design can be freely used, for example, as part of a home music center or to drive a subwoofer installed in a car or at a disco.

    The main attractiveness of this audio power amplifier lies in the ease of its assembly even by novice radio amateurs; there is no need for any special configuration, and there are no problems in purchasing components at an affordable price. The PA circuit presented here has electrical characteristics with high linearity of operation in the frequency range from 20Hz to 20000Hz. p>

    When choosing or independently manufacturing a transformer for a power supply, you need to take into account the following factor: - the transformer must have a sufficient power reserve, for example: 300 W per channel, in the case of a two-channel version, then naturally the power doubles. You can use a separate transformer for each, and if you use a stereo version of the amplifier, then you will generally get a “dual mono” type device, which will naturally increase the efficiency of sound amplification.

    The effective voltage in the secondary windings of the transformer should be ~34v AC, then the constant voltage after the rectifier will be in the region of 48v - 50v. In each power supply arm, it is necessary to install a fuse designed for an operating current of 6A, respectively, for stereo when operating on one power supply - 12A.